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Abstract

Let p be a prime and let £ = {l1,ls,...,ls} and K = {k1,k2,...,k-} be two
subsets of {0,1,2,...,p — 1} satisfying max!; < mink;. We will prove the following
results: If F = {Fy, F, ..., F,} is a family of subsets of [n] = {1,2,...,n} such that
|F; N Fj| (mod p) € L for every pair i # j and |F;| (mod p) € K for every 1 <i < m,

then . . .
n — n — n—

< '

|JT|_< s )+<s—1)+ +<s—2r—|—1>
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If either K is a set of r consecutive integers or £ = {1,2,...,s}, then

e <";1>+<Z:D++<Zii>

We will also prove similar results which involve two families of subsets of [n]. These
results improve the existing upper bounds substantially.

1 Introduction

Throughout the paper, we use X for the set [n] = {1,2,...,n}. A family F of subsets of
X = [n] is called intersecting if every pair of distinct subsets E, F' € F have a nonempty
intersection. Let £ = {ly,ls,...,ls} be a set of s nonnegative integers. A family F of subsets
of X = [n] is called L-intersecting if |[ENF| € L for every pair of distinct subsets E, F' € F.
A family F is k-uni form if it is a collection of k-subsets of X. Thus, a k-uniform intersecting
family is L-intersecting for £ = {1,2,...,k — 1}.

In 1961, Erdés-Ko-Rado [4] proved the following classical result.

Theorem 1.1 Let n > 2k and let F be a k-uniform intersecting family of subsets of [n].
Then |F| < (Zj) with equality only when F consists of all k-subsets containing a common

element.

The following is an intersection theorem of de Bruijin and Erdés [3], which drops the
condition for the subsets to be k-uniform, but requires that the intersections to have only

one element.

Theorem 1.2 If F is a family of subsets of X satisfying |E N F| = 1 for every pair of
distinct subsets E, F € F, then |F| < n.

A year later, Bose [2] obtained the following more general intersection theorem which

requires the intersections to have exactly A elements.



Theorem 1.3 If F is a family of subsets of X satisfying |E N F| = X for every pair of
distinct subsets E, F € F, then |F| < n.

In 1975, Ray-Chaudhuri and Wilson [10] made a major progress by deriving the following

upper bound for a k-uniform L-intersecting family.

Theorem 1.4 Let L = {l,la,...,ls} be a set of s nonnegative integers. If F is a k-uniform
L-intersecting family of subsets of X, then |F| < (7).

In terms of the parameters n and s, this inequality is best possible, as shown by the set
of all s-subsets of an n-set with £ = {0,1,...,s — 1}. As to non-uniform L-intersecting

families, in 1981, Frankl and Wilson [6] obtain the following tight upper bound.

Theorem 1.5 Let L = {l1,lo,...,ls} be a set of s nonnegative integers. If F is an L-

intersecting family of subsets of X, then

ne ()2 )

This result is best possible in terms of the parameters n and s, as shown by the set of all
subsets of size at most s of an n-set. J. Qian and Ray-Chaudhuri [9] have characterized the
extremal case of this theorem.

In 1991, Alon, Babai, and Suzuki [1] considered the problem of how large a set system
with specific intersection sizes and subset sizes can be, and they obtain the following theorem

which is a generalization of both Theorems 1.4 and 1.5.

Theorem 1.6 Let L = {ly,ls,...,1s} be a set of s nonnegative integers and K = {kq, ko, ...,
k.} be a set of integers satisfying k; > s — r for every i. Let F be an L-intersecting family
of subsets of X such that |F| € K for every ' € F. Then

7l < (Z>+<Sfl)+'“+(s_:+1>'



Clearly, Theorem 1.4 is a special case of Theorem 1.6 for » = 1 and Theorem 1.5 is a
special case of Theorem 1.6 for r = n and K = X = [n], under the convention that (;) =0
if © > 0 and j < 0. Moreover, this result is also best possible, as demonstrated by the set of
all subsets of an n-set X with cardinalities at least s —r + 1 and at most s.

Note that the set £ in the above theorems may contain 0. Stronger bounds can be
obtained if we restrict £ to be a set of positive integers. To this end, the following theorem

was conjectured by Frankl and Fiiredi in 1981 [5]. It was proved by Ramanan [11] in 1997.
A different proof was given by Sankar and Vishwanathan [12].

