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Abstract. Chu has recently shown that the Abel lemma on summations by parts can

serve as the underlying relation for Bailey’s 6ψ6 bilateral summation formula. In other

words, the Abel lemma spells out the telescoping nature of the 6ψ6 sum. We present a

systematic approach to compute Abel pairs for bilateral and unilateral basic hyperge-

ometric summation formulas by using the q-Gosper algorithm. It is demonstrated that

Abel pairs can be derived from Gosper pairs. This approach applies to many classical

summation formulas.
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1 Introduction

We follow the notation and terminology in [10]. For |q| < 1, the q-shifted factorial is

defined by

(a; q)∞ =
∞∏
k=0

(1− aqk) and (a; q)n =
(a; q)∞

(aqn; q)∞
, for n ∈ Z.

For convenience, we shall adopt the following notation for multiple q-shifted factorials:

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,
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where n is an integer or infinity. In particular, for a nonnegative integer k, we have

(a; q)−k =
1

(aq−k; q)k
. (1.1)

The (unilateral) basic hypergeometric series rφs is defined by

rφs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z

]
=
∞∑
k=0

(a1, a2, . . . , ar; q)k
(q, b1, b2, . . . , bs; q)k

[
(−1)kq(

k
2)
]1+s−r

zk, (1.2)

while the bilateral basic hypergeometric series rψs is defined by

rψs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z

]
=

∞∑
k=−∞

(a1, a2, . . . , ar; q)k
(b1, b2, . . . , bs; q)k

[
(−1)kq(

k
2)
]s−r

zk. (1.3)

Recently Chu [9] used the Abel lemma on summations by parts to give an elementary

proof of Bailey’s very well-poised 6ψ6-series identity [5], see also, [10, Appendix II.33]:

6ψ6

[
qa

1
2 , −qa 1

2 , b, c, d, e

a
1
2 , −a 1

2 , aq/b, aq/c, aq/d, aq/e
; q,

qa2

bcde

]

=
(q, aq, q/a, aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de; q)∞
(aq/b, aq/c, aq/d, aq/e, q/b, q/c, q/d, q/e, qa2/bcde; q)∞

, (1.4)

where |qa2/bcde| < 1.

Let us give a brief review of Chu’s approach. The Abel lemma on summation by

parts is stated as

∞∑
k=−∞

Ak(Bk −Bk−1) =
∞∑

k=−∞

Bk(Ak − Ak+1) (1.5)

provided that the series on both sides are convergent and
∑

k AkBk is absolutely con-

vergent. Based on the Abel lemma, Chu found a pair (Ak, Bk):

Ak =
(b, c, d, q2a2/bcd; q)k

(aq/b, aq/c, aq/d, bcd/aq; q)k
, (1.6)

and

Bk =
(qe, bcd/a; q)k

(aq/e, q2a2/bcd; q)k

(
qa2

bcde

)k

, (1.7)
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which leads to the following iteration relation:

Ω(a; b, c, d, e) = Ω(aq; b, c, d, eq)

× a(1− e)(1− aq)(1− aq/bc)(1− aq/bd)(1− aq/cd)

e(1− a)(1− aq/b)(1− aq/c)(1− aq/d)(1− a2q/bcde)
, (1.8)

where

Ω(a; b, c, d, e) = 6ψ6

[
qa

1
2 , −qa 1

2 , b, c, d, e

a
1
2 , −a 1

2 , aq/b, aq/c, aq/d, aq/e
; q,

qa2

bcde

]
. (1.9)

Because of the symmetries in b, c, d, e, applying the identity (1.8) three times with

respect to the parameters a and d, a and c, a and b, we arrive at the following iteration

relation:

Ω(a; b, c, d, e) = Ω(aq4; bq, cq, dq, eq)

×a
4q6

bcde
· 1− aq4

1− a
· (1− b)(1− c)(1− d)(1− e)

(a2q/bcde; q)4

×(aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de; q)2
(aq/b, aq/c, aq/d, aq/e; q)3

. (1.10)

Again, iterating the above relation m times, we get

Ω(a; b, c, d, e) = Ω(aq4m; bqm, cqm, dqm, eqm)

×a
4mq6m

2

(bcde)m
· 1− aq4m

1− a
· (b, c, d, e; q)m

(a2q/bcde; q)4m

×(aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de; q)2m
(aq/b, aq/c, aq/d, aq/e; q)3m

. (1.11)

Replacing the summation index k with k − 2m, we obtain the transformation formula

Ω(a; b, c, d, e) = Ω(a; bq−m, cq−m, dq−m, eq−m)

× (aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de; q)2m
(q/b, q/c, q/d, q/e, aq/b, aq/c, aq/d, aq/e; q)m(a2q/bcde; q)4m

. (1.12)

Setting m → ∞, Chu obtained the 6ψ6 summation formula (1.4) by Jacobi’s triple

product identity [10, Appendix II.28]

∞∑
k=−∞

qk
2

zk = (q2,−qz,−q/z; q2)∞, (1.13)
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since

lim
m→∞

Ω(a; bq−m, cq−m, dq−m, eq−m)

= lim
m→∞ 6ψ6

[
qa

1
2 , −qa 1

2 , bq−m, cq−m, dq−m, eq−m

a
1
2 , −a 1

2 , aqm+1/b, aqm+1/c, aqm+1/d, aqm+1/e
; q,

a2q4m+1

bcde

]

=
∞∑

k=−∞

1− aq2k

1− a
q2k

2−ka2k =
1

1− a

∞∑
k=−∞

(−1)kq(
k
2)ak = (aq, q/a, q; q)∞. (1.14)

This paper is motivated by the question of how to systematically compute Abel

pairs for bilateral summation formulas. We find that the q-Gosper is an efficient

mechanism for this purpose. The q-Gosper algorithm has been extensively studied.

