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Abstract. We introduce the notion of doubly rooted plane trees and give a decom-
position of these trees, called the butterfly decomposition, which turns out to have
many applications. From the butterfly decomposition we obtain a one-to-one corre-
spondence between doubly rooted plane trees and free Dyck paths, which implies a
simple derivation of a relation between the Catalan numbers and the central binomial
coefficients. We also establish a one-to-one correspondence between leaf-colored doubly
rooted plane trees and free Schröder paths. The classical Chung-Feller theorem as well
as some generalizations and variations follow quickly from the butterfly decomposition.
We next obtain two involutions on free Dyck paths and free Schröder paths, leading
to parity results and combinatorial identities. We also use the butterfly decomposition
to give a combinatorial treatment of Klazar’s generating function for the number of
chains in plane trees. Finally we study the size of chains in plane trees with n edges
and show that the average size of such chains tends asymptotically to n+9
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1 Introduction

This paper is concerned with the enumeration of plane trees and the number of chains
in plane trees with n edges. Although this subject has been very well studied over
many decades, it seems that interesting problems and approaches still emerge. The
enumeration of chains in plane trees leads us to discover a fundamental property of
doubly rooted plane trees which has many applications. We call this the butterfly
decomposition.

From the butterfly decomposition, we can establish a correspondence between dou-
bly rooted plane trees and free Dyck paths giving a combinatorial link between the
Catalan numbers and the central binomial coefficients. The butterfly decomposition
also implies the classical Chung-Feller theorem on free Dyck paths with a given number
of steps under the x-axis. (The Chung-Feller theorem was first proved by Major Percy
A. MacMahon in 1909 [16, p.168] but named after its 1949 re-discoverers [4].) The
previous combinatorial approaches to the Chung-Feller theorem are based on the cycle
lemma or cyclic paths, see Raney [19], Narayana [18] and Dershowitz-Zaks [6]. There
are other Chung-Feller type results and generalizations in [2, 3, 10, 11, 23, 26].

In the settings of free Dyck paths and free Schröder paths, we obtain two involutions
which lead to combinatorial identities as well as a parity result on plane trees concerning
the number of leaves at odd height vs the number of leaves at even height.

The butterfly decomposition also leads to the following results: a correspondence
between leaf-colored doubly rooted plane trees and free Schröder paths, and a com-
binatorial interpretation of the generating function for the number of chains in plane
trees obtained by Klazar [14]. We set up a one-to-one correspondence between chains
in plane trees and tricolored plane trees.

In the last section of this paper we find the generating function for the size of chains
in plane trees with n edges and this gives us the asymptotic value of n+9

6
for the size

of an average chain.

We use the standard notations where

C = C (x) =
1−
√

1− 4x

2x
=
∞∑
n=0

1

n+ 1

(
2n

n

)
xn = 1 + xC2 =

1

1− xC

is the generating function for the Catalan numbers cn [25, Exe. 6.19] and

B = B (x) =
1√

1− 4x
=
∞∑
n=0

(
2n

n

)
xn = 1 + 2xBC =

1

1− 2xC

is the generating function for the central binomial coefficients.
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Recall that a Dyck path of length 2n is a lattice path from the origin to (2n, 0)
consisting of up steps U = (1, 1) and down steps D = (1,−1) that does not go below
the x-axis. An elevated Dyck path or an irreducible Dyck path is defined as a Dyck path
that does not touch the x-axis except for the origin and the final destination. A lattice
path from the origin to (2n, 0) using the steps (1, 1) and (1,−1) without additional
restrictions is called a free Dyck path. A free Dyck path is also called a Dyck path with
flaws in the sense that the segments below the x-axis are regarded as flaws, see Eu-Liu-
Yeh [11]. The reflection of a Dyck path with respect to the x-axis is called a negative
Dyck path. A negative elevated (irreducible) Dyck path is defined in the same manner.
Clearly, the set of free Dyck paths of length 2n is just the set of sequences consisting
of n up steps and n down steps, as counted by the central binomial coefficient

(
2n
n

)
.

2 The Butterfly Decomposition

In this section, we introduce the notion of doubly rooted plane trees and their butterfly
decomposition. This decomposition seems to be fundamental for the enumeration of
plane trees. The main result of this section is a correspondence between doubly rooted
plane trees and free Dyck paths, from which follows a combinatorial interpretation of
the relation

(n+ 1)cn =

(
2n

n

)
. (2.1)

We will also establish a correspondence between free Dyck paths and 2-colored plane
trees.

