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Abstract. We obtain Mehler’s formula and the Rogers formula for the continuous big q-
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recently introduced by Chen, Fu and Zhang. It turns out that Mehler’s formula for Hn(x; a|q)
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1. Introduction

In this paper, we obtain two formulas for the continuous big q-Hermite polynomials Hn(x; a|q)
which can be considered as extensions of Mehler’s formula and the Rogers formula for the
q-Hermite polynomials Hn(x|q).

Let us review the common notation and definitions for basic hypergeometric series in [11].
Throughout this paper, we assume that |q| < 1. The q-shifted factorial is defined by

(a; q)0 = 1, (a; q)∞ =

∞
∏

k=0

(1 − aqk), (a; q)n =

n−1
∏

k=0

(1 − aqk), n ∈ Z.

The following notation stands for the multiple q-shifted factorials:

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,

(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞.
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The q-binomial coefficients, or the Gauss coefficients, are given by

[

n

k

]

=
(q; q)n

(q; q)k(q; q)n−k

.

The basic hypergeometric series r+1φr are defined by

r+1φr

(

a1, . . . , ar+1

b1, . . . , br
; q, x

)

=
∞
∑

n=0

(a1, . . . , ar+1; q)n
(q, b1, . . . , br; q)n

xn.

The continuous big q-Hermite polynomials are defined as

Hn(x; a|q) =

n
∑

k=0

[

n

k

]

(aeiθ; q)ke
i(n−2k)θ, x = cos θ.

We first observe that the bivariate Rogers-Szegö polynomials hn(x, y|q) introduced by
Chen, Fu and Zhang [8] can be used to derive identities for the continuous big q-Hermite
polynomials owing to the following relation:

Hn(x; a|q) = einθhn(e−2iθ, ae−iθ|q), x = cos θ, (1.1)

where hn(x, y|q) are defined as follows. Let

Pn(x, y) = (x − y)(x − qy) · · · (x − qn−1y)

be Cauchy polynomials with the generating function

∞
∑

n=0

Pn(x, y)
tn

(q; q)n

=
(yt; q)∞
(xt; q)∞

, |xt| < 1. (1.2)

Then the bivariate Rogers-Szegö polynomials are given by

hn(x, y|q) =
n
∑

k=0

[

n

k

]

Pk(x, y).

The Cauchy polynomials Pn(x, y) naturally arise in the q-umbral calculus as studied by
Andrews [2, 3], Goldman and Rota [12], Goulden and Jackson [13], Ihrig and Ismail [14],
Johnson [17], Roman [22]. The generating function (1.2) is the homogeneous version of the
Cauchy identity, or the q-binomial theorem [11]:

∞
∑

k=0

(a; q)k

(q; q)k

zk =
(az; q)∞
(z; q)∞

, |z| < 1. (1.3)

The polynomials hn(x, y|q) have the generating function [8]

∞
∑

n=0

hn(x, y|q)
tn

(q; q)n

=
(yt; q)∞

(t, xt; q)∞
, |t|, |xt| < 1. (1.4)
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Notice that the classical Rogers-Szegö polynomials

hn(x|q) =
n
∑

k=0

[

n

k

]

xk,

are a special case of hn(x, y|q) when y is set to zero, and (1.4) reduces to

∞
∑

n=0

hn(x|q)
tn

(q; q)n

=
1

(t, xt; q)∞
, |t|, |xt| < 1. (1.5)

The Rogers-Szegö polynomials play an important role in the theory of orthogonal polynomials,
particularly in the study of the Askey-Wilson polynomials, see [1, 4, 6, 7, 15, 16, 19, 23]. They
are closely related to the q-Hermite polynomials

Hn(x|q) =
n
∑

k=0

[

n

k

]

ei(n−2k)θ, x = cos θ.

In fact, the following relation holds

Hn(x|q) = Hn(x; 0|q) = einθhn(e−2iθ|q), x = cos θ. (1.6)

The continuous big q-Hermite polynomials Hn(x; a|q) can be expressed explicitly in terms of
the q-Hermite polynomials Hn(x|q) [5, 10]:

Hn(x; a|q) =

n
∑

k=0

[

n

k

]

(−1)kq(
k

2
)akHn−k(x|q), (1.7)

whose inverse expansion takes the form

Hn(x|q) =
n
∑

k=0

[

n

k

]

akHn−k(x; a|q). (1.8)

Based on the recurrence relation for Hn(x|q), Bressoud [7] gave a proof of Mehler’s formula
for the q-Hermite polynomials:

∞
∑

n=0

Hn(x|q)Hn(y|q)
tn

(q; q)n

=
(t2; q)∞

(tei(θ+β), te−i(θ−β), tei(θ−β), te−i(θ+β); q)∞
, (1.9)

where x = cos θ, y = cos β. Ismail, Stanton and Viennot [16] found a combinatorial proof
of (1.9) by using the vector space interpretation of the q-binomial coefficients. This paper
is motivated by the natural question of finding Mehler’s formula for Hn(x; a|q) which is an
extension of the following formula for the Rogers-Szegö polynomials:

∞
∑

n=0

hn(x|q)hn(y|q)
tn

(q; q)n

=
(xyt2; q)∞

(t, xt, yt, xyt; q)∞
. (1.10)

The formula (1.10) has been extensively studied, see [9, 15, 18, 19, 23, 24].
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The second result of this paper is the Rogers formula for Hn(x; a|q). The Rogers formula
[9, 19, 20] for the Rogers-Szegö polynomials hn(x|q) reads:

∞
∑

n=0

∞
∑

m=0

hn+m(x|q)
tn

(q; q)n

sm

(q; q)m

=(xst; q)∞

∞
∑

n=0

∞
∑

m=0

hn(x|q)hm(x|q)
tn

(q; q)n

sm

(q; q)m

. (1.11)

The equivalent form for the q-Hermite polynomials Hn(x|q) can be stated as

∞
∑

n=0

∞
∑

m=0

Hn+m(x|q)
tn

(q; q)n

sm

(q; q)m

= (st; q)∞

∞
∑

n=0

∞
∑

m=0

Hn(x|q)Hm(x|q)
tn

(q; q)n

sm

(q; q)m

, x = cos θ. (1.12)

It turns out that Mehler’s formula for Hn(x; a|q) (Theorem 2.2) involves a 3φ2 sum, and
the Rogers formula for Hn(x; a|q) (Theorem 3.2) involves a 2φ1 sum. Our proofs rely on the
q-exponential operator T (bDq) as studied in [9] and the homogeneous q-shift operator E(Dxy)
introduced by Chen, Fu and Zhang [8].

2. Mehler’s Formula for hn(x, y|q)

The main objective in this section is to derive Mehler’s formula for Hn(x; a|q). To this end, we
first obtain Mehler’s formula for the bivariate Rogers-Szegö polynomials hn(x, y|q) introduced
by Chen, Fu and Zhang [8].

Theorem 2.1 (Mehler’s Formula for hn(x, y|q)). We have

∞
∑

n=0

hn(x, y|q)hn(u, v|q)
tn

(q; q)n

=
(yt, vxt; q)∞

(t, xt, uxt; q)∞
3φ2

(

y, xt, v/u
yt, vxt

; q, ut

)

, (2.1)

provided that |t|, |xt|, |ut|, |uxt| < 1.

Before we present the proof, we note that it is not difficult to reformulate the above
theorem in terms of Hn(x; a|q).

Theorem 2.2. We have

∞
∑

n=0

Hn(x; a|q)Hn(y; b|q)
tn

(q; q)n

=
(ateiβ , bte−iθ; q)∞

(tei(θ+β), te−i(θ−β), te−i(θ+β); q)∞

× 3φ2

(

ae−iθ, te−i(θ−β), beiβ

ateiβ , bte−iθ ; q, tei(θ−β)

)

,

provided that x = cos θ, y = cos β and |tei(θ+β)|, |tei(θ−β)|, |te−i(θ+β)|, |te−i(θ−β)| < 1.

4



Proof. Substituting (x, y) by (e−2iθ, ae−iθ) and (u, v) by (e−2iβ , be−iβ) in Theorem 2.1, we
get

∞
∑

n=0

hn(e−2iθ, ae−iθ|q)hn(e−2iβ , be−iβ|q)
tn

(q; q)n

=
(ate−iθ, bte−i(2θ+β); q)∞

(t, te−2iθ, te−2i(θ+β); q)∞
3φ2

(

ae−iθ, te−2iθ, beiβ

ate−iθ, bte−i(2θ+β) ; q, te−2iβ

)

. (2.2)

From (1.1) it follows that

hn(e−2iθ, ae−iθ|q) = e−inθHn(w; a|q), w = cos θ,

hn(e−2iβ , be−iβ |q) = e−inβHn(z; b|q), z = cos β.