Koorwinder gave a rigorous description of the q-Gosper algorithm in [14]. Abramov-

Paule-Petkovšek [1] developed the algorithm qHyper for finding all q-hypergeometric

solutions of linear homogeneous recurrences with polynomial coefficients. Later Böing-

Koepf [7] gave an algorithm for the same purpose. The Maple package qsum.mpl was

described by Böing-Koepf [7]. In [18], Riese presented an generalization of the q-Gosper

algorithm to indefinite bibasic hypergeometric summations.

Recall that a function tk is called a basic hypergeometric term if tk+1/tk is a rational

function of qk. The q-Gosper algorithm is devised to answer the question if there is a

basic hypergeometric term zk for a given basic hypergeometric term tk such that

tk = zk+1 − zk. (1.15)

We observe that for an iteration relation of a summation formula, the difference of

the kth term of the both sides is a basic hypergeometric term for which the q-Gosper

algorithm can be employed.

The main result of this paper is to present a general framework to deal with basic

hypergeometric identities based on the q-Gosper algorithm. We always start with

an iteration relation. Then we use the q-Gosper algorithm to generate a Gosper pair

(gk, hk) if it exists. We next turn to the iteration relation and derive the desired identity

by computing the limit value. Actually, once a Gosper pair (gk, hk) is obtained, one

can easily compute the corresponding Abel pair. Indeed, the Abel pair for the 6ψ6

sum discovered by Chu [9] agrees with the Abel pair derived from the Gopser pair by

using our approach. In general, our method is efficient for many classical summation

formulas with parameters.

As examples, we give Gosper pairs and Abel pairs of several well-known bilateral

summation formulas including Ramanujan’s 1ψ1 summation formula. In the last section
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we demonstrate that the idea of Gosper pairs can be applied to unilateral summation

formulas as well. We use the q-Gauss 2φ1 summation formula as an example to illustrate

the procedure to compute Gosper pairs. As another example, we derive the Gosper

pair and the Abel pair of the 6φ5 summation formula.

In comparison with a recent approach presented by Chen-Hou-Mu [8] for proving

nonterminating basic hypergeometric series identities by using the q-Zeilberger algo-

rithm [14, 15, 17, 22], one sees that the approach we undertake in this paper does not

rely on the introduction of the parameter n in order to establish recurrence relations,

and only makes use of the q-Gosper algorithm.

2 The Gosper Pairs for Bilateral Summations

In spite of its innocent looking, the Abel lemma is intrinsic for some sophisticated bilat-

eral basic hypergeometric identities. In this section, we introduce the notion of Gosper

pairs and show that one may apply the q-Gosper algorithm to construct Gosper pairs

which can be regarded as certificates like the Abel pairs to justify iteration relations

for bilateral summations. Furthermore, it is easily seen that one can compute the Abel

pairs from Gosper pairs.

Suppose that we have a bilateral series
∑∞
−∞ Fk(a1, a2, . . . , an) which has a closed

form. Making the substitutions ai → aiq or ai → ai/q for some parameters ai, the

closed product formula induces an iteration relation for the summation which can be

stated as an identity of the form:

∞∑
k=−∞

Fk(a1, a2, . . . , an) =
∞∑

k=−∞

Gk(a1, a2, . . . , an). (2.1)

We assume that
∑∞

k=−∞ Fk(a1, a2, . . . , an) and
∑∞

k=−∞Gk(a1, a2, . . . , an) are both

convergent. We also assume that

lim
k→∞

hk = lim
k→−∞

hk. (2.2)

We note that there are many bilateral summations with the above limit property.

An Gosper pair (gk, hk) is a pair of basic hypergeometric terms such that

gk − hk = Fk(a1, a2, . . . , an),

gk − hk+1 = Gk(a1, a2, . . . , an).
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Evidently, once a Gosper pair is derived, the identity (2.1) immediately justified by the

following telescoping relation:

∞∑
k=−∞

(gk − hk) =
∞∑

k=−∞

(gk − hk+1). (2.3)

We are now ready to describe our approach. Let us take Ramanujan’s 1ψ1 sum [10,

Appendix II.29] as an example:

1ψ1

[
a

b
; q, z

]
=

(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

, (2.4)

where |b/a| < |z| < 1. There are many proofs of this identity, see, for example,

Hahn [11], Jackson [13], Andrews [2,3], Ismail [12], Andrews and Askey [4], Berndt [6]

and Schlosser [19].

Proposition 2.1 The following is a Gosper pair for Ramanujan’s 1ψ1 sum:

gk =
azk+1

(az − b)
(a; q)k
(b; q)k

,

hk =
bzk

(az − b)
(a; q)k
(b; q)k

.

Step 1. Construct an iteration relation from the closed product form, namely, the

right hand side of (2.4).