A (rooted) plane tree T with a distinguished vertex w is called a doubly rooted plane
tree, where the distinguished vertex is regarded as the second root. What is more, the
distinguished vertex is allowed to coincide with the root. The butterfly decomposition
of a doubly rooted plane tree T with a distinguished vertex w is described as follows.
Let P = v1v2 . . . vkw be the path from the root, v1, of T to w. Let L1, L2, . . . , Lk be the
subtrees such that Li consists of the vertex vi and its descendants on the left hand side of
the path P . Similarly, we can define the subtrees R1, R2, . . . , Rk as the subtrees rooted
at v1, v2, . . . , vk consisting of the descendants on the right hand side of P . Moreover,
the subtree of T rooted at w is denoted by T ′. Therefore, a plane tree T with a
distinguished vertex w can be decomposed into smaller structures (U1, U2, . . . , Uk;T ′),
where Ui is called a butterfly consisting of Li and Ri and the edge in the middle, as
shown in Figure 1.

It is clear that the generating function for a single butterfly is xC2, and the gener-
ating function for a sequence of k butterflies is (xC2)k. Define the height of a vertex as
the number of edges on the unique path from the root to it. Note that the root is at
height 0. Then the generating function for trees with a distinguished vertex at height

3



Li

vi

Ri

Figure 1: A butterfly

m is (xC2)
m
C, the m butterflies leading down to the distinguished vertex contribute

(xC2)
m

and the subtree rooted at the distinguished vertex contributes the factor C.
Note that the number of doubly rooted plane trees with n edges equals n+ 1 times the
Catalan number, that is, the central binomial coefficient

(
2n
n

)
. Thus, we arrive at the

following generating function relation:

B = C + C(xC2) + C(xC2)2 + · · · = C

1− xC2
. (2.2)

A natural question arises: is there a simple combinatorial argument that leads to
this conclusion without resorting to the formula for the Catalan numbers? Several of
the more obvious approaches seem to go nowhere but the butterfly decomposition sets
up an easy bijection.

Theorem 2.1 There is a bijection between the set of doubly rooted plane trees with n
edges and the set of free Dyck paths of length 2n.

First we give a combinatorial setting for the proof of the above theorem. We recall
the classical glove bijection (or the worm crawling around the tree, see [25, pp. 33-34],
[12, p.239], [15, pp. 21-27] and [5]) that takes plane trees to Dyck paths. The Dyck
path corresponding to a plane tree is given by the sequence of steps when traversing
the plane tree in preorder (visiting the root first, then traversing its subtrees from left
to right). More precisely, we use U to denote the move from a vertex to a child and
use D to denote the move from a vertex to its parent. This bijection is well known and
Figure 2 illustrates it.

We are now ready to give a proof of Theorem 2.1.

Proof. Let T be a doubly rooted plane tree with n edges. Let w be the distin-
guished vertex of T and let v1v2 . . . vkw be the path from the root to w. Suppose that
(L1, R1;L2, R2; . . . ;Lk, Rk;T ′) is the butterfly decomposition of T .

We apply the glove bijection to each of the Li (1 ≤ i ≤ k) and T ′, and call the
resulting Dyck paths Pi and Pk+1. For every Ri, we first create Ti by adding a new
edge on the top of Ri, then use the glove bijection to produce an elevated Dyck path.
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Figure 2: Glove bijection

We finish by reflecting this elevated path about the x-axis to give a negative elevated
path Qi. Now

P1Q1 P2Q2 · · · PkQk Pk+1 (2.3)

is a free Dyck path of length 2n. Conversely, given a free Dyck path we may decompose
it into segments where each return to the x-axis from below concludes a segment. We
may reverse the above procedure to construct a doubly rooted plane tree because any
free Dyck path P has a unique decomposition in the form (2.3) such that Q1, Q2, . . . , Qk

are negative elevated Dyck paths and P1, P2, . . . , Pk+1 are the usual Dyck paths with
the empty path allowed. Thus we have established the bijection.

An example of the above bijection is shown in Figure 3.

We next give another interpretation of the generating function for the number of
bicolored plane trees. Guided by the following generating function identity

C

1− xC2
=

1

1− 2xC
, (2.4)

we are led to introduce the notion of bicolored plane trees and k-colored plane trees,
in general. A k-colored plane tree is a plane tree in which the children of the root
are colored with k colors. A 2-colored plane tree is called a bicolored plane tree, and
a 3-colored plane tree is called a tricolored plane tree. For bicolored plane trees, we
assume that the two colors are black and white. If we want to think in terms of free
Dyck paths we could call these two colors “up” and “down” instead. Note that here
only the children of the root are colored. The relation (2.4) indicates that the set of
bicolored plane trees are in one-to-one correspondence with doubly rooted plane trees.
We next establish such a correspondence by making a connection between bicolored
plane trees and free Dyck paths.

Theorem 2.2 There is a one-to-one correspondence between the set of bicolored plane
trees with n edges and the set of free Dyck paths of length 2n.
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L2 T2 T ′
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Figure 3: Doubly rooted plane trees and free Dyck paths

Proof. Let T be a bicolored plane tree, and let T1, T2, . . . , Tk be the planted subtrees of
the root of T , listed from left to right. If Ti inherits the black color, then we construct
a negative elevated Dyck path Pi from Ti; otherwise we construct an elevated Dyck
path Pi above the x-axis. So we get a free Dyck path P1P2 . . . Pk. Conversely, given a
free Dyck path we may construct a bicolored plane tree. Hence we obtain the desired
bijection.

