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Abstract. Inspired by MacMahon’s original proof of his celebrated theorem on the
distribution of the major index over permutations, we give a reformulation of his argu-
ment in terms of labeled partitions. In this framework, we establish a decomposition
theorem for labeled partitions which is analogous to the decomposition of a permutation
into derangement points and fixed points. This decomposition implies a reformulation
of Wachs’ formula concerning the derangement parts and major index on permutations
which was derived in order to present a bijective treatment of Gessel’s formula on the
q-derangement numbers.
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1 Introduction

We will follow the terminology and notation on permutations and partitions and q-series
in Andrews [2] and Stanley [10]. The set of permutations on {1, 2, . . . , n} is denoted by
Sn. For any permutation π = π1π2 · · · πn ∈ Sn, an index i with 1 ≤ i ≤ n−1 is called a
descent of π if πi > πi+1. The major index maj(π) of π, introduced by MacMahon [9],
is defined as the sum of all descents of π. The following formula is well-known:∑

π∈Sn

qmaj(π) = [n]! = 1 · (1 + q) · (1 + q + q2) · · · (1 + q + · · ·+ qn−1). (1.1)
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The underlying idea of MacMahon’ proof goes as follows. It is easier to consider
sequences and partitions than solely permutations for the purpose of studying the
major index. MacMahon established (1.1) by proving an equivalent formula

1

(q)n

∑
π∈Sn

qmaj(π) =
1

(1− q)n
, (1.2)

where (q)n = (1−q) · · · (1−qn), and (q)−1
n is the generating function for partitions with

n parts, where zero parts are allowed. We will give a reformulation of MacMahon’s
proof in Section 2 by using the notion of standard labeled partitions.

The main objective of this paper is to employ MacMahon’s method to deal with the
major index of derangements. An integer i with 1 ≤ i ≤ n is said to be a fixed point
of π ∈ Sn if πi = i, and derangement point otherwise. Derangements are permutations
with no fixed points. Let Dn be the set of all derangements in Sn. The q-derangement
numbers are defined by d0(q) = 1 and for n ≥ 1

dn(q) =
∑
π∈Dn

qmaj(π).

The following elegant formula was first derived by Gessel and published in [6] as a
consequence of the quasi-symmetric generating function encoding the descents and the
cycle structure of permutations:

dn(q) = [n]!
n∑
k=0

(−1)k

[k]!
q(

k
2). (1.3)

A combinatorial proof of (1.3) has been obtained by Wachs [12]. Let us review
the combinatorial settings of Wachs. Suppose that the derangement points of π are
p1, p2, . . . , pk. The reduction of π to its derangement part, denoted by dp(π), is defined
as a permutation on {1, 2, . . . , k} induced by the relative order of πp1 , πp2 , . . . , πpk . For
example, the derangement points of π = (1, 5, 3, 7, 6, 2, 9, 8, 4) are 2, 4, 5, 6, 7, 9, and
π2π4π5π6π7π9 = (5, 7, 6, 2, 9, 4). Then dp(π) = (3, 5, 4, 1, 6, 2). Clearly dp(π) ∈ Dk if
π has k derangement points. On the other hand, we can insert a fixed point j with
1 ≤ j ≤ k + 1 into π ∈ Sk to obtain a permutation

π̄ = π′1π
′
2 · · · π′j−1j π

′
j · · · π′k ∈ Sk+1, (1.4)

where π′i = πi if πi < j and π′i = πi + 1 if πi ≥ j. Such an insertion operation produces
one extra fixed point and will be used in the proof of the Theorem 2.2. Wachs [12] has
established the following relation.
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Theorem 1.1. Let 0 ≤ k ≤ n and σ ∈ Dk. Then we have∑
dp(π)=σ
π∈Sn

qmaj(π) = qmaj(σ)

[
n

k

]
, (1.5)

where
[
n
k

]
= [n]!

[k]![n−k]!
is the q-binomial coefficient.

Summing over all derangements σ ∈ Dk and 0 ≤ k ≤ n, and applying (1.1), we can
deduce from (1.5) that

[n]! =
n∑
k=0

[
n

k

]
dk(q).

Thus (1.3) follows from the q-binomial inversion [1, Corollary 3.38].

In order to justify the relation (1.5), Wachs found a bijection on Sn by rearranging a
permutation π according to excedant (where πi > i), fixed point, and subcedant (where
πi < i). She showed that this bijection preserves the major index. Then a result
of Garsia-Gessel [4, Theorem 3.1] on shuffles of permutations is applied to establish
Theorem 1.1.

Inspired by MacMahon’s original proof of (1.1), we present an alternative approach
to Wachs’ formula (1.5) based on the following reformulation:

1

(q)n

∑
dp(π)=σ
π∈Sn

qmaj(π) =
1

(q)k(q)n−k
qmaj(σ). (1.6)

We will use the terminology of labeled partitions and will introduce the notion
of standard labeled partitions. In this framework, MacMahon’s proof can be easily
stated. Moreover, a combinatorial justification of (1.6) reduces to a decomposition
theorem which is analogous to the decomposition of a permutation by separating the
derangement points and the fixed points.