Setting b to bq in (2.4), we get

1ψ1

[
a

bq
; q, z

]
=

(q, bq/a, az, q/az; q)∞
(bq, q/a, z, bq/az; q)∞

. (2.5)

Define

f(a, b, z) = 1ψ1

[
a

b
; q, z

]
. (2.6)

Comparing the right hand sides of (2.4) and (2.5) gives the following iteration relation

(see also [4])

1ψ1

[
a

b
; q, z

]
=

(1− b/a)

(1− b)(1− b/az)
1ψ1

[
a

bq
; q, z

]
. (2.7)
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Notice that both sides of the above identity are convergent.

Let Fk(a, b, z) and Gk(a, b, z) denote the kth terms of the left hand side and the

right hand side summations in (2.7) respectively, that is,

Fk(a, b, z) =
(a; q)k
(b; q)k

zk and Gk(a, b, z) =
(1− b/a)

(1− b)(1− b/az)
Fk(a, bq, z). (2.8)

Step 2. Apply the q-Gosper algorithm to try to find a Gosper pair (gk, hk).

It is essential to observe that Fk(a, b, z)−Gk(a, b, z) is a basic hypergeometric term.

In fact it can be written as(
1− bqk − 1− b/a

1− b/az

)
(a; q)k

(b; q)k+1

zk.

Now we may employ the q-Gosper algorithm for the following equation

Fk(a, b, z)−Gk(a, b, z) = hk+1 − hk, (2.9)

and we find a solution of simple form

hk =
bzk

(az − b)
(a; q)k
(b; q)k

, (2.10)

which also satisfied the limit condition

lim
k→∞

hk = lim
k→−∞

hk = 0.

As far as the verification of (2.7) is concerned, the existence of a solution hk and the

limit condition (2.2) would guarantee that the identity holds. Now it takes one more

step to compute the Gosper pair:

gk = hk + Fk(a, b, z) =
azk+1

(az − b)
(a; q)k
(b; q)k

. (2.11)

Step 3. Based on the iteration relation and the limit value, one can verify the

summation formula.

From the iteration relation (2.7), we may reduce the evaluation of the bilateral series

1ψ1 to a special case

f(a, b, z) =
(b/a; q)∞

(b, b/za; q)∞
f(a, 0, z). (2.12)
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Setting b = q in (2.12), we get

f(a, 0, z) =
(q, q/za; q)∞

(q/a; q)∞

∞∑
k=−∞

(a; q)k
(q; q)k

zk.

Invoking the relation (1.1), we see that 1/(q, q)−k = 0 for any positive integer k.

Consequently, the above bilateral sum reduces to a unilateral sum. Exploiting the

q-binomial theorem [10, Appendix II.3]

∞∑
k=0

(a; q)k
(q; q)k

zk =
(az; q)∞
(z; q)∞

, (2.13)

we get the evaluation

f(a, 0, z) =
(q, az, q/az; q)∞

(q/a, z; q)∞
. (2.14)

Hence the identity (2.4) follows from (2.12) and (2.14).

It should be warned that it is not always the case that there is a solution hk to the

equation (2.9) in general case. If one encounters this scenario, one should still have

alternatives to try another iteration relations, as is done for the 3ψ3 sum in Example

2.4.

Let us now examine how to generate an Abel pair (Ak, Bk) from a Gosper pair

(gk, hk). Setting

gk = AkBk and hk = AkBk−1, (2.15)

then we see that
Bk

Bk−1
=
gk
hk
. (2.16)

Without loss of generality, we may assume that B0 = 1. Iterating (2.16) yields an Abel

pair (Ak, Bk).

For the Ramanujan’s 1ψ1 sum (2.4), we can compute the Abel pair by using the

q-Gosper algorithm.

Proposition 2.2 The following is an Abel pair for Ramanujan’s 1ψ1 sum:

Ak =
az

az − b
(a; q)k
(b; q)k

(
b

a

)k

,

Bk =
(az
b

)k
.
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It is a routine to verify (Ak, Bk) is indeed an Abel pair for the 1ψ1 sum. First we

have

Bk −Bk−1 =
(az
b
− 1
)(az

b

)k−1
, (2.17)

Ak − Ak+1 =
(1− b/a)

(1− b)(1− b/az)

(a; q)k
(bq; q)k

(
b

a

)k

. (2.18)

Then the iteration relation (2.7) is deduced from the Abel lemma:

∞∑
k=−∞

az

az − b
(a; q)k
(b; q)k

(
b

a

)k (az
b
− 1
)(az

b

)k−1
(2.19)

=
∞∑

k=−∞

(az
b

)k (1− b/a)

(1− b)(1− b/az)

(a; q)k
(bq; q)k

(
b

a

)k

. (2.20)

We next give some examples for bilateral summations.

Example 2.3 The sum of a well-poised 2ψ2 series ( [10], Appendix II.30):

2ψ2

[
b, c

aq/b, aq/c
; q,−aq

bc

]
=

(aq/bc; q)∞(aq2/b2, aq2/c2, q2, aq, q/a; q2)∞
(aq/b, aq/c, q/b, q/c,−aq/bc; q)∞

, (2.21)

where |aq/bc| < 1.

