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Abstract. We investigate the reliability of a recent approach to use parameterized
linear programming for detecting community structures in networks. Using a one-
parameter family of objective functions, a number of “perturbation experiments” doc-
ument that our approach works rather well. We also analyze a real-life network and a
family of benchmark networks.

1 Introduction

A network is viewed as a simple graph G = (V,E) with vertex set V and edge set
E ⊆

(
V
2

)
(
(
V
2

)
denoting the set of all 2-subsets of V ). It has been proposed in [7]

to employ linear programming (LP) to optimally approximate G (by inserting and
deleting edges) by a community network G′ = (V,E ′), i.e., a graph G′ that is a disjoint
union of complete subgraphs.
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More precisely, presupposing that any changes of G should be penalized by summing
up over penalties to be paid for single edge deletion and insertion, it was proposed in
[7] to introduce a one-parameter family

(
LPG(s) : s ≥ 1

)
of LP problems

• defined by constraints ensuring that the desired community networks all corre-
spond, in a one-to-one fashion, to the feasible {0, 1}-solutions of each of these LP
problems,

• and indexed by a parameter s that is used for automatically calibrating the
penalty to be paid for deleting an edge.

It was shown that, for all large values of s, the LP problem LPG(s) has a unique
solution that, in addition, is integral and corresponds to that community network
G = (V,E) in which two vertices are connected by an edge if and only if they are
contained in the same connected component of G: If deleting becomes too expensive,
only inserting — and never deleting — edges presents the most economical solution.

Much more surprising, however, was the observation that community networks
which researchers considered to representing very good, if not “the best” approxima-
tion of G were almost invariably found for a very specific value of s that could be
characterized in a simple, purely arithmetic fashion: The smallest value s∗ = s∗(G) a-
mong all s ≥ 1 for which the corresponding problem LPG(s∗) has, at least, one integral
solution.

The main results of this paper are presented in Section 4: By a series of experi-
ments, we investigate the reliability of the LP-based algorithm for community-structure
detection proposed in [7] that we recall in Section 3. Before this, we shortly review
some current community-structure studies in the next section. We also analyze another
series of increasingly more difficult (and much studied) artificial benchmark cases in
Section 5 and — last, but not least — one real-life example in Section 6. All these
experiments document that the LP-based approach can well compete in quality —
though not yet in speed — with more established heuristics and, thus, demonstrate
the need of a new algorithm that incorporates the virtues of both types of approaches,
precision and speed, and thus may outperform all of them.

2 Networks and Community Structures

Networks are snapshots of dynamical systems, and dynamical systems are networks in
action [32, 37]. Consequently, there is some good hope that proper network analysis
can help to elucidate the dynamics of relevant systems — from the World-Wide Web
[1, 22], scientific collaborations, and citation networks [24] to the life sciences, e.g., the
ecological, regulatory, protein, and metabolic networks [10, 19, 20, 34].
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To apply standard methods of network analysis, a lot of detailed input information
about the mechanisms of interactions between the various agents participating in the
network’s activity is required. Given such information, a lot of detailed information
about its dynamics can be deduced by solving the resulting differential equations and/or
computer simulation.

However, this approach has serious limitations: In many networks of interest in
biology, such input information is simply not available. So the question arises: What
can be done if all that is known are the network’s agents represented by a collection
V = V (G) of vertices of the network G, and the network’s topology, i.e., the subset
E = E(G) of the set

(
V
2

)
consisting of those pairs {u, v} ∈

(
V
2

)
of distinct agents u, v

(also called the edges of the network) that we believe to strongly interact with each
other?

Attempts to addressing such questions have received much attention ever since the
current network hype began with the proclamation of scale-free [5] and small-world
[37] (see also [2]) networks as constituting important new and universally applicable
paradigms of interaction schemes observed in real-world systems, and suggesting fun-
damentally new basic laws governing important processes studied in the natural and
the social sciences.