Theorem 1.7 Let L ={1,2,...,s}. If F is an L-intersecting family of subsets of X, then

7| < (";1)+<Zj>+---+<"81>.

For a general set £ = {l1,ls,...,ls} of s positive integers, a conjecture was made by
Snevily in 1994 [13], and proved by himself in 2003 [16], which is described as in the following

theorem.

Theorem 1.8 Let L = {ly,ls,...,1s} be a set of s positive integers. If F is an L-intersecting
family of subsets of X, then

n—1 n—1 n—1
f < e .
A=) () ()
In the same paper [16], Snevily made the following two conjectures.

Conjecture 1.9 Letp be a prime and let £ = {l1,la, ..., s} and K = {ky, ks, ..., k.} be two
disjoint subsets of {0,1,2,...,p — 1}. Suppose F = {Fy, Fs,..., Fy,} is a family of subsets
of X such that |F; N F;| (mod p) € L for every pair i # j and |F;| (mod p) € K for every

1<i<m. Then
|}_|< (n) (n—l) <n—1>'
S S s—1



Conjecture 1.10 Let L = {ly,ls,...,ls} be a set of s positive integers. Suppose that
A={A,As,..., A} and B = {By, Bs, ..., By} are two collections of subsets of X such
that |A; N B;| € L fori # j and |A; N B;| =0 for every i. Then

()= () (o)

m < = + .

S S s—1

Here, we will prove the following results which either improve the existing upper bounds

substantially or confirm the above conjectures partially.

Theorem 1.11 Let p be a prime and let L ={ly,1la,...,ls} and K = {ky1, ko, ..., k.} be two
subsets of {0,1,2,...,p — 1} satisfying max l; < min k;. Suppose F = {Fy, Fs,..., Fy,}
is a family of subsets of X such that |F; N F;| (mod p) € L for every pair i # j and
|F;| (mod p) € K for every 1 <i < m. Then

\j—“]< n—1 i n—1 n n n—1
- s s—1 s—=2r+1)°

As an immediate consequence to this theorem, by taking » = 1, we have the following

which shows that Conjecture 1.9 is true when F is a k-uniform family of subsets (i.e., a

family of k-subsets ) of X = [n].

Corollary 1.12. Let p be a prime and let £ = {l},ls,...,l;} and K = {k} be two subsets
of {0,1,2,...,p — 1} satisfying max [; < k. Suppose F = {F}, Fs,..., F,,} is a family of
k-subsets of X such that |F; N F;| (mod p) € L for every pair i # j. Then

7] < (”;1> + <Zj>

Theorem 1.13. Let p be a prime and let £ = {ly,l,...,l;} and K = {k,k+1,..., k+r—1}
be two subsets of {0,1,2,...,p — 1} satisfying max [; < k. Suppose F = {Fy, F>,..., F,}



is a family of subsets of X such that |F; N Fj| (mod p) € L for every pair i # j and
|F;| (mod p) € K for every 1 < i <m. Then

7= () (0 ()

Theorem 1.14. Let p be a prime and let £ ={1,2,...,s} and K = {ky, ko, ..., k.} be two
subsets of {0,1,2,...,p—1} satisfying s < min k;. Suppose F = {F1, F», ..., F,,} is a family
of subsets of X such that |F; N Fj| (mod p) € L for every pair i # j and |F;| (mod p) € K

for every 1 <7 < m. Then

A= () () ()

Note that Theorem 1.14 gives an extension of the main theorem in [8] to its modular

version.

Theorem 1.15. Let p be a prime and £ = {ly,ls,...,ls} € {1,2,...,p — 1}. Suppose
that A = {41, Ay,..., Ay} and B = {By, Bs, ..., By} are two collections of subsets of X
such that |A; N Bj|(mod p) € L for i # j and |A; N B;| = 0 for every i. If mazl; <
min{|A;|(mod p)|1 <i < m}, then

< (" 1 n n—1 T n—1
m DY
- s s—1 s—2r+1)’
where r is the number of different set sizes in A.
Clearly, by selecting a prime p greater than n, we obtain the following immediate corollary.