Write the kth term of the left hand side of (2.21) as

Fk(a, b, c) =
(b, c; q)k

(aq/b, aq/c; q)k

(
−aq
bc

)k
. (2.22)

Substituting b with b/q in (2.21), we are led to the iteration relation

∞∑
k=−∞

Fk(a, b, c) =
(1− aq/bc)(1− aq2/b2)

(1 + aq/bc)(1− q/b)(1− aq/b)

∞∑
k=−∞

Fk(a, b/q, c). (2.23)

Let

Gk(a, b, c) =
(1− aq/bc)(1− aq2/b2)

(1 + aq/bc)(1− q/b)(1− aq/b)
Fk(a, b/q, c). (2.24)

Implementing the q-Gosper algorithm, we obtain a Gosper pair

gk =
(b2cqk − aq2)

(aq + bc)(bqk − q)
Fk(a, b, c), (2.25)
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hk =
bq(c− aqk)

(aq + bc)(bqk − q)
Fk(a, b, c). (2.26)

The companion Abel pair is given below:

Ak =
(b, c; q)k(b2cqk − aq2)

(aq/b, b2c/aq; q)k(aq + bc)(−q + bqk)
, (2.27)

Bk =
(b2c/aq; q)k
(aq/c; q)k

(
−aq
bc

)k
. (2.28)

Noticing that (2.21) is symmetric in b and c, we have

∞∑
k=−∞

Fk(a, b, c) =
∞∑

k=−∞

Fk(a, b/q, c/q)

× (1− aq/bc)(1− aq2/bc)(1− aq2/b2)(1− aq2/c2)
(1 + aq/bc)(1 + aq2/bc)(1− q/b)(1− q/c)(1− aq/b)(1− aq/c)

. (2.29)

Finally, we can reach (2.21) by iterating (2.29) infinitely many times along with

Jacobi’s triple product identity (1.13) as the limit case.

Example 2.4 Bailey’s sum of a well-poised 3ψ3 ( [10], Appendix II.31):

3ψ3

[
b, c, d

q/b, q/c, q/d
; q,

q

bcd

]
=

(q, q/bc, q/bd, q/cd; q)∞
(q/b, q/c, q/d, q/bcd; q)∞

, (2.30)

where |q/bcd| < 1.

Substituting d with d/q in (2.30), one obtains the iteration relation

3ψ3

[
b, c, d

q/b, q/c, q/d
; q,

q

bcd

]

=
(1− q/bd)(1− q/cd)

(1− q/d)(1− q/bcd)
3ψ3

[
q, c, d/q

q/b, q/c, q2/d
; q,

q2

bcd

]
. (2.31)

We remark that this sum is in fact an example for which the q-Gosper algorithm

does not succeed for the iteration relation derived from a straightforward substitution
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such as d → dq or d → d/q. Instead, using an idea of Paule [16] of symmetrizing a

bilateral summation, we replace k by −k on the left hand side of (2.30) to get

3ψ3

[
b, c, d

q/b, q/c, q/d
; q,

q2

bcd

]
. (2.32)

Let Fk(b, c, d) be the average of the kth summands of (2.30) and (2.32), namely,

Fk(b, c, d) =
(b, c, d; q)k

(q/b, q/c, q/d; q)k

( q

bcd

)k 1 + qk

2
, (2.33)

and let

Gk(b, c, d) =
(1− q/bd)(1− q/cd)

(1− q/d)(1− q/bcd)
Fk(b, c, d/q). (2.34)

With regard to Fk(b, c, d)−Gk(b, c, d), the q-Gosper algorithm generates a Gosper pair:

gk =
bdqk+1 + cdqk+1 − bcd2qk − q2 + dqk+1 + bcdqk+1 − bcd2q2k − qk+2

(1 + qk)(bcd− q)(q − dqk)

×Fk(b, c, d), (2.35)

hk =
d(b− qk)(c− qk)

(1 + qk)(q − bcd)(1− dqk−1)
Fk(b, c, d), (2.36)

which implies the iteration relation (2.31). Invoking the symmetric property of the

parameters b, c and d, we have

3ψ3

[
b, c, d

q/b, q/c, q/d
; q,

q

bcd

]
=

(1− q/bc)(1− q2/bc)(1− q/bd)(1− q2/bd)

(1− q/b)(1− q/c)(1− q/d)(1− q/bcd)

× (1− q/cd)(1− q2/cd)

(1− q2/bcd)(1− q3/bcd)
3ψ3

[
b/q, c/q, d/q

q2/b, q2/c, q2/d
; q,

q4

bcd

]
. (2.37)

The above relation enables us to reduce the summation formula (2.30) to Jacobi’s triple

product identity.

Example 2.5 A basic bilateral analogue of Dixon’s sum [10, Appendix II.32]:

4ψ4

[
−qa 1

2 , b, c, d

−a 1
2 , aq/b, aq/c, aq/d

; q,
qa

3
2

bcd

]

=
(aq, aq/bc, aq/bd, aq/cd, qa

1
2/b, qa

1
2/c, qa

1
2/d, q, qa; q)∞

(aq/b, aq/c, aq/d, q/b, q/c, q/d, qa
1
2 , qa−

1
2 , qa

3
2/bcd; q)∞

, (2.38)

where |qa 3
2/bcd| < 1.
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For the above formula, we may consider the substitution d → d/q in (2.38) which

suggests the iteration relation

4ψ4

[
−qa 1

2 , b, c, d

−a 1
2 , aq/b, aq/c, aq/d

; q,
qa

3
2

bcd

]

=
(1− aq/bd)(1− aq/cd)(1− qa 1

2/d)

(1− aq/d)(1− q/d)(1− qa 3
2/bcd)

× 4ψ4

[
−qa 1

2 , b, c, d/q

−a 1
2 , aq/b, aq/c, aq2/d

; q,
q2a

3
2

bcd

]
. (2.39)