What we are concerned with here is one currently quite popular proposal within this
program, i.e., the proposal of using the network’s topology for deriving its community
structure, that is, for grouping the network’s agents into disjoint communities consisting
of agents that appear to strongly interact with each other and not so strongly with
those in the other communities: See [12, 23, 26, 29, 36] for a discussion of relevant
definitions.

Furthermore, many approaches to detect communities in networks have been de-
veloped over the years, from spectral bisection [28], the Kernighan-Lin algorithm [21],
and hierarchical clustering [13] to Girvan and Newman’s landmark paper [14] that in-
spired much further work (see for instance [29, 33, 38]). In [26], Newman and Girvan
proposed a quantitative measure dubbed modularity to compare the appropriateness
of distinct community structures constructed for a given fixed network and developed
an algorithm searching for modularity-optimal community structures (cf. [25]). Their
approach was further improved by the “CNM algorithm” proposed by Clauset et al.
[8] who developed an extremely fast heuristic that greedily searches for modularity-
optimal community structures, returns demonstrably good results for many real-world
networks, and has often been used successfully in recent years (see, e.g., [35] for a
recent biological application).

Furthermore, apparently quite unaware of (a) the work of Grötschel and Wak-
abayashi [15, 16] and (b) the relationship between their own work and community-
structure detection, Demaine and Immorlica [11] proposed to employ LP procedures
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for dealing with a (generalized version of) the “correlation clustering” problem studied
by Bansal, Blum, and Chawla [4] that – at a first glance – looks very similar to our
approach. However, their work does not only have a distinct (though related) goal, our
method also employs a rather different strategy of using LP for finding (hopefully) rel-
evant solutions. Yet, as Demaine and Immorlica were concerned with the algorithmic
aspects of solving just single integer LP problems by some rounding technique, we do
hope that the speed of our method can be improved (on the expense of accuracy) by
incorporating their ideas into our procedure.

In the present paper, however, we will restrict our attention exclusively to investi-
gating the reliability of our own approach as proposed in [7].

3 The Basic Set-Up

Let us now recall the notations, definitions, and results from [7]: Given a finite set V ,
consider

• the R-vectorspace R(V
2) consisting of all maps

x :

(
V

2

)
→ R : {u, v} 7→ x(u, v)

from
(
V
2

)
into R, the real-number field,

• the hypercube [0, 1](
V
2) ⊂ R(V

2) consisting of all maps x ∈ R(V
2) with

(3.1) 0 ≤ x(u, v) ≤ 1

for any two distinct elements u, v ∈ V ,

• the convex polytope P = P (V ) ⊂ [0, 1](
V
2) consisting of all vectors x in [0, 1](

V
2)

for which, in addition, the inequality

(3.2) x(u, v) + x(v, w)− x(w, u) ≤ 1

holds for any three distinct elements u, v, w ∈ V ,

• and the set P0 consisting of all vertices in P .

We note that

• the set of vertices of [0, 1](
V
2) coincides with the set {0, 1}(

V
2) of all maps from

(
V
2

)
into the 2-subset {0, 1} of [0, 1],
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• P ∩ {0, 1}(
V
2) ⊆ P0 holds,

• and there is a canonical one-to-one correspondence between

(i) those vertices x ∈ {0, 1}(
V
2) of [0, 1](

V
2) that are contained in P (and, hence,

in P0)

(ii) and community networks or, equivalently, partitions Π of V into a disjoint
union of subsets.

Indeed, associating to each vertex x ∈ {0, 1}(
V
2) of [0, 1](

V
2), the graph

Gx := (V,Ex := {{u, v} ∈
(
V

2

)
: x(u, v) = 1})

(where “x := y” means “we define the term x by requiring it to mean y”), it has been
noted by Grötschel and Wakabayashi [15, 16] that Gx is a community network if and
only if x satisfies the constraints defined by (3.1) and (3.2). Thus, the integral-valued

maps x ∈ R(V
2) that satisfy these constraints parameterize, in a one-to-one fashion, the

community networks that we want to investigate and among which we want to identify,
for any given finite simple graph G, that one which approximates G best.

