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1. Introduction

In answer to two problems recently proposed by Coker [5], we find combinatorial inter-
pretations of two identities on the Narayana polynomials and the Catalan numbers, by
using a weighted version of the well-known bijection between Dyck paths and 2-Motzkin
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paths. The Catalan numbers are defined by

Cn =
1

n+ 1

(
2n

n

)
, n ≥ 0.

The Narayana numbers are defined by

N(n, k) =
1

n

(
n

k

)(
n

k + 1

)
, n ≥ 1,

with N(0, 0) = 1 and N(0, k) = 1 for k ≥ 1. The Narayana numbers are listed as
sequence A001263 in [15], see also [8, 13, 16, 17, 22]. The Narayana polynomials are
given by

Nn(x) =
n−1∑
k=0

N(n, k)xk, n ≥ 1,

which have been studied by Bonin, Shapiro, Simion [2], Coker [5], and Sulanke [18, 19].

We will be concerned with the following two combinatorial identities due to Coker
[5]. For n ≥ 1,

n−1∑
k=0

1
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)
xk =

b(n−1)/2c∑
k=0

Ck

(
n− 1

2k

)
xk(1 + x)n−2k−1, (1.1)
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1
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k + 1

)
x2k(1 + x)2(n−1−k) =

n−1∑
k=0

Ck+1

(
n− 1

k

)
xk(1 + x)k. (1.2)

The above identities are derived by using generating functions, and Coker proposed
the problems of finding combinatorial interpretations of these two identities. Our
work was motivated by the work of Chen, Deutsch and Elizalde [4] on plane trees
and 2-Motzkin paths. However, our combinatorial proofs of (1.1) and (1.2) in Section
3 are based on the bijection between Dyck paths and 2-Motzkin paths, which was
first discovered by Delest and Viennot [6], together with the fact that the numbers of
evenly positioned up steps on Dyck paths of length 2n are distributed with respect to
the Narayana numbers as described in Lemma 3.3.

2. Coker’s Problems

The aforementioned two identities arose from the study of multiple Dyck paths. Recall
that a multiple Dyck path is a path that starts at the origin, never runs below the
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horizontal axis, and uses steps in the set {(h, 0) : h > 0} ∪ {(0, h) : h > 0}. Coker [5]
proposed the following problems:

Problem 2.1 Find a bijective proof of the identity

n∑
k=1

1

n

(
n

k

)(
n

k − 1

)
4n−k =

b(n−1)/2c∑
k=0

Ck

(
n− 1

2k

)
4k5n−2k−1. (2.1)

Problem 2.2 Find a combinatorial interpretation of the identity

n∑
k=1

1

n

(
n

k

)(
n

k − 1

)
x2k(1 + x)2n−2k = x2

n−1∑
k=0

Ck+1

(
n− 1

k

)
xk(1 + x)k. (2.2)

The first identity is a special case of (1.1). Note that identity (1.1) can be derived
from the following identity due to Simion and Ullman [14], see also [3]:

1

n

(
n

k

)(
n

k − 1

)
=

k−1∑
r=0

(
n− 1

2r

)(
n− 2r − 1

k − 1− r

)
Cr. (2.3)

The identity (1.1) has many consequences as pointed out by Coker [5]. For example,
it implies the classical identity of Touchard [20] when x = 1,

Cn =

b(n−1)/2c∑
k=0

Ck

(
n− 1

2k

)
2n−2k−1,

and implies the following identity on the little Schröder numbers sn when x = 2, see
[12, 19]:

sn =

b(n−1)/2c∑
k=0

Ck

(
n− 1

2k

)
2k3n−2k−1.

Coker’s interest in the evaluation of Nn(t) at t = 4 lies in the fact that Nn(4) equals
the number dn of multiple Dyck paths of length 2n. The first few values of dn for n ≥ 0
are as follows

1, 1, 5, 29, 185, 1257, 8925, 65445,

which form the sequenceA059231 in [15]. Coker [5] proved this fact from the well-known
interpretation of Narayana numbers as counting Dyck paths of length 2n with k + 1
peaks. The enumeration of multiple Dyck paths has also been studied independently
by Sulanke [18] and Woan [21].
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Identity (2.2) was established from the enumeration of multiple Dyck paths of length
2n with a given number of steps. Let λn,j be the number of multiple Dyck paths of
length 2n and j steps, and Pn(x) be the polynomial

Pn(x) =
2n∑
j=2

λn,j x
j.

Coker [5] derived the following formula

Pn(x) =
n∑

k=1

1

n

(
n

k

)(
n

k − 1

)
x2k(1 + x)2n−2k,

which can be restated as

Pn(x) = x2nNn((1 + x−1)2).

On the other hand, Pn(x) can be considered as a variant of the polynomialRn(x) which
was defined by Denise and Simion [7]. Then (2.2) can be deduced from the formula

Rn(x) =
n−1∑
k=0

(−1)kCk+1

(
n− 1

k

)
xk(1− x)k,

and the relation
Pn(x) = x2Rn(−x).

The combinatorial interpretations of the above identities will be given in the next
section.