Let

Fk(a, b, c, d) =
(−qa 1

2 , b, c, d; q)k

(−a 1
2 , aq/b, aq/c, aq/d; q)k

(
qa

3
2

bcd

)k

(2.40)

and let

Gk(a, b, c, d) =
(1− aq/bd)(1− aq/cd)(1− qa 1

2/d)

(1− aq/d)(1− q/d)(1− qa 3
2/bcd)

Fk(a, b, c, d/q). (2.41)

By computation we obtain the Gosper pair:

gk =
−abdqk+1 − acdqk+1 + q2a

3
2 + a2qk+2 − bcda 1

2 qk+1 − da 3
2 qk+1 + bcd2qk + bcd2a

1
2 q2k

(dqk − q)(1 + a
1
2 qk)(bcd− a 3

2 q)

×Fk(a, b, c, d), (2.42)

hk =
d(aqk − c)(aqk − b)

(dqk−1 − 1)(1 + a
1
2 qk)(bcd− qa 3

2 )
Fk(a, b, c, d). (2.43)

So the iteration relation (2.39) holds. From the symmetric property of the parameters

b, c and d, we have

4ψ4

[
−qa 1

2 , b, c, d

−a 1
2 , aq/b, aq/c, aq/d

; q,
qa

3
2

bcd

]

=
(1− aq/bc)(1− aq2/bc)(1− aq/bd)(1− aq2/bd)(1− aq/cd)(1− aq2/cd)

(1− aq/b)(1− aq/c)(1− aq/d)(1− q/b)(1− q/c)(1− q/d)(1− qa 3
2/bcd)

×(1− qa 1
2/b)(1− qa 1

2/c)(1− qa 1
2/d)

(1− q2a 3
2/bcd)(1− q3a 3

2/bcd)

×4ψ4

[
−qa 1

2 , b/q, c/q, d/q

−a 1
2 , aq2/b, aq2/c, aq2/d

; q,
q4a

3
2

bcd

]
. (2.44)
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By iteration, it follows that

4ψ4

[
−qa 1

2 , b, c, d

−a 1
2 , aq/b, aq/c, aq/d

; q,
qa

3
2

bcd

]

=
(aq/bc, aq/bd, aq/cd, qa

1
2/b, qa

1
2/c, qa

1
2/d; q)∞

(aq/b, aq/c, aq/d, q/b, q/c, q/d, qa
3
2/bcd; q)∞

H(a), (2.45)

where

H(a) =
∞∑

k=−∞

(−qa 1
2 ; q)k

(−a 1
2 ; q)k

q3(
k
2)
(
−qa

3
2

)k
. (2.46)

Taking b = −a 1
2 and c, d→∞ in (2.45) and by Jacobi’s triple product identity (1.13),

it can be verified that

H(a) =
(q, aq, q/a; q)∞

(qa
1
2 , qa−

1
2 ; q)∞

, (2.47)

which leads to (2.38).

Example 2.6 Bailey’s very well-poised 6ψ6-series identity (1.4).

Let us denote the kth term of (1.9) as

Ωk(a; b, c, d, e) =
(qa

1
2 ,−qa 1

2 , b, c, d, e; q)k

(a
1
2 ,−a 1

2 , aq/b, aq/c, aq/d, aq/e; q)k

(
qa2

bcde

)k

. (2.48)

Set Fk = Ωk(a; b, c, d, e) and

Gk = Ωk(aq; b, c, d, eq)× a(1− e)(1− aq)(bc− aq)(bd− aq)(cd− aq)
(1− a)(b− aq)(c− aq)(d− aq)(bcde− a2q)

. (2.49)

By computation, we find the following Gosper pair:

gk =
a(bcdqk − aq)(1− eqk)

(bcde− a2q)(1− aq2k)
Ωk(a; b, c, d, e),

hk =
(e− aqk)(bcd− a2qk+1)

(bcde− a2q)(aq2k − 1)
Ωk(a; b, c, d, e). (2.50)

We note that the Abel pair derived from the above Gosper pair coincides with the Abel

pair given by Chu [9].
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We next give the Gosper pair of a different iteration relation of the 6ψ6 series by

setting e→ e/q in (1.4), that is,

Ω(a; b, c, d, e) = Ω(a; b, c, d, e/q)× (1− aq/be)(1− aq/ce)(1− aq/de)
(1− aq/e)(1− q/e)(1− a2q/bcde)

. (2.51)

We will see that the above iteration has the advantage that it directly points to the

identity (1.12) by taking into account the symmetries in b, c, d, e. On the other hand,

the Gosper pair does not have a simple expression in this case.