The bijections in Theorems 2.1 and 2.2 lead to a direct bijection between doubly
rooted plane trees and bicolored plane trees.

Theorem 2.3 There is a bijection between the set of doubly rooted plane trees with n
edges and the set of bicolored plane trees with n edges.

Proof. Let T be a doubly rooted plane tree. By the butterfly decomposition, we get
subtrees Li, Ri and T ′. Then we create Ti by taking a new root with a single child
that is the root of Ri. By coloring the children of the roots of Li and T ′ white and
coloring the child of the root of Ti black, and identifying their roots as the root of the
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corresponding bicolored plane tree, we have its subtrees listed from left to right as

(L1,1 · · ·L1,t1)R1 (L2,1 · · ·L2,t2)R2 · · · (Lk,1 · · ·Lk,tk)Rk (T ′1 · · ·T ′t),

for some t1, . . . , tk and t, where Li,1, . . . , Li,ti are the subtrees of Li and T ′1, . . . , T
′
t are

the subtrees of T ′. The reverse procedure is easy to construct. Thus we have established
the bijection.

3 The Chung-Feller Theorem

We begin this section by pointing out that the classical Chung-Feller theorem on Dyck
paths is an immediate consequence of our bijection between doubly rooted plane trees
and free Dyck paths. To see this connection, one only needs a simple observation on
the preorder traversal of a plane tree. We also use this idea to derive some refinements
and generalizations of the Chung-Feller theorem, including some recent results of Eu,
Fu and Yeh [10] on Dyck paths and Schröder paths with flaws.

Theorem 3.1 (Chung-Feller) For any 0 ≤ m ≤ n, the number of free Dyck paths
of length 2n that contain exactly 2m steps below the x-axis is independent of m, and is
equal to the n-th Catalan number cn.

Using the butterfly decomposition, we may transform the Chung-Feller theorem
to an equivalent form on plane trees, which turns out to be a simple property of the
preorder traversal. Here we perform a right-to-left preorder traversal of a plane tree
T on its vertices with numbers 0, 1, 2, . . . , n in the order they are visited and the root
getting label 0. Figure 4 gives the plane tree corresponding to the free Dyck path in
Figure 3 and the labels show the right-to-left preorder traversal.

0

1
5 2

4 3
6

7

8

9

10

11

12

13

Figure 4: Labels for the Chung-Feller theorem

The following property immediately implies the Chung-Feller theorem since any
plane tree can be regarded as a doubly rooted plane tree in which the distinguished

7



vertex is chosen as the vertex with a given label m with respect to the right-to-left
preorder traversal.

Theorem 3.2 Let T be a plane tree with n edges. Assume that the vertices of T are
labelled by 0, 1, 2, . . . , n according to the right-to-left preorder traversal. Let w be the
vertex labelled by m, where m is a given number not exceeding n. Then the doubly
rooted plane tree T with w being the distinguished vertex corresponds to a free Dyck
path with m down steps (up steps) below the x-axis.

Theorem 3.2 holds by the bijection created in Theorem 2.1. By the butterfly de-
composition, if w is a leaf, then the free Dyck path obtained under the bijection ends
on an up step; and otherwise this path ends on a down step.

As a corollary, we note that half of all free Dyck paths end on a down step. Thus
over all plane trees with n edges, half of the vertices are leaves, see Problem 10753 of
the American Mathematical Monthly [13, 22] and Seo [21].

We can extend this as follows. Let a crew cut vertex be one which is at distance
1 from all the leaves that are below it. Consider the set An,m of ordered pair (T,w),
where T is a doubly rooted plane tree with n edges, w is the distinguished vertex of T ,
and moreover w is a crew cut vertex at height m. In the terminology of the butterfly
decomposition, the generating function for |An,m| is(

xC2
)m · x

1− x
,

where the factor x
1−x is contributed by the terminal subtree T ′. Summing |An,m| over

all m yields that the generating function for the number of crew cut vertices in all
plane trees with n edges is

B + 1

2
· x

1− x
.

Continuing in this vein, we say that a vertex is u-uniform if all the leaves below it are
at distance u. Thus leaves are 0-uniform and crew cut vertices are 1-uniform. The
generating function for the number of u-uniform vertices in all plane trees with n edges
is

B + 1

2
· xu

1− x− x2 − x3 − · · · − xu
,

where the factor Vu (x) = xu

1−x−x2−x3−···−xu comes from the terminal subtree T ′, which
can be decomposed into a path of length u and an edge-disjoint union of paths of length
less than or equal to u.

