M.A. Abdlhusein, The Euler operator for basic hypergeometric series, Int. J. Adv. Appl. Math. Mech. 2 (2014) 42-52.
M.A. Abdlhusein, The generalized Hahn polynomials, TWMS J. Appl. Eng. Math. 5 (2015) 231-248.
M.A. Abdlhusein, Two operator representations for the trivariate q-polynomials and Hahn polynomials,
Ramanujan J. 40 (2016) 491-509.
J. Cao, Bivariate generating functions for Rogers–Szegö polynomials, Appl. Math. Comput. 217 (2010) 2209-2216.
V.Y.B. Chen and N.S.S. Gu, The Cauchy operator for basic hypergeometric series,
Adv. in Appl. Math. 41 (2008) 177-196.
W.Y.C. Chen, H.L. Saad and L.H. Sun, An operator approach to the Al-Salam¨CCarlitz polynomials,
J. Math. Phys. 51 (2010) 043502, 13 pp.
H.L. Saad and A.A. Sukhi, The q-exponential operator, Appl. Math. Sci. 7 (2005) 6369-6380.
E. Saltürk and I. Siap, On generalized Gaussian numbers, Albanian J. Math. 6 (2012) 97-102.
H.M. Srivastava and M.A. Abdlhusein, New forms of the Cauchy operator and some of their applications, Russ. J. Math. Phys. 23 (2016) 124-134.
P.J. Szablowski, Probabilistic implications of symmetries of q-Hermite and Al-Salam–Chihara polynomials,
Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008) 513-522.
P.J. Szablowski, Towards a q-analogue of the Kibble–Slepian formula in 3 dimensions, J. Funct. Anal. 262 (2012) 210-233.
P.J. Szablowski, On the q-Hermite polynomials and their relationship with some other families of orthogonal polynomials,
Demonstr. Math. 46 (2013) 679-708.
C.R. Vinroot, Multivariate Rogers-Szegöpolynomials and flags in finite vector spaces, arXiv:1011.0984.
C.R. Vinroot, An enumeration of flags in finite vector spaces, Electron. J. Combin. 19 (2012) Paper 5, 9 pp.
Z. Zhang and T. Wang,
Operator identities involving the bivariate Rogers–Szegö polynomials and their applications to the multiple q-series identities,
J. Math. Anal. Appl. 343 (2008) 884-903.
Y. Zhou and Q.M. Luo, Some new generating functions for q-Hahn polynomials,
J. Appl. Math. 2014 (2014) Art. ID 419365, 5 pp.