To this end, we proposed in [7] to associate, to any given finite simple graph G =
(V,E) with vertex set V and edge set E ⊆

(
V
2

)
, the one-parameter family LPG(s) of

linear-programming problems of finding, for every s ≥ 1, those maps

x = x(G, s) ∈ P ⊂ R(V
2)

that satisfy (i) the constraints defined by (3.1) and (3.2) and (ii) optimize the linear
form

(3.3) `sG : R(V
2) → R : x 7→ s

∑
{u,v}∈E

x(u, v)−
∑

{u,v}∈(V
2)−E

x(u, v) (s ≥ 1)

defined on R(V
2). We used the software CPLEX 9.1 to solve these linear-programming

problems for various input graphs1.

We observed that, as noted already in the introduction,

• there exists one positive real number s̄ = s(G) ≥ 1 such that, for every s ≥ s̄,
there is only one vertex x in P0 — and, therefore, only one map x in P — that
maximizes the linear form `sG,

1Actually, we also studied other variants of one-parameter families in [7], but will restrict our
attention here to this particularly simple choice.
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• all values x(u, v) are necessarily either 0 or 1,

• the corresponding partition π0(Gx) of V into the connected components of Gx

coincides with the partition π0(G) of V into the set of connected components
of G, i.e., x coincides with the map xG defined by xG(u, v) := 0 if u and v are
contained in distinct components of G, and xG(u, v) := 1 else.

We observed also that, much to our own surprise, denoting by s∗(G) the smallest
value ≥ 1 of our control parameter s for which the LP problem LPG(s) has an integer-
valued solution, the associated community network G′ := Gx(G,s∗(G)) almost invariably
coincides with a community network considered to provide one of, if not “the best”
approximation of G.

Based on this finding, we explored in [7] the following simple strategy for detecting
community structures associated to a given graph G:

• Start with s := 1.

• Use CPLEX 9.1 (or any other good software tool for solving LP problems) to
find vertices in P0 that solve the linear programming problem LPG(s).

• Increase s continuously in sufficiently small steps until the smallest value s∗ =
s∗(G) ∈ [1,+∞) for which this problem has an integer solution x∗(G) := x(G, s∗(G))
is found2.

• Then stop and consider the partition Π(G) := Πx∗(G) as a hopefully reasonably
good solution of the original problem, i.e., the problem of finding a “good” com-
munity structure approximating the input graph G (provided there exists a good
approximation for G at all).

We demonstrated that this strategy yields indeed pretty good solutions for some well
known benchmark problems including Zachary’s Karate Club [39] and the Chesapeake-
Bay Food Web compiled by Baird and Ulanowicz [3]: For Zachary’s Karate club, our
method produced exactly the “historically correct” partition. Regarding the Chesapeake-
Bay food web, our result was checked by Robert Ulanowicz who, comparing our result
with that of other algorithms, judged that “both groupings are quite good, but —
by placing blue crab correctly among the benthic feeders — you win the competition
probably by a hair”.

2A more direct and systematic “geometric” approach to finding exactly all values of s at which
x(G, s) is about to change is presently under development.
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4 The Perturbation Experiments

Next, we will investigate the reliability of the LP-based approach by analyzing a number
of more and more randomized test cases. To begin with, we start with a given “target
partition” Π of V and consider the associated community network HΠ = (V,EΠ) whose
vertex set is V while its edge set EΠ coincides with

⋃
U∈Π

(
U
2

)
.

Clearly, a graph G′ = (V,E ′) is a community network if and only if it is of the form
G′ = HΠ′ for some partition Π′ of V in which case the partition π0(G′) of the vertex set
V into the connected components of G′ is the unique partition Π′ of V with G′ = HΠ′ .