Substituting the above relations into (2.2), we see that

∞
∑

n=0

Hn(w; a|q)Hn(z; b|q)
(te−i(θ+β))n

(q; q)n

=
(ate−iθ, b te−i(2θ+β); q)∞

(t, te−2iθ, te−2i(θ+β); q)∞
3φ2

(

ae−iθ, te−2iθ, beiβ

ate−iθ, b te−i(2θ+β) ; q, te−2iβ

)

.

Making the substitutions t → tei(θ+β), w → x and z → y, we complete the proof.

Setting a = 0 and b = 0, the above theorem becomes Mehler’s formula (1.9) for the
q-Hermite polynomials. To prove Theorem 2.1 we need some identities (Lemmas 2.3, 2.4 and
2.5) in connection with the q-exponential operator and the homogeneous q-shift operator.

The q-differential operator, or the q-derivative, acting on the variable a, is defined by

Dqf(a) =
f(a) − f(aq)

a
,

and the q-exponential operator is given by

T (bDq) =

∞
∑

n=0

(bDq)
n

(q; q)n

.

Evidently,
T (Dq){x

n} = hn(x|q). (2.3)

Lemma 2.3. We have

T (bDq)

{

(av; q)∞
(as, at; q)∞

}

=
(bv; q)∞

(as, bs, b t; q)∞
2φ1

(

v/t, bs
bv

; q, at

)

, (2.4)

provided that |bs|, |b t| < 1.

Proof. Zhang and Wang [25] have established the following identity:

T (bDq)

{

(av; q)∞
(as, at, aw; q)∞

}

= (av, bv; q)∞
(abstw/v; q)∞

(as, at, aw, bs, b t, bw; q)∞

× 3φ2

(

v/s, v/t, v/w
av, bv

; q, abstw/v

)

, (2.5)
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where |bs|, |b t|, |bw|, |abstw/v| < 1. Setting w = 0 in (2.5) and using Jackson’s transformation
[11, III. 4] and Heine’s transformation [11, III. 1], we obtain the claimed identity.

With the aid of the above lemma, we may reach the following identity.

Lemma 2.4. We have

∞
∑

n=0

hn(x, y|q)hn(z|q)
tn

(q; q)n

=
(yt; q)∞

(xzt, xt, t; q)∞
2φ1

(

y, xt
yt

; q, zt

)

, (2.6)

provided that |t|, |xt|, |zt|, |xzt| < 1.

Proof. Applying (1.4), (2.3) and (2.4), we have

∞
∑

n=0

hn(x, y|q)hn(z|q)
tn

(q; q)n

=

∞
∑

n=0

hn(x, y|q)T (Dq) {z
n}

tn

(q; q)n

= T (Dq)

{

∞
∑

n=0

hn(x, y|q)
(zt)n

(q; q)n

}

(|zt| < 1, |xzt| < 1)

= T (Dq)

{

(yzt; q)∞
(xzt, zt; q)∞

}

(|t| < 1, |xt| < 1)

=
(yt; q)∞

(xzt, xt, t; q)∞
2φ1

(

y, xt
yt

; q, zt

)

,

as desired.

In [8], Chen, Fu and Zhang defined the homogeneous q-difference operator

Dxyf(x, y) =
f(x, q−1y) − f(qx, y)

x − q−1y

and the homogeneous q-shift operator

E(Dxy) =
∞
∑

k=0

Dk
xy

(q; q)k

.

The following basic facts have been observed in [8]:

Dxy{Pn(x, y)} = (1 − qn)Pn−1(x, y),

E(Dxy){Pn(x, y)} = hn(x, y|q). (2.7)

Lemma 2.5. We have

E(Dxy)

{

(yt; q)∞
(xt; q)∞

Pn(x, y)

(yt; q)n

}

=
(yt; q)∞

(t, xt; q)∞

n
∑

k=0

[

n

k

]

(y, xt; q)k

(yt; q)k

xn−k,

provided that |t|, |xt| < 1.
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Proof. The left hand side of (2.6) equals

∞
∑

n=0

E(Dxy) {Pn(x, y)} hn(z|q)
tn

(q; q)n

= E(Dxy)

{

∞
∑

n=0

Pn(x, y)hn(z|q)
tn

(q; q)n

}

= E(Dxy)

{

∞
∑

n=0

Pn(x, y)

n
∑

k=0

[

n

k

]

zk tn

(q; q)n

}

= E(Dxy)

{

∞
∑

k=0

(

∞
∑

n=0

Pn(x, qky)
tn

(q; q)n

)

Pk(x, y)
(zt)k

(q; q)k

}

=

∞
∑

k=0

(zt)k

(q; q)k

E(Dxy)

{

(yt; q)∞
(xt; q)∞

Pk(x, y)

(yt; q)k

}

,

where |t|, |xt|, |zt|, |zxt| < 1. Employing Euler’s identity [11, II.1] to expand 1/(zxt; q)∞ on
the right hand side of (2.6), we get

∞
∑

k=0

(zt)k

(q; q)k

E(Dxy)

{

(yt; q)∞
(xt; q)∞

Pk(x, y)

(yt; q)k

}

=
(yt; q)∞

(t, xt; q)∞

∞
∑

n=0

∞
∑

k=0

(y, xt; q)n

(q, yt; q)n

zn+ktn+kxk

(q; q)k

.