Corollary 1.16. Let £ = {l,ls,...,ls} be a set of s positive integers. Suppose that
A={A1,As,..., A} and B = {By, By, ..., By} are two collections of subsets of X such
that |[A;NB;| € L fori # j and |A; N B;| = 0 for every i. If max [; < min{|A4;|:1 <i <m},

< n—1 n n—1 n n n—1
m « . .
- S s—1 s—2r+1
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where 7 is the number of different set sizes in A.

As an immediate consequence to Corollary 1.16, by taking » = 1, we have the following
which shows that Conjecture 1.10 is true when either A is k-uniform (or B is k-uniform by

symmetry).

Corollary 1.17. Let £ = {l;,ls,...,l;} be a set of s positive integers and max [; < k.
Suppose that A = {A;, Ay, ..., Ay} and B = {By, By, ..., B,,} are two collections of subsets
of X such that |4; N B;| € L for i # j and |A; N B;| = 0 for every 4. If either A is k-uniform

()= () G2
m < = + .
S S s—1
Note that this bound is sharp as shown by taking all k-subsets of [n]| for A and all
(n — k)-subsets for B.

or B is k-uniform, then

When either the set sizes (mod p) in A is a set of r consecutive integers or the set sizes
(mod p) in B is a set of r consecutive integers, we have the following theorem which gives a

better bound than Theorem 1.15.

Theorem 1.18. Let p be a prime and £ = {ly,ls,...,ls} € {1,2,...,p — 1}. Suppose
that A = {41, Ay,..., A} and B = {By, B, ..., By, } are two collections of subsets of X
such that |A; N Bj|(mod p) € L for i # j and |A; N B;| = 0 for every i. If the set sizes
(mod p) in A (or in B) is a set of r consecutive integers in {1,2,...,p — 1} and maz [; <

min{|A;|(mod p)|1 <i < m}, then

e () (00 (00)



2 Proof of Theorems 1.11, 1.13, and 1.14

We will use = (21, 2, ..., x,) to denote a vector of n variables with each variable z; taking
values 0 or 1. A polynomial p(x) in variables x;, 1 < ¢ < n, is called multilinear if the power
of each variable x; in each term is at most one. Clearly, if each variable z; takes only the
values 0 or 1, then any polynomial in variables x;, 1 < i < n, is multilinear since any positive
power of a variable z; may be replaced by one. For a subset F' of X = [n], we define the
characteristic vector of F' to be the vector u = (uy,us,...,u,) € R" with u; =1if j € F
and u; = 0 otherwise. In what follows, we will use v; to denote the characteristic vector of
F,eF.

To prove our results, we need the following lemma which is Lemma 3.6 in [1]. We say a
set H = {hq, ha,...,h} C [n] has a gap of size > d (where the h; are arranged in increasing
order) if either hy > d—1,orn—hy > d—1, or hjyy —h; > d for some i (1 <i<t—1). For
a subset I C [n], we denote x; =[]

jer Lj-

Lemma 2.1. Let p be a prime and H C {0,1,...,p — 1} be a set of integers such that the
set (H +pZ)n{0,1,...,n} has a gap > d + 1, where d > 0. Let f denote the following
polynomial in n variables
flz) = H (Z:cj - h) :
heH \j=1

Then the set of polynomials {zf||/| < d — 1} is linearly independent over F,,.

Proof of Theorem 1.11. Let p be a prime and let £ = {l3, 13, ...,ls} and K = {ky, ko, ... k. }
be two subsets of {0, 1,2, ..., p—1} satisfying max [; < min k;. Suppose F = {Fy, I, ..., F,}
is a family of subsets of X such that |F; N Fj| (mod p) € L for every pair i # j and
|F;| (mod p) € K for every 1 < i <m.