Next, we

(i) randomly generate (Erdös-Renyi) graphs R := (V, F ) with the same vertex set
V and more and more edges,

(ii) form the symmetric difference FΠ := EΠ∆F ,

(iii) apply our algorithm to HΠ∆R := (V, FΠ),

(iv) define the perturbation ratio p(Π, R) of R relative to Π to be the quotient |F |
|EΠ|

of

the cardinality |F | of F by that of EΠ,

(v) and expect that, at least for small perturbation ratios, the resulting partitions
Π(HΠ∆R) of V should not differ too much from — or even coincide with — the
target partition Π.

To check, more specifically, for which perturbation ratios this expectation is justi-
fied, we generated ten times ten random graphs Rj

i (i, j = 1, 2, . . . , 10), ten for each
perturbation ratio pi ≈ i

10
(i = 1, 2, . . . , 10), and compared the resulting partitions

Πj
i := Π(HΠ∆Rj

i ) (i, j = 1, 2, . . . , 10) with the original partition Π.

We applied this procedure to a partition Π = Π12|9|8|6 consisting of four disjoint sets
of cardinality 12, 9, 8, and 6 (for which EΠ consists of altogether 66+36+28+15 = 145
edges), and correspondingly defined partitions Π15|10|10 and Π16|8|8|8.

In Figure 1 and Figure2, we present four sample graphs (in a way that, by keeping
the vertices in each clique close together at their “original” positions so that it should
be easy to recognize the original partition as long as this is possible at all) that we
obtained from Π12|9|8|6 for the perturbation ratios 0.4, 0.8, 0.85 and 0.9. Clearly, when
the perturbation ratio is as low as 0.4, the community structure is detected easily. In
case pi ≈ 0.8, the original structure gets blurry, but can, in most cases, still be guessed
correctly. When pi ≈ 0.9, the original structure becomes essentially irrecognizable —
in-spite of the specific presentation derived from the input partition.
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We now present the results of the experiments. Referring first to the four sample
graphs depicted in Figure 1 and Figure 2, the original partition could be detected,
as expected, almost exactly with our algorithm in case pi ≤ 0.85. In case pi ≈ 0.9,
our algorithm returns a partition with one subset that is the union of the two original
subsets of size 12 and 8 while the other two subsets in Π are still detected exactly.

To systematically compare the partitions Πj
i with the target partition, we define

(i) the transfer distance D(Π1,Π2) = Dtransfer(Π1,Π2) between any two partitions
Π1,Π2 to be the minimal number of “single vertex moves” (moving one single
vertices from one subset to another one at a time) that are required to change
Π1 into Π2 (cf. [6]),

(ii) the maintenance ratio by

M(Π1,Π2) = Mtransfer(Π1,Π2) :=
(
n−D(Π1,Π2)

)
/n,

where n is the number of vertices in the network,

(iii) and the average maintenance ratio by

AM(Π, i) :=
1

10

10∑
j=1

M(Π,Πj
i ) (i = 1, 2, . . . , 10),

and plot the perturbation ratio versus the average maintenance ratio (cf. Figure 3)
— including also, as the maintenance ratio declines rapidly just above p ≈ 0.8 for all
three test systems, the ratio p ≈ 0.85.

We also applied the CNM algorithm (as available from the internet, cf. [17]) to our
3 sets of examples. The results are presented in Figure 3: The solid lines represent the
results obtained by the LP-based method, and the dash-dot lines represent those ob-
tained by the CNM algorithm — the “star”, the “dot”, and the “triangle” designating
the three test systems, respectively. Much to our own surprise, the LP-based method
performed consistently better than the modularity-based algorithm for all perturba-
tion ratios below 1. Only when the perturbation ratio approaches 1 and the number
of perturbed edges approaches the total number of edges in the original community
network, the two methods perform about equally poor.

We wondered also whether comparing the two methods using the above definition
of maintenance ratios might, for one reason or the other, not be a fair deal with respect
to the CNM algorithm and whether, e.g., allowing to move whole subsets rather than
single elements in one go might be “fairer” because there should be a difference between,
say, the distance of the partition

Π1 := {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}
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to the partition
Π2 := {{1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, 12}},

and that to the partition

Π′2 := {{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}}.