Comparing the coefficients of zn, we complete the proof.

We are now ready to present the proof of Theorem 2.1.

Proof. From (2.7) it follows that

∞
∑

n=0

hn(x, y|q)hn(u, v|q)
tn

(q; q)n

= E(Dxy)

{

∞
∑

n=0

Pn(x, y)hn(u, v|q)
tn

(q; q)n

}

= E(Dxy)

{

∞
∑

n=0

Pn(x, y)
tn

(q; q)n

n
∑

k=0

[

n

k

]

Pk(u, v)

}

= E(Dxy)

{

∞
∑

k=0

Pk(u, v)Pk(x, y)
tk

(q; q)k

(

∞
∑

n=0

Pn(x, qky)
tn

(q; q)n

)}

(|xt| < 1)

= E(Dxy)

{

∞
∑

k=0

Pk(u, v)Pk(x, y)
tk

(q; q)k

(qkyt; q)∞
(xt; q)∞

}

=
∞
∑

k=0

Pk(u, v)
tk

(q; q)k

E(Dxy)

{

(yt; q)∞
(xt; q)∞

Pk(x, y)

(yt; q)k

}

(|t|, |xt| < 1).
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By Lemma 2.5, the above summation equals

(yt; q)∞
(t, xt; q)∞

∞
∑

k=0

Pk(u, v)
tk

(q; q)k

k
∑

j=0

[

k

j

]

(y, xt; q)j

(yt; q)j

xk−j.

Exchanging the order of summations, we get

(yt; q)∞
(t, xt; q)∞

∞
∑

j=0

Pj(u, v)
(y, xt; q)j

(q, yt; q)j

tj
∞
∑

k=0

(xt)kPk(u, qjv)

(q; q)k

(|uxt| < 1)

=
(yt, vxt; q)∞

(t, xt, uxt; q)∞

∞
∑

j=0

Pj(u, v)
(y, xt; q)j

(q, yt, vxt; q)j

tj

=
(yt, vxt; q)∞

(t, xt, uxt; q)∞
3φ2

(

y, xt, v/u
yt, vxt

; q, ut

)

(|ut| < 1).

This completes the proof.

Obviously, Mehler’s formula (1.10) for the Rogers-Szegö polynomials can be deduced from
Theorem 2.1 by setting y = 0, v = 0 and u = y.

3. The Rogers Formula for hn(x, y|q)

In this section, we obtain the Rogers formula (Theorem 3.1) for the bivariate Rogers-Szegö
polynomials hn(x, y|q) using the operator E(Dxy) and the technique of parameter augmen-
tation [8, 9]. This formula can be readily restated in terms of the continuous big q-Hermite
polynomials Hn(x; a|q) (Theorem 3.2).

Theorem 3.1 (The Rogers Formula for hn(x, y|q)). We have

∞
∑

n=0

∞
∑

m=0

hn+m(x, y|q)
tn

(q; q)n

sm

(q; q)m

=
(ys; q)∞

(s, xs, xt; q)∞
2φ1

(

y, xs
ys

; q, t

)

, (3.1)

provided that |t|, |s|, |xt|, |xs| < 1.

Proof. By (2.7), we have

∞
∑

n=0

∞
∑

m=0

hn+m(x, y|q)
tn

(q; q)n

sm

(q; q)m

= E(Dxy)

{

∞
∑

n=0

∞
∑

m=0

Pn+m(x, y)
tn

(q; q)n

sm

(q; q)m

}

= E(Dxy)

{

∞
∑

n=0

Pn(x, y)
tn

(q; q)n

(

∞
∑

m=0

Pm(x, qny)
sm

(q; q)m

)}

(|xs| < 1)

= E(Dxy)

{

∞
∑

n=0

Pn(x, y)
tn

(q; q)n

(qnys; q)∞
(xs; q)∞

}
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=

∞
∑

n=0

tn

(q; q)n

E(Dxy)

{

(ys; q)∞Pn(x, y)

(xs; q)∞(ys; q)n

}

(|s| < 1, |xs| < 1).