The following Figure 5 shows a plane tree with four crew cut vertices drawn with
large solid dots and one 2-uniform vertex drawn with an open circle.
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Figure 5: Crew cut vertices and a uniform vertex

The sequences of the numbers of 1-uniform vertices and 2-uniform vertices start
with 0, 1, 2, 5, 15, 50, 176, 638, 2354, 8789, 33099, · · · and 0, 0, 1, 2, 6, 18, 59,
203, 724, 2643, 9802, · · · and are sequences A024718 and A121320 respectively in S-
loane’s EIS [24].

Recall that Bender’s lemma [1, p.496] basically says that if C (x) = A (x)B (x) and
the radius of convergence for A(x) and B(x) are α and β with α < β, then

Cn ∼ AnB (α) .

Let A (x) = B+1
2

and B (x) = Vu (x). As u increases, the radius β of convergence of
B (x) decreases from 1 to 1

2
. Since the radius α of convergence of A (x) is 1

4
, we can apply

Bender’s lemma and get that the n-th coefficient of B+1
2
·Vu (x) equals 1

2

(
2n
n

)
·Vu

(
1
4

)
. It

is a fact that the generating function for the total number of vertices in plane trees just
equals B and the n-th coefficient is

(
2n
n

)
. Thus the proportion of u-uniform vertices

approaches
1

2
· Vu

(
1

4

)
=

3

2
· 1

2 · 4u + 1
, (3.1)

albeit more slowly as u increases. As special cases, the average number of crew cut
vertices approaches 1

6
, and the proportion of 2-uniform vertices approaches 1

22
as the

number of edges increases.

The above interpretation of the Chung-Feller theorem also implies some refinements
and generalizations recently obtained by Eu, Fu and Yeh [10]. Let us define some
terminology. We say that a free Dyck path has m flaws if it contains m up (or down)
steps below the x-axis. We note that a negative elevated (irreducible) Dyck path is
called a flaw block by Eu, Fu and Yeh [10]. We define the stem of a doubly rooted
plane tree as the path from the root to the distinguished vertex. Let T be a doubly
rooted plane tree with a distinguished vertex w. An edge of T is said to be a prefix
edge if it is either on the stem of T or to the right of the stem. In other words, a prefix
edge is an edge with labels not exceeding the label of the distinguished vertex with
respect to the right-to-left preorder traversal. An example is shown in Figure 4 where
the prefix edges are drawn with thick lines.
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Using the preorder traversal of plane trees, we get the following generalization of
the refined version of the Chung-Feller theorem [10].

Theorem 3.3 For 0 ≤ k ≤ m ≤ n, there is a bijection between the set of free Dyck
paths of length 2n with m flaws in k flaw blocks and the set of doubly rooted plane trees
of n edges with stem length k and m prefix edges.

Proof. From the butterfly decomposition and the correspondence in Theorem 2.1, we
see that the number of flaw blocks in a free Dyck path equals the stem length of the
corresponding doubly rooted plane tree, and the number of flaws in a free Dyck path
equals the number of prefix edges in the plane tree. This completes the proof.

By the butterfly decomposition, one sees that the generating function for doubly
rooted plane trees with stem length k equals xkCk ·Ck+1. It follows that the number of
such trees with n edges and m prefix edges equals [xm]xkCk · [xn−m]Ck+1, where [xn]Ck

is the usual notation for the coefficient of xn in the expansion of Ck. By the Lagrange
inversion formula [25, Sec. 5.4], we have

[xn]Ck =
k

2n+ k

(
2n+ k

n

)
. (3.2)

Thus, we obtain the following expression.

Corollary 3.4 For 0 < k ≤ m ≤ n, the number of free Dyck paths of length 2n with
m flaws and k flaw blocks equals

k

2m− k

(
2m− k
m

)
k + 1

2n− 2m+ k + 1

(
2n− 2m+ k + 1

n−m

)
.

Setting m = n in the above corollary, one gets the number of Dyck paths of length
2n with k returns

k

2n− k

(
2n− k
n

)
, (3.3)

see Engelberg [9, Cor. 3.2], Mohanty [17, Cor. 1 (iv)] and Deutsch [7, Sec. 6.6].

We next consider the enumeration of Schröder paths with flaws. For this purpose,
we need to introduce the notion of leaf-colored doubly rooted plane trees which are
defined as doubly rooted plane trees whose leaves are colored with two colors red (R)
and blue (B) under the convention that the distinguished vertex receives no color even
if it is a leaf. An edge of a plane tree is called an external edge if it contains a leaf as
an end vertex; otherwise it is called an internal edge. As we shall see, such leaf-colored
doubly rooted plane trees are in one-to-one correspondence with free Schröder paths.
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Recall that a Schröder path of length 2n is a lattice path in the plane from (0, 0)
to (2n, 0) with up steps U = (1, 1), horizontal steps H = (2, 0), and down steps
D = (1,−1), that never goes below the x-axis. These paths are enumerated by the
Schröder numbers rn [25, Exe. 6.39]. An elevated (irreducible) Schröder path, a free
Schröder path and a negative Schröder path are defined in the same manner as Dyck
paths. We say that a free Schröder path has m flaws if the number of U steps and
H steps under the x-axis equals m. A flaw block of a Schröder path is defined as a
negative elevated Schröder path.