For this reason, we defined the subset-transfer distance STD(Π1,Π2) as the minimal
number of moves of feasible subsets, i.e., non-empty intersections A1 ∩ A2 of the sets
A1 ∈ Π1 and A2 ∈ Π2 in the two partitions Π1 and Π2 under consideration (rather than
single elements) that are required to change Π1 into Π2, and denoted the corresponding
subset-maintenance ratio by

STM(Π1,Π2) := (N − STD(Π1,Π2))/N,

where N = N(Π1,Π2) is the total number of feasible subsets.

In Figure 4, we plot the average values of the subset-maintenance ratio ASM .
Apparently, this did not help much and even for perturbation ratios above 0.8 where
almost total randomization seems to set in, they remain notably larger for the LP-based
method.

We also used another popular parameter to compare two partitions, the adjusted
Rand index proposed by L. Hubert and P. Arabie (see [18, 30] for detailed definitions).
This parameter is expected to be larger for more similar partitions, and it has a max-
imum value of 1 that is achieved when the two partitions coincide. We compare the
results obtained with both methods in Figure 5: Again, the LP-based method seems
to perform better.

We also examined the following question: If we choose just k elements in
(
V
2

)
randomly out of the altogether

(
35
2

)
= 595 edges in the complete graph with a vertex

set of cardinality 35, we have to expect that, considering the partition Π of V into four
subsets of cardinality 12, 9, 8, and 6, respectively, approximately k 145

595
of those will be

contained in the edge set EΠ of HΠ and will, therefore, be removed while k 450
595

, that is,
slightly more than three times as many, are contained in the complement of that edge
set and will, therefore, be inserted. For the perturbation ratio 1, this means that about
35 edges will be removed and about 110 will be inserted. So altogether, we have to
expect that the edge set of the resulting graph will have approximately k 305

595
≈ k

2
more

edges than HΠ. But, as in most “real-world” examples, we would expect to “observe”
rather too few than too many edges, we considered the effect of the following procedure:

(i) Specify, for any given (total) perturbation ratio pi two numbers, the “deletion
ratio” deli and the “insertion ratio” insi for which we assume that deli+insi = pi
holds,
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(ii) choose about 145 deli edges from the 145 original edges in EΠ,

(iii) and about 145 insi edges from the remaining 595− 145 = 450 edges,

(iv) then delete those 145 deli edges and insert those 145 insi edges we chose.

For the perturbation ratios pi = 0.8 and pi = 0.9, and different pairs (deli, insi), we
generated four examples for each pair and tested the performance of the two algorithm.
We compared the results using the average values of the maintenance ratio with respect
to single-element transfer and subset-transfer and the adjusted Rand index (cf. Figures
6 - 8).

Generally speaking, for low deletion ratio, the LP-based method performs better
than the CNM method. However, when the deletion ratios increase to around deli =
0.6 and higher, the maintenance ratios decrease drastically for both methods while,
remarkably, the CNM method consistently produces slightly better results. So, some
information that the present form of the LP-based algorithm does not yet detect must
still be there in that case, and it will be worthwhile to investigate how this algorithm
can perhaps be improved to also detect this remaining bit of information.

Finally, we note that comparisons based on subset transfer are not always consistent
with those using single-element transfer.

5 The “Four-Groups” Experiments

We continue investigating the reliability of the LP-based approach by analyzing how it
performs when applied to artificial networks that are constructed as follows (cf.[14]):
Each network contains 128 vertices, divided into four groups of 32 vertices each. All
vertices have fixed average degree k = 16, they are connected randomly to the members
of the same community by an average of kin edges, and to members of the other
communities by an average of kout := 16 − kin edges. This design produces networks
with “known” community structure. However, as the value of kout increases, it will
become more and more difficult to detect it.

These “four-groups” experiments are much-studied benchmark experiments and
were performed in [9, 14, 25, 26, 29, 31]. The resulting maintenance ratios based on
single-element transfer are plotted, as a function of kout, in Figure 9.