Set Fk = Ωk(a; b, c, d, e) and

Gk = Ωk(a; b, c, d, e/q)× (1− aq/be)(1− aq/ce)(1− aq/de)
(1− aq/e)(1− q/e)(1− a2q/bcde)

. (2.52)

From the above iteration relation, we obtain the Gosper pair:

gk =

(
abceqk+1 + abdeqk+1 − a2beq2k+1 + acdeqk+1 − a2ceq2k+1 − a2deq2k+1 − bcde2qk

(bcde− qa2)(eqk − q)(aq2k − 1)

+
abcde2q3k − abcdeq2k+1 − a2q2 + a2eqk+1 + a3q2k+2

(bcde− qa2)(eqk − q)(aq2k − 1)

)
Ωk(a; b, c, d, e), (2.53)

hk =
qe(b− aqk)(c− aqk)(d− aqk)

(bcde− qa2)(1− aq2k)(eqk − q)
Ωk(a; b, c, d, e). (2.54)

Since the parameters b, c, d, e are symmetric in (1.9), we obtain

Ω(a; b, c, d, e)

= Ω(a; b/q, c/q, d/q, e/q)× (1− aq/bc)(1− aq2/bc)(1− aq/bd)(1− aq2/bd)

(1− aq/b)(1− aq/c)(1− aq/d)(1− aq/e)

×(1− aq/be)(1− aq2/be)(1− aq/cd)(1− aq2/cd)

(1− q/b)(1− q/c)(1− q/d)(1− q/e)

× (1− aq/ce)(1− aq2/ce)(1− aq/de)(1− aq2/de)
(1− a2q/bcde)(1− a2q2/bcde)(1− a2q3/bcde)(1− a2q4/bcde)

. (2.55)

Again, the limit value can be given by Jacobi’s triple product identity, so that we

arrive at (1.4) in view of (2.55).

The following is a 8ψ8 summation formula of Shukla [21]. Note that the relation we

aim to verify is not an iteration relation. Instead, we establish the identity based on

the observation that the product formula contains the factors in Bailey’s 6ψ6 identity.
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Example 2.7 Shukla’s very-well-poised 8ψ8 summation:

8ψ8

[
qa

1
2 , −qa 1

2 , b, c, d, e, f, aq2/f

a
1
2 , −a 1

2 , aq/b, aq/c, aq/d, aq/e, aq/f, f/q
; q,

a2

bcde

]

=

(
1− (1− bc/a)(1− bd/a)(1− be/a)

(1− bq/f)(1− bf/aq)(1− bcde/a2)

)
× (1− f/bq)(1− bf/aq)

(1− f/aq)(1− f/q)

×(q, aq, q/a, aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de; q)∞
(aq/b, aq/c, aq/d, aq/e, q/b, q/c, q/d, q/e, a2q/bcde; q)∞

, (2.56)

where |a2/bcde| < 1.

Observe that the right hand side of (2.56) can be rewritten as(
1− (1− bc/a)(1− bd/a)(1− be/a)

(1− bq/f)(1− bf/aq)(1− bcde/a2)

)
(1− f/bq)(1− bf/aq)
(1− f/aq)(1− f/q)

Ω(a; b, c, d, e),

(2.57)

where Ω(a; b, c, d, e) denotes the 6ψ6 series as given by (1.9).

Let Fk denote the kth term of the left hand side of (2.56), namely,

Fk =
(qa

1
2 ,−qa 1

2 , b, c, d, e, f, aq2/f ; q)k

(a
1
2 ,−a 1

2 , aq/b, aq/c, aq/d, aq/e, aq/f, f/q; q)k

(
a2

bcde

)k

, (2.58)

and let

Gk = Ωk(a; b, c, d, e)×
(

1− (1− bc/a)(1− bd/a)(1− be/a)

(1− bq/f)(1− bf/aq)(1− bcde/a2)

)
×(1− f/bq)(1− bf/aq)

(1− f/aq)(1− f/q)
, (2.59)

where Ωk(a; b, c, d, e) is the kth term of the 6ψ6 series Ω(a; b, c, d, e), as given by (2.48).

With the aid of the q-Gosper algorithm for Fk −Gk, we find

hk =
f(b− aqk)(c− aqk)(d− aqk)(e− aqk)

qk−1(f − q)(f − aq)(bcde− a2)(1− aq2k)
Ωk(a; b, c, d, e). (2.60)

Thus (2.56) can be deduced from the telescoping relation (2.3) and the 6ψ6 formula

(1.4).

We now turn to two identities due to Schlosser derived by matrix inverse [20].
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Example 2.8 Let a, b, c, d, e, and u be indeterminates. Then

∞∑
k=−∞

1− aq2k

(1− a)

(b, c; q)k
(aq/b, aq/c; q)k

(dq, eq; q)k
(aq/d, aq/e; q)k

(
a2

bcde

)k

×
(

1− (1− de/a)(1− uqk)(1− a2qk/bcu)

(1− a/bc)(1− dqk)(1− eqk)

)
=

(q, aq, q/a, aq/bc, aq/bd, aq/be, aq/cd, aq/ce, a/de; q)∞
(q/b, aq/b, q/c, aq/c, 1/d, aq/d, 1/e, aq/e, a2q/bcde; q)∞

×(1− a/cu)(1− bu/a)

(b− a/c)
, (2.61)

provided |a2/bcde| < 1.

As in the preceding example, the right hand side of (2.61) contains the product for

the 6ψ6 sum. We may proceed in the same manner. Write the kth term of the left

hand side of (2.61) as Fk, that is,

Fk =
1− aq2k

(1− a)

(b, c; q)k
(aq/b, aq/c; q)k

(dq, eq; q)k
(aq/d, aq/e; q)k

(
a2

bcde

)k

×
(

1− (1− de/a)(1− uqk)(1− a2qk/bcu)

(1− a/bc)(1− dqk)(1− eqk)

)
, (2.62)

and let

Gk =
(1− a/cu)(1− bu/a)(1− a/de)

(b− a/c)(1− 1/d)(1− 1/e)
Ωk(a; b, c, d, e), (2.63)

where Ωk is the same notation as in the proceeding example. Employing the q-Gosper

algorithm for Fk −Gk, we obtain

hk =
(b− aqk)(c− aqk)(d− aqk)(e− aqk)

a(1− d)(1− e)(a− bc)(1− aq2k)qk
Ωk(a; b, c, d, e). (2.64)

So we get the desired identity.