There is a simple bijection that transforms Schröder paths into Dyck paths with
bicolored peaks. Just change each H step into a red UD peak.

Theorem 3.5 There is a one-to-one correspondence between the set of plane trees with
n edges in which each leaf is colored red or blue and the set of Schröder paths of length
2n.

Proof. Let T be a plane tree with n edges in which each leaf is colored red or blue.
We proceed to construct a Schröder path of length 2n by the (left-to-right) preorder
traversal. In the preorder traversal of the vertices of T , each edge is visited twice. Note
that when an external edge e = (u, v) (v is a leaf) is traversed, one always visits the
vertex u, then the leaf v, and then immediately goes back to the vertex u. Now we
may generate a sequence of U , D, and H steps by the following rule: (1) When an
internal edge is visited for the first time, we get a U step; (2) When an internal edge
is visited for the second time, we get a D step; (3) When an external edge with a red
leaf is traversed, we get two steps UD; (4) When an external edge with a blue leaf is
traversed, we get a H step. It is easy to see that we obtain a Schröder path of length
2n and the above procedure is reversible.

By the butterfly decomposition, we obtain the following correspondence.

Theorem 3.6 There is a bijection between the set of leaf-colored doubly rooted plane
trees with n edges and the set of free Schröder paths of length 2n.

Proof. Similar to that of Theorem 2.1.

Recall that the number of plane trees with n edges and k leaves is given by the
Narayana number (see [20] and [25, Exe. 6.36])

Tn,k =
1

n

(
n

k

)(
n

k − 1

)
.

It follows that the number of leaf-colored doubly rooted plane trees equals
n∑

k=1

[
(n+ 1− k)2kTn,k + k2k−1Tn,k

]
=

n∑
k=1

(2n+ 2− k)2k−1Tn,k.
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On the other hand, it is easy to see that the number of free Schröder paths of length
2n is given by the sum

n∑
k=0

(
2n− k
k

)(
2n− 2k

n− k

)
.

Hence Theorem 3.6 yields the following identity:

n∑
k=1

(2n+ 2− k)2k−1Tn,k =
n∑

k=0

(
2n− k
k

)(
2n− 2k

n− k

)
. (3.4)

By the right-to-left preorder traversal and the above correspondence, one may de-
termine a distinguished vertex of a plane tree whose leaves are colored red and blue.
This fact can be restated as a Schröder path analogue of the Chung-Feller theorem
obtained by Eu, Fu and Yeh [10].

Theorem 3.7 For each Schröder path P from (0, 0) to (2n, 0), assign weight 2 to P if
P ends with a U step; otherwise P is assigned weight 1. Let m be a given number not
exceeding n. Then the total weight of the set of free Schröder paths of length 2n with
m flaws is always the Schröder number rn.

If a free Schröder path ends with an up step, then the corresponding subtree T ′ is
empty and we have that the distinguished vertex is a leaf. There are now two possible
ways to color it to get a plane tree with each leaf being colored red or blue, which
is enumerated by the Schröder number rn followed by Theorem 3.5. Hence we assign
weight 2 to this kind of Schröder paths.

Using plane trees, we may reinterpret the above theorem as follows.

Theorem 3.8 Let T be a plane tree with n edges. Assume that the vertices of T are
labelled by 0, 1, 2, . . . , n according to the right-to-left preorder traversal. Let w be a
vertex labelled by m. Let Tw be a leaf-colored doubly rooted plane tree T with w being
the distinguished vertex. Then by the correspondence between leaf-colored doubly rooted
plane trees and free Schröder paths, Tw corresponds to a free Schröder path with m
flaws.

From the above theorem, we immediately get the following refinement.

Theorem 3.9 For 0 ≤ k ≤ m ≤ n, there is a bijection between the set of free Schröder
paths of length 2n with m flaws in k flaw blocks and the set of leaf-colored doubly rooted
plane trees of n edges with stem length k and m prefix edges.
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Figure 6: Leaf-colored plane trees and free Schröder paths

An example of the above bijection between leaf-colored doubly rooted plane trees
and free Schröder paths is illustrated in Figure 6.