3. Lattice Path Proofs

In this section, we present combinatorial interpretations of (1.1) and (1.2) by using a
weighted version of the bijection between Dyck paths and 2-Motzkin paths. In general,
for a nonnegative integer c, a c-Motzkin path is a lattice path starting at (0, 0), ending
at (n, 0), and never going below the x-axis, with possible steps (1, 1), (1, 0) and (1,−1),
where the level steps, or horizontal steps, (1, 0) can be colored by one of c colors. When
c = 1, we have a common Motzkin path and we use U , D, and H to denote an up step
(1, 1), a down step (1,−1) and a level step (1, 0), respectively. When c = 0, there are
no level steps allowed and such paths reduce to Dyck paths. When c = 2, a level step
may be colored by B or R, where B and R stand for a blue and a red step, respectively.
When c = 3, the level steps are colored with B, R and G, where G denotes the third
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color green. The length of a path is defined to be the number of steps. The notion of
2-Motzkin paths may have originated in the work of Delest and Viennot [6] and has
been studied by others, including [1, 9].

Let Dn denote the set of Dyck paths of length 2n; it is well-known that |Dn| = Cn.
Let Mn denote the set of Motzkin paths of length n, and let CMn denote the set of
2-Motzkin paths of length n. For a Dyck path P = p1p2 . . . p2n, we say that a step pi
is in an even position if i is even. Let EU(P ) denote the number of U steps in even
positions on a Dyck path P . From [6, 10, 11, 13, 16, 22] one can find that the statistic
EU is distributed by the Narayana numbers:

Lemma 3.3 For n ≥ 1, the number of Dyck paths P of length 2n with EU(P ) = k is
given by the Narayana number N(n, k).

Here we recall a well-known bijection between Dyck paths and 2-Motzkin paths,
first introduced by Delest and Viennot [6]. Define

Ψ : Dn → CMn−1,

where P = p1p2 . . . p2n ∈ Dn is mapped to Q = q1q2 . . . qn−1 ∈ CMn−1 such that

p2ip2i+1 = UU if and only if qi = U ,

= DD · · · = D,

= UD · · · = B,

= DU · · · = R.

From the above bijection we see that for n ≥ 1, the number of 2-Motzkin paths of
length n− 1 equals the Catalan number Cn.

For a 2-Motzkin path P , we use UB(P ) to denote the total number of U and B
steps on P . Then we have the following relation concerning the Narayana numbers
and the statistic UB.

Lemma 3.4 For n ≥ 1, the number of 2-Motzkin paths P of length n−1 with UB(P ) =
k is given by the Narayana number N(n, k).

Combinatorial proof of identity (1.1):

As usual, the weight of a path is the product of the weights of its steps, and the
weight of a path set is the sum of the weights of the paths. For the left-hand side of
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(1.1), let us consider the set CMn−1, where we assign the weight x to each U or B step
and the weight 1 to any other step. Then, by Lemma 3.4 the left-hand side equals the
weight of CMn−1.

For the right-hand side of (1.1), we consider the weight of the subset of CMn−1
consisting of paths having exactly k up steps. The weight of this subset equals

Ck

(
n− 1

n− 1− 2k

)
xk(1 + x)n−1−2k,

since (i) there are (1 + x)n−1−2k ways to arrange the bi-colored level steps among
themselves reflecting the weight assignment that a blue step has weight x and a red
step has weight 1, (ii) there are

(
n−1

n−1−2k

)
ways to intersperse the level steps in a Dyck

path of length 2k to form a path of CMn−1, and (iii) there are Ck such Dyck paths.
This completes the proof.

Combinatorial proof of identity (1.2):

For the left-hand side of (1.2), if we assign the weight x2 to each U or B step and
the weight (1 + x)2 to any other step, then the left-hand side equals the weight of
CMn−1.

For the right-hand side, we first let S(k) denote any subset of CMn−1 where each
path has k up steps and has the up and down steps in given positions. Since the U ’s
and D’s can be matched on any path, and since x2 · (1 + x)2 = (x(1 + x))2, there is
no change in the total weight if we reassign the weight x(1 + x) to all U and D steps.
Thus the weight of S(k) is

(x(1 + x))2k(x2 + (1 + x)2)n−1−2k

since a blue step has weight x2 and a red step has weight (1 + x)2.

Let TMn−1 denote the set of 3-Motzkin paths of length n − 1 having level steps
B, R, and G. Assign the weight x(1 + x) to each of the U , D, B, and R steps and
the weight 1 to each G step. Let S ′(k) denote any subset of TMn−1 where each path
has k up steps and has the up and down step steps in given positions. Similarly, the
weight of S ′(k) equals

(x(1 + x))2k(1 + x(1 + x) + x(1 + x))n−1−2k.

Since S(k) and S ′(k) have the same weight, it remains to show that the weight of
TMn−1 coincides with the right-hand side of (1.2). To construct a path of TMn−1
with (n−1−k) G steps, we may insert the G steps into bi-colored paths of CMk where
each U , D, B, and R step has the same weight x(1+x). Since there are

(
n−1

n−1−k

)
=
(
n−1
k

)
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ways to insert the G steps and since |CMk| = Ck+1, the weight of the subset of TMn−1
consisting of paths with (n− 1− k) G steps equals Ck+1

(
n−1
k

)
xk(1 + x)k, which is the

summand of the right-hand side of (1.2). This completes the proof.
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