The next example is a 8ψ8 summation formula which can be verified by using our

method. It turns out that the limit identity is a special case of Bailey’s 6ψ6 sum.

Example 2.9 Let a, b, c, and d be indeterminates, let j be an arbitrary integer and N

a nonnegative integer. Then

8ψ8

[
qa

1
2 , −qa 1

2 , b, c, dqj, aq−j/c, aq1+N/b, aq−N/d

a
1
2 , −a 1

2 , aq/b, aq/c, aq1−j/d, cq1+j, bq−N , dq1+N
; q, q

]
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=
(aq/bc, cq/b, dq, dq/a; q)N
(cdq/a, dq/c, q/b, aq/b; q)N

(cd/a, bd/a, cq, cq/a, dq1+N/b, q−N ; q)j
(q, cq/b, d/a, d, bcq−N/a, cdq1+N/a; q)j

× (q, q, aq, q/a, cdq/a, aq/cd, cq/d, dq/c; q)∞
(cq, q/c, dq, q/d, cq/a, aq/c, dq/a, aq/d; q)∞

. (2.65)

Let Λ(a, b, c, d) denote the above 8ψ8 summation, and let Λk(a, b, c, d) be the kth

term of this sum, namely,

Λk(a, b, c, d) =
(qa

1
2 ,−qa 1

2 , b, c, dqj, aq−j/c, aq1+N/b, aq−N/d; q)k

(a
1
2 ,−a 1

2 , aq/b, aq/c, aq1−j/d, cq1+j, bq−N , dq1+N ; q)k
qk. (2.66)

Substituting the parameter b by b/q leads to the iteration relation:

Λ(a, b, c, d) = Λ(a, b/q, c, d)
(1− aq/bc)(1− cq/b)(1− qN+1/b)(1− aqN+1/b)

(1− q/b)(1− aq/b)(1− aqN+1/bc)(1− cqN+1/b)

×(1− bdqj−1/a)(1− dqN+1/b)(1− bcq−N−1/a)(1− cqj+1/b)

(1− bd/aq)(1− cq/b)(1− dqN+j+1/b)(1− bcq−N+j−1/a)
. (2.67)

Let Fk(a, b, c, d) = Λk(a, b, c, d), and let

Gk(a, b, c, d) = Λk(a, b/q, c, d)× (1− aq/bc)(1− cq/b)(1− qN+1/b)(1− aqN+1/b)

(1− q/b)(1− aq/b)(1− aqN+1/bc)(1− cqN+1/b)

×(1− bdqj−1/a)(1− dqN+1/b)(1− bcq−N−1/a)(1− cqj+1/b)

(1− bd/aq)(1− cq/b)(1− dqN+j+1/b)(1− bcq−N+j−1/a)
. (2.68)

By the q-Gosper algorithm for Fk −Gk, we get

hk = Λk(a, b, c, d)× b(1− dqN+k)(bqk − qN+1)(1− cqk+j)

qk(bcqj − aqN+1)(b− dqN+j+1)(aq − bd)

×(dqj − aqk)(c− aqk)(b2 − aqN+2)

(b− cqN+1)(1− aq2k)(1− bqk−1)
. (2.69)

The limit identity can be verified as follows:

lim
M→∞

Λ(a, bq−M , c, d)

= lim
b→∞

Λ(a, b, c, d)

= 6ψ6

 qa
1
2 , −qa 1

2 , aq−N/d, c, dqj, aq−j/c

a
1
2 , −a 1

2 , dq1+N , aq/c, aq1−j/d, cq1+j
; q, qN+1


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=
(q, aq, q/a, dqN+1/c, qN−j+1, cdqN+j+1/a, aq1−j/cd, qj+1, cq/d; q)∞

(dqN+1, aq/c, aq1−j/d, cqj+1, dqN+1/a, q/c, q1−j/d, cqj+1/a, qN+1; q)∞

=
(dq, dq/a; q)N

(cdq/a, dq/c; q)N

(cd/a, cq, cq/a, q−N ; q)j
(q, d/a, d, cdq1+N/a; q)j

(
dqN

c

)j

× (q, q, aq, q/a, cdq/a, aq/cd, cq/d, dq/c; q)∞
(cq, q/c, dq, q/d, cq/a, aq/c, dq/a, aq/d; q)∞

. (2.70)

Thus (2.65) can be deduced from (2.67) and (2.70).

3 The Abel Pairs for Unilateral Summations

The idea of Gosper pairs can be adapted to unilateral summation formulas with a slight

modification. We also begin with an iteration relation guided by the closed product

formula which can be stated in the following form:

∞∑
k=0

Fk(a1, a2, . . . , an) =
∞∑
k=0

Gk(a1, a2, . . . , an). (3.1)

We assume that
∑∞

k=0 Fk(a1, a2, . . . , an) and
∑∞

k=0Gk(a1, a2, . . . , an) are convergent.