To conclude this section, we use the butterfly decomposition to obtain a formula for
the total weight of leaf-colored doubly rooted plane trees of n edges with stem length
k and m prefix edges. Let S be the generating function of the Schröder numbers as
given by the equation S = 1 + xS + xS2. Then the total weight of leaf-colored doubly
rooted plane trees of n edges with stem length k and m prefix edges equals

2 · [xm]xkSk · [xn−m]Sk + [xm]xkSk · [xn−m]Sk(S − 1)

which can be rewritten as [xm−k]Sk[xn−m](Sk+1 + Sk). Let

a(n, k) = [xn]Sk. (3.5)

Set a(0, k) = 1. When n ≥ 1, using the Lagrange inversion formula [25, Sec. 5.4], we
obtain that

a(n, k) =
k

n

n−1∑
i=0

2i+1

(
n+ k − 1

i

)(
n

i+ 1

)
. (3.6)

Note that a(n, 1) reduces to the Schröder number rn.

Corollary 3.10 For 0 < k ≤ m ≤ n, the total weight of free Schröder paths of length
2n with m flaws and k flaw blocks equals

a(m− k, k) · [a(n−m, k + 1) + a(n−m, k)].
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4 Two Involutions

In this section, we present two parity reversing involutions on free Dyck paths and
free Schröder paths, where the parity is defined as the parity of the number of its
flaw blocks. We also derive two identities based on the computation via the butterfly
decomposition.

Theorem 4.1 For n ≥ 1, there is a parity reversing involution on the set of free Dyck
paths of length 2n, which leads to the following identity:

n∑
k=0

(−1)k
2k + 1

2n+ 1

(
2n+ 1

n− k

)
= 0. (4.1)

Proof. Let P be a free Dyck path of length 2n. We construct φ by reflecting the last
elevated subpath, be it positive or negative, about the x-axis. Clearly, φ is a parity
reversing involution. By the butterfly decomposition, the number of free Dyck paths
with k flaw blocks equals the number of doubly rooted plane trees with stem length k,
that is, [xn−k]C2k+1. Hence the relation (4.1) follows from (3.2).

If we consider the set of all plane trees with n edges where n ≥ 1, we will get the
following refinement of the fact that half of the vertices are leaves [13, 21, 22].

Corollary 4.2 Over all plane trees with n edges, the number of leaves at height m+ 1
equals the number of internal vertices at height m.

Proof. The involution φ switches the last elevated subpath from positive to negative
or from negative to positive. If positive we have by the butterfly decomposition a tree
with a distinguished vertex, say at height m, and T ′ is nonempty. Then T ′ can be
written as (Lm+1)U(Rm+1)D where Lm+1 and Rm+1 are possibly trivial trees by the
glove bijection. The involution keeps all the Li and Ri with 1 ≤ i ≤ m unchanged but
transforms T ′ into a left subtree Lm+1 and a right subtree Rm+1, with the new leaf
being the distinguished vertex at height m+ 1 between them.

Since the involution φ interchanges the distinguished vertex at height m + 1 and
m, we get the following property.

Corollary 4.3 Over all plane trees with n edges, the total number of vertices at even
height equals the total number of vertices at odd height.
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If we consider leaves instead of vertices then there are more leaves at odd height
than at even height. The more precise result is as follows.

Corollary 4.4 Consider the set of all plane trees with n edges. There are a Catalan
number cn−1 more of leaves at odd height than at even height for n ≥ 1. Dually there
are cn−1 more of internal vertices at even height than at odd height.

Proof. Let Po(n) (Pe(n), respectively) denote the number of leaves at odd (even,
respectively) height in all plane trees with n edges. We aim to establish a parity
reversing involution Φ on the leaves in plane trees, where the parity of a leaf is defined
as the parity of its height. Moreover, we define the sign of a leaf as 1 if it is at odd
height, and as −1 if it is at even height.

If n = 1, it is easy to check that the corollary holds and Φ is trivial. We now
assume that n ≥ 2. Let r and v be the root and the leftmost child of the root in a
given plane tree T respectively. Let Tv denote the subtree rooted at v. Let Tr denote
the tree obtained from T by removing Tv and the edge rv. The desired involution Φ(T )
is constructed by attaching Tr to v so that r is the first child of v. We use An to denote
the set of plane trees with n edges such that both Tr and Tv are not trivial, and we use
Bn (Cn, respectively) to denote the set of plane trees with n edges such that Tr (Tv,
respectively) is a single vertex. Then An ∪ Bn ∪ Cn is exactly the set of all plane trees
with n edges. It is easy to see that Φ is a parity reversing involution on An and has no
contribution to Po(n)−Pe(n). What is more, Φ is a parity reversing involution between
Bn and Cn such that it contributes 1 to Po(n)− Pe(n) for each T ∈ Bn, more precisely,
this contribution 1 is for odd height 1. It is known that the number of planted plane
trees with n edges, which is also |Bn|, is cn−1. Hence

Po(n)− Pe(n) = cn−1,

and this completes the proof.

Note that the involution Φ between Bn and Cn is φ by setting r and v as the
distinguished vertices respectively by the butterfly decomposition. See [8] for similar
results concerning vertices of even and odd degree.

We also have an involution on free Schröder paths.