2 Labeled Partitions

Let λ = (λ1, . . . , λn) be a partition, where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. We say that λ is
a partition with n parts, or of length n, and we write |λ| = λ1 + · · · + λn. A labeled
partition of length n is defined as a pair (λ, π) (or

(
λ
π

)
), where λ is a partition with n

parts and π is a permutation π = π1π2 · · · πn on [n] = {1, 2, . . . , n}. A labeled partition
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is also represented in the following two row form as in Andrews [2, p. 43]:(
λ1 λ2 · · · λn
π1 π2 · · · πn

)
.

A labeled partition (λ, π) is said to be standard if πi > πi+1 implies λi > λi+1. For
example, the labeled partition in (2.1) is standard.

The following Lemma 2.1 is straightforward to verify, which is MacMahon’s original
approach to study the major index with the aid of partitions, see MacMahon [9],
Andrews [2, Theorem 3.7], Knuth [8, p. 18] or [7]. This method was further extended
by Stanley [11]. For other applications, see [4].

Lemma 2.1. Given π ∈ Sn, there is a bijection ψπ : λ 7→ µ between the set of partitions
λ with n parts and the set of partitions µ with n parts such that (µ, π) is a standard
labeled partition and |λ|+ maj(π) = |µ|. Formally, we write ψ(λ, π) = (ψπ(λ), π).

The bijection ψπ (or simply ψ when π is understood from the context) is given as
follows:

µ = ψπ(λ) = (λ1 + φ1, λ2 + φ2, . . . , λn + φn),

where φi is the number of descents in πiπi+1 · · · πn. One may also view ψ as the
operation of adding 1 to λ1, . . . , λi whenever i is a descent of π. The inverse map ψ−1

can be easily described.

We now give a restatement of MacMahon’s proof of (1.2) in the terminology of
labeled partitions.

Proof of (1.2). Given a sequence a1a2 · · · an of nonnegative integers, we associate it
with weight qa1+a2+···+an . Let us construct a two row array(

a1 a2 · · · an
1 2 · · · n

)
.

Note that a labeled partition (λ, π) is standard if λi = λi+1 implies πi < πi+1. Therefore,
by permuting the columns of the above array, one can get a unique standard labeled
partition (µ, π) with |µ| = a1+a2+· · ·+an. Applying Lemma 2.1, we obtain a partition
λ with |λ|+ maj(π) = |µ|. Clearly, the above steps are reversible. This completes the
proof.

Let n = 9 and a1a2 . . . a9 be given as the first row in the following array(
3 6 8 3 1 3 6 4 8
1 2 3 4 5 6 7 8 9

)
.
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By permuting the columns we get the standard labeled partition:(
µ

π

)
=

(
8 8 6 6 4 3 3 3 1
3 9 2 7 8 1 4 6 5

)
, (2.1)

where we have underlined those elements πi whenever i is a descent of π.

Applying the inverse map ψ−1 we obtain(
λ

π

)
=

(
5 5 4 4 2 2 2 2 1
3 9 2 7 8 1 4 6 5

)
,

which is the corresponding labeled partition.

We remark that the idea of standard labeled partitions appeared in [4, p. 292],
though it was not used to prove (1.2).

We are now ready to present a decomposition theorem on standard labeled parti-
tions with respect to the fixed points. Let σ be a given derangement in Dk and π a
permutation in Sn such that dp(π) = σ. Assume that (µ, π) is a standard labeled par-
tition of length n. Let i1 < i2 < · · · < in−k be the fixed points, and j1 < j2 < · · · < jk
the derangement points of π. We now define the following decomposition of a standard
labeled partition:

∆: (µ, π) 7→ (β, γ), (2.2)

where β = µj1µj2 · · ·µjk and γ = µi1µi2 · · ·µin−k
are the partitions corresponding to the

derangement points and fixed points, respectively. Evidently, µ consists of the parts
from β and γ, or in the common notation, µ = β ∪ γ.

Theorem 2.2. Let σ ∈ Dk. There is a bijection between the set of standard labeled
partitions (µ, π) of length n with dp(π) = σ and the set of pairs of partitions (β, γ)
such that β is a partition with k parts, γ is a partition with n − k parts, µ = β ∪ γ,
and (β, σ) is a standard labeled partition.

For example, let (
λ

π

)
=

(
5 4 4 4 4 3 2

5 2 1 4 7 3 6

)
.

Applying ψ, we get (
µ

π

)
=

(
8 6 5 5 5 3 2

5 2 1 4 7 3 6

)
.