Moreover, we assume that the following limit condition holds:

lim
k→∞

hk = h0. (3.2)

For the same reason as in the bilateral case, we see that

Fk(a1, a2, . . . , an)−Gk(a1, a2, . . . , an)

is a basic hypergeometric term so that we can resort to the q-Gosper algorithm to solve

the following equation:

Fk(a1, a2, . . . , an)−Gk(a1, a2, . . . , an) = hk+1 − hk, k ≥ 0. (3.3)

A Gosper pair (gk, hk) is then given by

gk − hk = Fk(a1, a2, . . . , an),

gk − hk+1 = Gk(a1, a2, . . . , an).
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Therefore, one can use the Gosper pair (gk, hk) to justify (3.1) by the relation

∞∑
k=0

(gk − hk) =
∞∑
k=0

(gk − hk+1) (3.4)

and the limit condition lim
k→∞

hk = h0.

Given a Gosper pair it is easy to compute the corresponding Abel pair which implies

iteration relation (3.1) by the following unilateral Abel sum:

∞∑
k=0

Ak(Bk −Bk−1) =
∞∑
k=0

Bk(Ak − Ak+1), (3.5)

which we call the unilateral Abel lemma. We also need the corresponding limit condi-

tion

lim
k→∞

AkBk−1 = A0B−1.

Note that we will only encounter the case B−1 = 0 because of the fact 1/(q; q)−1 = 0

by (1.1).

The above approach is suitable for many classical unilateral summation formulas

including the q-Gauss sum, the q-Kummer (Bailey-Daum) sum [10, Appendix II.9], the

q-Dixon sum [10, Appendix II.13], a q-analogue of Watson’s 3F2 sum [10, Appendix

II.16], and a q-analogue of Whipple’s 3F2 sum [10, Appendix II.18], just to name a few.

Here we only give two examples to demonstrate this technique.

Example 3.1 The q-Gauss sum:

2φ1

[
a, b

c
; q,

c

ab

]
=

(c/a, c/b; q)∞
(c, c/ab; q)∞

, (3.6)

where |c/ab| < 1.

Set

f(a, b, c) = 2φ1

[
a, b

c
; q,

c

ab

]
. (3.7)

Write the kth term of (3.7) as

Fk(a, b, c) =
(a, b; q)k
(q, c; q)k

( c
ab

)k
. (3.8)

19



The iteration c→ cq in (3.6) implies

f(a, b, c) =
(1− c/a)(1− c/b)
(1− c)(1− c/ab)

f(a, b, cq). (3.9)

Let

Gk(a, b, c) =
(1− c/a)(1− c/b)
(1− c)(1− c/ab)

Fk(a, b, cq). (3.10)

Applying the q-Gosper algorithm to Fk(a, b, c) − Gk(a, b, c), we arrive at the Gosper

pair:

gk =
c− abqk

c− ab
Fk(a, b, c), (3.11)

hk =
ab(1− qk)

c− ab
Fk(a, b, c). (3.12)

So we have the Abel pair:

Ak =
(1− abqk/c)
(1− ab/c)

(a, b; q)k
(c, abq/c; q)k

, (3.13)

Bk =
(abq/c; q)k

(q; q)k

( c
ab

)k
. (3.14)

Now we see that identity (3.6) is true because of the unilateral Abel lemma (3.5) and

the limit value f(a, b, 0) = 1.

Example 3.2 The sum of Rogers’ nonterminating very-well-poised 6φ5 series [10, Ap-

pendix II.20]:

6φ5

[
a, qa

1
2 , −qa 1

2 , b, c, d

a
1
2 , −a 1

2 , aq/b, aq/c, aq/d
; q,

aq

bcd

]

=
(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

, (3.15)

where |aq/bcd| < 1.

Let us write

f(a, b, c, d) = 6φ5

[
a, qa

1
2 , −qa 1

2 , b, c, d

a
1
2 , −a 1

2 , aq/b, aq/c, aq/d
; q,

aq

bcd

]
. (3.16)
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Denote the kth term of (3.16) by

Fk(a, b, c, d) =
(a, qa

1
2 ,−qa 1

2 , b, c, d; q)k

(q, a
1
2 ,−a 1

2 , aq/b, aq/c, aq/d; q)k

( aq
bcd

)k
. (3.17)

The substitution a→ aq in (3.15) leads to the iteration relation

f(a, b, c, d) =
(1− aq)(1− aq/cd)(1− aq/bc)(1− aq/bd)

(1− aq/b)(1− aq/c)(1− aq/d)(1− aq/bcd)
f(aq, b, c, d). (3.18)

Let

Gk(a, b, c, d) =
(1− aq)(1− aq/cd)(1− aq/bc)(1− aq/bd)

(1− aq/b)(1− aq/c)(1− aq/d)(1− aq/bcd)
Fk(aq, b, c, d). (3.19)

Then we get the Gosper pair:

gk =
(1− aqk)(qk − aq/bcd)

(1− aq2k)(1− aq/bcd)
Fk(a, b, c, d), (3.20)

hk = −(1− qk)(1− a2qk+1/bcd)

(1− aq2k)(1− aq/bcd)
Fk(a, b, c, d). (3.21)

The corresponding Abel pair is as follows:

Ak =
(bcdqk − aq)
(bcd− aq)

(b, c, d, a2q2/bcd; q)k
(aq/b, aq/c, aq/d, bcd/a; q)k

, (3.22)

Bk =
(aq, bcd/a; q)k

(q, a2q2/bcd; q)k

( aq
bcd

)k
. (3.23)

Therefore, the identity (3.15) is a consequence of the unilateral Abel lemma (3.5) and

the limit value f(0, b, c, d) = 1.
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