Theorem 4.5 For n ≥ 1, there is a parity reversing involution on the set of free
Schröder paths of length 2n containing at least one up step. So we have the following
identity on a(n, k) as defined by (3.6):

n∑
k=0

(−1)k a(n− k, 2k + 1) = 1. (4.2)
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Proof. Let P be a free Schröder path which contains at least one up step. Let Q be the
last segment of P which is an elevated Schröder path or a negative elevated Schröder
path. Note that Q may be followed by some horizontal steps in P . We reflect Q with
respect to the x-axis to get a free Schröder path. Clearly, the resulting path contains
at least one up step. It is easy to see that this construction is reversible and parity
reversing. By the correspondence given in Theorem 3.9, the number of free Schröder
paths of length 2n with k flaw blocks equals [xn−k]S2k+1, that is, a(n − k, 2k + 1).
Therefore, identity (4.2) follows from the involution and the fact that the only Schröder
path not affected by the involution is the path consisting of only horizontal steps.

5 Chains in Plane Trees

Let us recall that a chain of a plane tree is a selection of vertices on a path from the
root to a leaf. The size of a chain is defined as the number of vertices in the chain. Let
Qn be the number of nonempty chains in all plane trees with n edges. A tree with n
edges may have as many as 2n+1−1 non-empty chains and as few as 2n+1. The twelve
chains in plane trees with 2 edges are illustrated in Figure 7, where those open circles
stand for vertices in chains and solid dots stand for normal vertices. For instance, the
last structure of Figure 7 has a chain of size 2.

Figure 7: Chains in plane trees with 2 edges

The main result of this section is a combinatorial interpretation of the generating
function for the number of chains in all plane trees obtained by Klazar [14]. We also
obtain a one-to-one correspondence between the set of chains in plane trees with n edges
and the set of tricolored plane trees with n edges. Klazar [14] derived the following
generating function for the number of chains in plane trees with n edges:

C

1− 2xC2
=
∞∑
n=0

n∑
k=0

3k k

2n− k

(
2n− k
n

)
xn. (5.1)

Note that here we use a slightly different formulation of the generating function C from
that used by Klazar [14].

We now give a combinatorial proof of the fact that the generating function for the
number of chains in all plane trees with n edges equals C

1−2xC2 . Let T be a plane tree
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and Q be a chain of T . Suppose w is the vertex in Q such that the path v1v2 . . . vkw
from the root of T to w contains all the vertices in Q. Moreover, we color the vertex
vi with the white color if it belongs to Q; otherwise, we color vi with the black color.
Such a coloring scheme leads to the following bijection.

Theorem 5.1 There is a one-to-one correspondence between the set of chains in plane
trees with n edges and the set of doubly rooted plane trees in which the vertices on the
path from the root to the distinguished vertex (but not including the distinguished vertex)
are colored with two colors.

Using the above theorem and the butterfly decomposition of doubly rooted plane
trees, we obtain the generating function of Klazar.

Motivated by the following relation

C

1− 2xC2
=

1

1− 3xC
, (5.2)

we are led to establish the following bijection.

Theorem 5.2 There is a one-to-one correspondence between chains in plane trees and
tricolored plane trees.

Proof. Let T be a plane tree and Q be a chain of T . Let v1v2 . . . vkw be the path
from the root to the vertex w, where w is the last vertex in the chain. Suppose
that (L1, R1;L2, R2; . . . ;Lk, Rk;T ′) is the butterfly decomposition of T . Let Ti be the
planted plane tree obtained from Ri by taking a new root with a single child that is
the root of Ri. Color Li and T ′ red, and color Ti white if the vertex vi contained in
Ti is a chain vertex, otherwise color Ti black. Identify their roots as the root of the
corresponding tricolored plane tree, and set the subtrees of the root from left to right
as

(L1,1 · · ·L1,t1)R1 (L2,1 · · ·L2,t2)R2 · · · (Lk,1 · · ·Lk,tk)Rk (T ′1 · · ·T ′t),
for some t1, . . . , tk and t, where Li,1, . . . , Li,ti are the subtrees of Li and T ′1, . . . , T

′
t are

the subtrees of T ′. The reverse procedure is easy to construct. This completes the
proof.

An example of the above bijection is shown in Figure 8.

From the above bijection, we easily see that chains of size m correspond to tricolored
trees with m − 1 white subtrees. Hence as a special case of Theorem 5.2, we obtain
Theorem 2.3.

Notice that a chain in a plane tree is just a two colored path in the butterfly
decomposition. Hence we can color the vertices in a chain with t colors and preserve
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←→

v1

v2

v3

v4

w

L1 T1 L2 T2

∅

L3 T3 L4 T4 T ′

←→ R R B R W B R W R R

Figure 8: Chains and tricolored plane trees

these colors in the above bijection. Precisely speaking, a chain is called t-colored if its
elements are t-colored. We have the following bijection.

Theorem 5.3 There is a one-to-one correspondence between the set of (k− 2)-colored
chains in plane trees with n edges and the set of k-colored plane trees with n edges.