For 1 < i < m, define
p) =[]z 1),
j=1

where = (x1, %, ..., x,) with each z; taking values 0 or 1. Then each f;(z) is a multilinear
polynomial of degree at most s since any positive power of a variable may be replaced by
one. Moreover, since max l; < min k;, LN K = 0 and f;(v;) # 0(mod p) for every i < m
and f;(v;) = 0(mod p) for every pair i # j since |F; N Fj|(mod p) € L.
Let @ be the family of subsets of X = [n] with size at most s which contain n. Then
Q| =372, (";"). For each L € @, define
qr(z) = (1 — ) H ;.
JEL,j#n
Let H = {k; — 1|k; € K} UK. Then |H| < 2r. Set
n—1
ST (S n).
heH \j=1

Let W be the family of subsets of [n] with sizes at most s — 2r which do not contain n, Then

W= ("'). For each I € W, define

) H ;.
jeI
Then each A;(z) is a multilinear polynomial of degree at most s.

We now proceed to show that the polynomials in

{fi(x)]1 <i <m}U{qr(z)|L € QY U{A;(x)|] € W}

are linearly independent over F,. Suppose that we have a linear combination of these poly-

nomials that equals zero:

Z a; fi(x) + Z Brar(x) + Z purAr(z) = 0. (2.1)

LeQ Iew



Claim 1. «; = 0 for each ¢ with n € F.
Suppose, to the contrary, that iy is a subscript such that n € F,, and «a;, # 0. Since
n € F,, qi(v;,) = 0 for every L € Q). Recall that f;(v;,) = 0 for j # ip and f(v;) = 0 for every
1 < j < m. By evaluating equation (2.1) with = = v;,, we obtain that «y, f;, (v;,) = 0(mod p).
Since f;,(vi,) # 0(mod p), we have a;, = 0, a contradiction. Thus, Claim 1 holds.
Claim 2. a; = 0 for each ¢ with n &€ F;. Applying Claim 1, we get
Z a; fi(z) + Z Brar(z) + Z prAr(z) = 0. (2.2)
néF; LeQ Iew
Suppose, to the contrary, that iy is a subscript such that n € F;, and a;, # 0. Let

vi = 0;,+(0,0,...,0,0,1) (namely, making ,, = 1 in v ). Then g (v}) = 0 for every L € Q.

io
Note that fi(v;) = fi(vy,) for each i with n ¢ F; and A;(v},) = 0 foreach I € W as f(v;) = 0.
By evaluating equation (2.2) with z = v}, we obtain oy, fi,(v;)) = ay, fi,(vi,) = 0(mod p)
which implies «;, = 0, a contradiction. Thus, the claim is verified.

Claim 3. 3, =0 for each L € Q.

By Claims 1 and 2, we obtain

> Brap() + Y prAi(x) =0, (2.3)

LeQ Iew

Rewrite equation (2.3) as

[Z Brgy(z) + Y mrAi(w)

LeQ Iew

- (Z ﬁLq’L(m)) z, =0, (2.4)

LeQ
where ¢; =[] jeLjrn i Note that z, does not appear in the first parentheses of equation
(2.4). Setting x, = 0 in equation (2.4) gives us

> Buap(e) + Y mAiw) = 0

LeQ Iew

(Z ﬁmi(w)) z, = 0.

Le@

and
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By setting z,, = 1, we obtain

Z Brag(x) = 0.

Le@

It is not difficult to see that the polynomials ¢} (z), L € @, are linearly independent. There-
fore, we conclude that 3, = 0 for each L € Q.

By Claims 1-3, we now have

> prA(z) = 0. (2.5)

IeWw
Since H = {k; — 1lk; e K} UK and s — 1 <maz l; <min k;, H C{0,1,...,p—1} and H
has a gap at least s. Recall that
n—1
flz) = H (Zl‘j - h) :

heH \j=1
By applying Lemma 2.1 with d — 1 = s — 2r, we conclude that the set of polynomials
{A;(z) = 2 f(x)|I € W} is linearly independent over F,, and so p;y = 0 for each I € W in
equation (2.5).

In summary, we have shown that the polynomials in
{fi(x)]1 <@ <m}U{qr(z)|L € QY U{A;(x)[] € W}

are linearly independent. Since the set of all monomials in variables z;, 1 < i < n, of degree

at most s forms a basis for the vector space of multilinear polynomials of degree at most s,

N GPRIGHENY

=0 1=0

|]—“]< n—1 i n—1 n i n—1
- s s—1 s—2r+1)°

This completes the proof of the theorem. O

it follows that

which implies that

11



Note that if K ={k,k+1,...,k+r — 1} is a set of r consecutive integers, then the set
H = {k; — 1|k; € K} U K has size |[H| = r + 1. Thus, with a little bit modification in the

proof of Theorem 1.11, we obtain a proof for Theorem 1.13.