Comparing our results with those obtained by the CNM algorithm, our approach
performs about just as well. More specifically, the LP-based method does not seem to
produce a single mistake for kout < 6 while the associated maintenance ratio decreas-
es gradually only for kout > 6 in which range the CNM algorithm (and some other
methods) appears to perform slightly better. Thus, once again, one gets tempted to
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search for a combination therapy that incorporates the best ideas of all methods and
may outperform all of them. E.g., recalling the betweenness parameter from [14], one
may try to penalize insertion of (not yet existing) edges {u, v} in proportion to the
distance of u and v (in the original network).

6 Another “Real-Life” Example

To conclude this paper, we present yet another “real-life” example: We analyze a
network containing 101 proteins studied by A. Pocklington et al. [27] and compare
our result with that obtained in [27] using the algorithm described in [26]. While this
algorithm detected 13 communities all of which appear to be associated to a specific
function, we only obtain six. There are 4 communities detected by both methods,
the other two new communities are unions of old communities (see Figure 10: The
rectangles indicate the old communities labeled by numbers, and the ellipses indicate
the new communities labeled by letters).

We investigated also the sub-community structures for the two largest communities
E and F using the LP-based algorithm. For Community E, three communities were
detected. The first one coincides with the old community 8, and the union of the
second and the third one coincides with the old community 2, the second one being
formed by three proteins belonging to the group of synaptic vesicles.

Within the Community F , we identified three sub-communities. The first one is
the union of the communities 6 and 7, the second one is the union of the communities
1, 10, 13 and some proteins from the community 3, and the third one is the union of
the community 9 and the remaining proteins in 3. All the sub-communities inherit the
specific functions from the larger ones, suggesting that our approach yields some new
information regarding the relationship between the involved proteins not obtained by
the algorithm used by Pocklington et al..

7 Final Remarks

It is an obvious advantage of our approach that — just as the CNM method — it
does provide a “natural” way to directly detect a network’s community structure. In
contrast, many other methods developed so far for community detection require users to
do prune the resulting system of potential communities to identify a proper community
structure in a way controlled by some often not very transparent parameters.

In addition, our approach has a flexibility allowing the user to incorporate and test
any additional information he might deem useful. E.g., if one wants to study only
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partitions that split the given set V of agents into at most two parts, only, all one has
to do is to add, for any three distinct u, v, w ∈ V , the inequality

(7.4) x(u, v) + x(v, w) + x(w, u) ≥ 1

to our list of constraints. And one can, of course, also play with the penalty function
to check all sorts of variants of the algorithm.

Regarding the speed of our algorithm, one should note that polynomial algorithm-
s exist for LP problems only “in theory” while the potentially exponential simplex
method performs great in most cases — actually, it is provably almost linear “in av-
erage”. We believe that, without substantial improvement, the current form of our
algorithm cannot deal with more than, at most, a few hundreds of vertices, but would
hope that it can become much faster using software tools dedicated to exactly dealing
with the specific LP tasks we have been dealing with here.
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Figure 1: Two samples with pi ≈ 0.4 (left) and pi ≈ 0.8, respectively. Circles were
drawn for highlighting the “original” four groups.

Figure 2: Two samples with pi ≈ 0.85 (left) and pi ≈ 0.9, respectively. Circles were
drawn for highlighting the “original” four groups.
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Figure 3: Comparison of the single-element transfer distance for the two methods.
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Figure 4: Comparison of the subset-transfer distance for the two methods.
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Figure 5: Comparison of the adjusted Rand index for the two methods.
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Figure 6: Comparison of the maintenance ratios for the two methods for pi = 0.8.
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Figure 7: Comparison of the maintenance ratios for the two methods for pi = 0.9.
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Figure 8: Comparison of the adjusted Rand index for two methods for pi = 0.8 and
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Figure 9: The community result for the four-groups experiments.
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Figure 10: The community result for the 101 proteins network.
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