The above bijection is a reflection of the following Catalan type identity:

C

1− (k − 1)xC2
=

1

1− kxC
.

Remark. By the butterfly decomposition, the generating function for the number of
chains in plane trees with n edges that end with a leaf equals

1

1− 2xC2
= 1 + 2x+ 8x2 + 34x3 + 148x4 + 652x5 + · · · .

It is a new combinatorial explanation for Sequence A067336 in [24].

6 Average Size of Chains

In this section, we use the generating function B of the central binomial coefficients
to study the total size and average size of chains in plane trees with n edges. It
turns out that by a decomposition of chains we may rewrite C

1−2xC2 in order to give
an asymptotic formula. We show that the average size of chains in plane trees with n
edges asymptotically tends to n+9

6
.

Bear in mind that the generating function for the number of chains of size 1 in all
plane trees with n edges equals B. We let L∗ be the generating function for the number
of plane trees with a distinguished leaf in all plane trees with n edges. Any tree with
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a distinguished vertex can be decomposed into a tree with a distinguished leaf and a
subtree rooted at the distinguished vertex. Thus we have B = L∗C and L∗ = B/C.

We now consider plane trees with at least two vertices in which there is a distin-
guished leaf. Let L be the generating function for the number of such plane trees with
n edges. It is easy to obtain the following relations

L = L∗ − 1 =
B − C
C

=
B − 1

2
.

Property 6.1 For 1 ≤ k ≤ n + 1, let rn,k be the total number of chains of size k in
all plane trees with n edges. Define R(x, y) =

∑
n≥0
∑n+1

k=1 rn,ky
kxn. Then

R(x, y) =
yB

1− y(B−1)
2

.

Proof. The required generating function follows from a decomposition procedure for a
plane tree with a given chain. Let T be a plane tree and Q be a chain of size k in T .
Let w1, w2, . . . , wk be the chain vertices on the path from the root to the last vertex
wk. Then T can be decomposed into k + 1 plane trees T1, T2, . . . , Tk, and T ′, where
T1 is constructed from T by cutting off the subtrees of w1, T2 is obtained from the
subtree of T rooted at w1 by cutting off the subtrees of w2, and so on, finally T ′ is the
subtree of T rooted at wk. The vertices w1, w2, . . . , wk serve as distinguished vertices
in T1, T2, . . . , Tk. The generating function for the structure of T1 equals yL∗, since the
distinguished vertex is allowed to coincide with the root in T1. The generating function
for other Ti (2 ≤ i ≤ k) equals yL and the generating function for T ′ equals C. Hence
the generating function for the total number of chains of size k in plane trees with n

edges equals yL∗ · (yL)k−1 · C = yB ·
(

y(B−1)
2

)k−1
. We sum over k to get the required

generating function.

An interesting case arises if we look at chains of size 3 that include both the root
and a leaf. In this case we have L2 as our generating function. It is easily shown that
L2 = x2 + 6x3 + 29x4 + 130x5 + · · · . This ubiquitous sequence, A008549, also counts
[24]:

• The area under all Dyck paths of length 2n− 2.

• The number of points at height one over all free Dyck paths of length 2n− 2.

• The number of inversions among all 321-avoiding permutations in Sn.

Taking the partial derivative by y of R(x, y) and evaluating it at (x, 1) gives the
following generating function.
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Theorem 6.2 The generating function for the total size of all chains in plane trees
with n edges equals Ry(x, 1) = 4B

(3−B)2
.

Now we consider the asymptotic approximations. Let Hn be the total number of
chains in plane trees with n edges. Klazar [14] has shown that

Hn ∼
1

2
·
(

9

2

)n

. (6.1)

After some algebraic calculations we get

Ry(x, 1) =

5−18x√
1−4x + 3

8
· 1− 4x(

1− 9
2
x
)2 .

Here we recall the Bender’s lemma [1, p.496] again as we used in Section 3. Let

A (x) = 1−4x
(1− 9

2
x)

2 and B (x) = 1
8
·
(

5−18x√
1−4x + 3

)
. We have α = 2/9 < β = 1/4 for

Bender’s lemma. So we have B
(
2
9

)
= 3

4
while An = n+9

2

(
9
2

)n−1
. Thus we obtain the

following asymptotic property.

Theorem 6.3 Let Rn be the total size of chains in all plane trees with n edges. Then
we have

Rn ∼
n+ 9

12

(
9

2

)n

. (6.2)

From Klazar’s formula (6.1) and the above formula (6.2) it follows that the average
size of chains in planes trees with n edges approaches

Rn

Hn

∼ n+ 9

6
.

For example,

R50

H50

=
2 250 588 247 788 344 466 951 528 963 319 620

228 878 511 199 384 804 987 952 173 176 432
≈ 9.833 1,

while 50+9
6
≈ 9.833 3.
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