Applying Lemma 2.5, we get

(ys; q)∞
(s, xs; q)∞

∞
∑

n=0

tn

(q; q)n

n
∑

k=0

[

n

k

]

(y, xs; q)k

(ys; q)k

xn−k

=
(ys; q)∞

(s, xs; q)∞

∞
∑

k=0

(y, xs; q)k

(q, ys; q)k

tk
∞
∑

n=0

(xt)n

(q; q)n

(|xt| < 1)

=
(ys; q)∞

(s, xs, xt; q)∞

∞
∑

k=0

(y, xs; q)k

(q, ys; q)k

tk

=
(ys; q)∞

(s, xs, xt; q)∞
2φ1

(

y, xs
ys

; q, t

)

(|t| < 1),

as desired.

Clearly, the Rogers formula (1.11) for hn(x|q) is the special case of (3.1) when y = 0. The
following theorem is the Rogers formula for Hn(x; a|q) which contains (1.12) as a special case
for a = 0.

Theorem 3.2. We have

∞
∑

n=0

∞
∑

m=0

Hn+m(x; a|q)
tn

(q; q)n

sm

(q; q)m

=
(as; q)∞

(seiθ, se−iθ, te−iθ; q)∞

× 2φ1

(

ae−iθ, se−iθ

as
; q, teiθ

)

,

where x = cos θ and |teiθ|, |seiθ|, |te−iθ|, |se−iθ| < 1.

The following special case of Theorem 3.1 for y = 0 will be useful to verify the relation
(3.4) between hn(x|q) and hn(x, y|q).

Theorem 3.3. We have

min{n,m}
∑

k=0

[

n

k

][

m

k

]

(q; q)kx
khn+m−2k(x|q)

=

(

n
∑

k=0

[

n

k

]

yk hn−k(x, y|q)

)





m
∑

j=0

[

m

j

]

yj hm−j(x, y|q)



 , (3.2)

provided that |x|, |y| < ∞.
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Proof. Setting y = 0 in Theorem 3.1, by the Cauchy identity (1.3) and (1.4), we have

∞
∑

n=0

∞
∑

m=0

hn+m(x|q)
tn

(q; q)n

sm

(q; q)m

=
1

(s, xs, xt; q)∞

∞
∑

k=0

(xs; q)k

(q; q)k

tk (|t| < 1)

=
(xst; q)∞

(ys, yt; q)∞

(yt; q)∞
(t, xt; q)∞

(ys; q)∞
(s, xs; q)∞

(|t|, |s|, |xt|, |xs| < 1)

=
(xst; q)∞

(ys, yt; q)∞

∞
∑

n=0

∞
∑

m=0

hn(x, y|q)hm(x, y|q)
tn

(q; q)n

sm

(q; q)m

,

which can be rewritten as

1

(xst; q)∞

∞
∑

n=0

∞
∑

m=0

hn+m(x|q)
tn

(q; q)n

sm

(q; q)m

=
1

(yt, ys; q)∞

∞
∑

n=0

∞
∑

m=0

hn(x, y|q)hm(x, y|q)
tn

(q; q)n

sm

(q; q)m

,

where |t|, |s|, |xt|, |xs| < 1.

Assuming that |xst|, |yt|, |ys| < 1, we can expand 1/(xst; q)∞, 1/(yt; q)∞ and 1/(ys; q)∞
by Euler’s identity. By comparing the coefficients of tnsm, we obtain (3.2). Since |t|, |s|, |xt|,
|xs| < 1 and |xst|, |yt|, |ys| < 1, we see that |x| and |y| must be finite.

When y = 0, (3.2) reduces to the well-known linearization formula [7, 15, 21] for hn(x|q):

hn(x|q)hm(x|q) =

min{n,m}
∑

k=0

[

n

k

][

m

k

]

(q; q)kxkhn+m−2k(x|q), |x| < ∞. (3.3)

Setting m = 0 in (3.2), we are led to the following relation between hn(x|q) and hn(x, y|q):

hn(x|q) =

n
∑

k=0

[

n

k

]

yk hn−k(x, y|q), |x|, |y| < ∞. (3.4)

The inverse expansion for (3.4) is

hn(x, y|q) =

n
∑

k=0

[

n

k

]

(−1)kq(
k

2
)ykhn−k(x|q), |x|, |y| < ∞. (3.5)

Note that (3.4) and (3.5) are equivalent to the relations (1.8) and (1.7) between Hn(x|q) and
Hn(x; a|q).
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