Proof of Theorem 1.13. The proof is almost identical to the proof of Theorem 1.11 by
selecting W to be the set of all subsets of [n] with sizes at most s —r — 1 which do not

contain n. ]
Next, we prove Theorem 1.14.

Proof of Theorem 1.14. Let pbe aprime and let £ = {1,2,...,s}and K = {ky, ko, ... k. }
be two subsets of {0, 1,2, ..., p—1} satisfying max l; < mink;. Suppose F = {Fy, F>,..., F,}
is a family of subsets of X such that |F; N F}| (mod p) € L for every pair i # j and
|F;| (mod p) € K for every 1 < i <m.

For 1 < i < m, define

s

filz) = [ (w2 = 1)),

j=1
where * = (21, 29,...,2,) with each z; taking values 0 or 1. Then f;(v;) # 0(mod p) for
every ¢ < m and f;(v;) = 0(mod p) for every pair i # j.

Let @ be the family of subsets of X = [n] with size at most s which contain n. Then
Q| =337 (""). For each L € Q, define

qr(z) = ij.
jeL
Set

f@) =TI (zn:xj—k> .

keK \j=1

Let W be the family of subsets of [n] with sizes at most s — r which do contain n, Then

12



W] =35 ("~1). For each I € W, define
Aa) = (e = Vf@) ] o
JELj#n
Then each A;(z) is a multilinear polynomial of degree at most s.

We now proceed to show that the polynomials in
{fi(x)|1 <i<m}PU{q(z)|L € QYU {A[(z)|] € W}
are linearly independent over F,. Suppose that we have a linear combination of these poly-
nomials that equals zero:

Z a;fi(x) + Z Brac(z) + Z prAg(x) = 0. (2.6)

LeQ Iew
Claim 1. a; = 0 for each ¢ with n &€ F;.
Suppose, to the contrary, that iy is a subscript such that n € F;, and «;, # 0. Since
n & Fy, qu(vi,) = 0 for every L € Q. Recall that f;(v;,) = 0 for j # ip and f(v;) = 0 for every
1 < j < m. By evaluating equation (2.6) with = = v;,, we obtain that «y, f;, (vi,) = 0(mod p).
Since fi,(vi,) # 0(mod p), we have a;, = 0, a contradiction. Thus, Claim 1 holds.
Claim 2. g, =0 for each L € (). By Claim 1, we obtain
S aufi@)+ Y Bran(x) + > prAi(x) = 0. (2.7)
nek; LeQ Iew
Suppose, to the contrary, that L is a minimal subset in Q) such that 3, # 0. Let vy, be the
characteristic vector for L. Then ¢/ (vy) = 0 for each L' € @) which is not a subset of L.
Since n € L, Aj(vy) = 0 for each I € W. For each F; with n € Fj, since |L N Fj| € L,
we have f;(vy) = 0. Thus, by evaluating equation (2.7) with x = v, we obtain 5, =0, a
contradiction. Therefore, 5, = 0 for each L € Q.
Claim 3. a; = 0 for each ¢ with n € F;. Applying Claims 1 and 2, we get

> aifilw) + Y prA(z) = 0. (2.8)

neF; Iew

13



Suppose, to the contrary, that i( is a subscript such that n € F;, and «a;, # 0. Note that
f(vi,) = 0 and so A;(vy,) = 0 for each I € W. By evaluating equation (2.8) with x = v;,,
we obtain ay, f;,(vi,) = 0(mod p) which implies «;, = 0, a contradiction. Thus, the claim is
verified.

By Claims 1-3, we now have

> urAr(z) =0. (2.9)

IeWw

Since s — 1 < max l; < min k;;, K C {0,1,...,p— 1} and K has a gap at least s. Recall
that

f) =11 (ixj—k> .

keK \j=1
Setting x,, = 0 and applying Lemma 2.1 with d — 1 = s —r — 1, we conclude that the set of
polynomials {A;(z) = xp(x, — 1) f(x)|l € W,I' =1 —{n}} is linearly independent over F,,
and so py = 0 for each I € W in equation (2.9).