The fixed points of π are 2, 4, as signified in boldface. Hence σ = dp(π) = (3 1 5 2 4).
Applying ∆ on (µ, π) gives (β, γ) = ((8 5 5 3 2), (6 5)). Finally, applying ψ−1 to(

β

σ

)
=

(
8 5 5 3 2

3 1 5 2 4

)
,
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we obtain (
α

σ

)
=

(
6 4 4 3 2

3 1 5 2 4

)
.

We note that the above theorem and Lemma 2.1 lead to a combinatorial interpre-
tation of the relation (1.6). Given a labeled partition (λ, π), we first use the map ψ
to transform it into a standard labeled partition (µ, π). Let σ = dp(π). Using the
above decomposition for (µ, π), we obtain a pair of partitions (β, γ) such that (β, σ)
is a standard labeled partition and γ is a partition with n − k parts. Moreover, we
can find a partition α with k parts such that ψσ(α, σ) = (β, σ). Thus we obtain the
following relation

|λ|+ maj(π) = |α|+ |γ|+ maj(σ), (2.3)

which yields (1.6).

Proof of Theorem 2.2. We first verify that (β, σ) is standard. Suppose there exists
i such that σi > σi+1. Then we need to show that βi > βi+1. Clearly, σi and σi+1

correspond to two elements πj and πk (j < k) in π such that πj > πk and the points
j + 1, j + 2, . . . , k − 1, if any, are fixed points of π. In other words, it is necessary to
show that µj > µk since βi = µj and βi+1 = µk by the decomposition. If j = k − 1,
since (µ, π) is standard, we have µj > µk. For the case j < k − 1, we see that either
πj > πj+1 = j + 1 or πk−1 = k − 1 > πk. Otherwise, we have πj < j + 1 ≤ k − 1 < πk,
a contradiction. Therefore, we have either µj > µj+1 or µk−1 > µk. This implies that
µj > µk. So we conclude that (β, σ) is a standard labeled partition.

We now proceed to construct the inverse map ϕ which corresponds to the procedure
to recover π by inserting the fixed points to the derangement σ on {1, 2, . . . , k}. It turns
out that the order of insertions reflects the property of standard labeled partitions.

We begin with (µ0, π0) = (β, σ) and assume that (µi, πi) is obtained from (µi−1, πi−1)
by inserting γi, where γi is the i-th part of γ. Let r be the first position such that the
insertion of γi produces a partition. In other words, if µi−1 already contains some parts
equal to γi, then we insert γi as the first occurrence. This partition is denoted by µi.
We need to determine the corresponding fixed point of πi caused by the insertion of γi.

Clearly, µir−1 > µir = γi. We may assume that µir = · · · = µit > µit+1 for some t ≥ r.
As in the proof of (1.2), in order to get a standard labeled partition after each insertion
of γi, we should insert s such that the subsequence

πi−1
r

′
, · · · , πi−1

s−1

′
, s, πi−1

s

′
, · · · , πi−1

t−1

′

of the permutation obtained by inserting s into πi−1 is increasing. We see that the
position s is uniquely determined. If r = t then we set s = r. Otherwise we find the
first position s (r ≤ s ≤ t) such that πi−1

s−1 < s ≤ πi−1
s . Strictly speaking, we have
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adopted the convention that πi−1
r−1 = −∞ and πi−1

t = ∞. Consequently, we can insert
s into πi−1 as a fixed point of πi.

It remains to show that πn−k = π. For notational simplicity, we write πn−k as π̄.
By removing the common fixed points, we may assume that the first fixed point f of
π is different from the first fixed point f̄ of π̄. We find that f satisfies the condition
πf−1 < f ≤ πf+1 − 1. Furthermore, by the insertion procedure, f̄ is the first position
we like to locate, hence we may assume that f̄ < f . Clearly, µf = µf̄ . Since (µ, π) and
(µ, π̄) are standard labeled partitions, we have

πf̄ < πf̄+1 < · · · < πf , and π̄f̄ < π̄f̄+1 < · · · < π̄f .

Now we see that πf = f and π̄f̄ = f̄ . But πf̄ < πf̄+1 < · · · < πf and πf = f , we
can deduce that πf̄ ≤ f̄ . Since f is the first fixed point of π, we obtain σf̄ = πf̄ < f̄ .
From the construction of π̄, it follows that π̄f̄ ≤ σf̄ < f̄ which contradicts π̄f̄ = f̄ .
This completes the proof.

For example, given σ = (3 1 5 2 4), β = (8, 5, 5, 3, 2) and γ = (6, 5), we may recover
(µ, π) through the following steps:(

β

σ

)
=

(
8 5 5 3 2

3 1 5 2 4

)
γ1=67−→

(
8 6 5 5 3 2

4 2 1 6 3 5

)
γ2=57−→

(
8 6 5 5 5 3 2

5 2 1 4 7 3 6

)
=

(
µ

π

)
.
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