In summary, we have shown that the polynomials in
{fi(x)1 <i<m}U{qr(x)|L € QF U{A[(x)[] € W}

are linearly independent. Since the set of all monomials in variables z;, 1 < i < n, of degree

at most s forms a basis for the vector space of multilinear polynomials of degree at most s,

S (T () <2 ()

=0 1=0

() () (0

This completes the proof of the theorem. O

it follows that

which implies that

14



3 Proof of Theorems 1.15 and 1.18

We first give a proof for Theorem 1.15 which is alone the same line as the proof of Theorem

1.11 but with some differences.

Proof of Theorem 1.15. Let p be a prime and £ = {ly,ls,...,ls} C {1,2,...,p — 1}.
Suppose that A = {A;, Ay, ..., Ay} and B = {By, By, ..., B,,} are two collections of subsets
of X such that |A; N B;|(mod p) € L for i # j and |A; N B;| = 0 for every i. Without loss of
generality, let 7 be the number of different set sizes in A which is no bigger than the number
of different set sizes in B. In what follows, we will use v; to denote the characteristic vector
of I for each subset I C [n].

For each B; € B, define

s

fo.(x) = (v, -z = 1)).

=1
Then each fp,(x) is a multilinear polynomi;d of degree at most s. Since |A; N B;| = 0(mod p)
for each i and |A; N Bj|(mod p) € L for i # j, fp,(va,) = [[;_1(=1;) # 0(mod p) for every
i <m and fp,(va,) = 0(mod p) for every pair i # j.
Let @ be the family of subsets of X = [n] with size at most s which contain n. Then
Q| =337 (""). For each L € Q, define
qr(z) = (ij).
jeL
Let H = {|A;| — 1(mod p)|A; € A} U {|A;|(mod p)|A; € A}. Then |H| < 2r. Set
n—1
flz) = H (Z% — h) :
heH \j=1
Let W be the family of subsets of [n] with sizes at most s — 27 which do not contain n, Then

(W] =333 ("71). For each I € W, define

Ki(z) = (H %’) f(z).

jeI

15



Then each Kj(z) is a multilinear polynomial of degree at most s.

We now proceed to show that the polynomials in
{/B,(x)|L <i<m}U{q(z)|L € QtU{K(x)|l € W}

are linearly independent over F,. Suppose that we have a linear combination of these poly-

nomials that equals zero:

ZaifBi(x) + Z Braw(z) + Z prKp(x) = 0. (3.1)

LeQ Iew
Claim 1. a; = 0 for each ¢ with n € A;.
Suppose, to the contrary, that i’ is a subscript such that n ¢ Ay and oy # 0. Since
n & Ay, qr(va,) = 0 for every L € Q. Recall that fp (va,) =0 for j # 4 and f(va,) = 0.
By evaluating equation (3.1) with = v,,, we obtain that oy fp,(va,) = 0(mod p). Since
fB,(va,) # 0(mod p), we have oy = 0, a contradiction. Thus, Claim 1 holds.
Claim 2. a; = 0 for each ¢« with n € A;. Applying Claim 1, we get
> aifs (@) + Y Bra(x) + Y ki (z) = 0. (3.2)
neA; LeQ Iew
Suppose, to the contrary, that i’ is a subscript such that n € Ay and a; # 0. Since
|A; N B;| = 0 for every i, n ¢ B; whenever n € A;. Let v;li, = va, — (0,0,...,0,0,1)
(namely, making z, = 0 in v}; ). Note that fg,(v},) = f5,(va,) for each B; with n ¢ Bj,
and K;(v),) = 0 for each I € W. By evaluating equation (3.2) with z = v}, ,, we obtain
@i fp, (Vy,) = aifp,(va,) = 0(mod p) which implies ay = 0, a contradiction. Thus, the
claim is verified.
Claim 3. 3 =0 for each L € Q).
By Claims 1 and 2, we obtain

Z Brar(z) + Z prKi(z) = 0. (3.3)

LeQ Iew

16



Note that the first sum has a factor x, while x,, does not appear in the second sum in

equation (3.3). Setting x,, = 0 in equation (3.3) gives us

Z /JJ]K](.%') =0

Iew

and so

Z Brqw(r) = 0.

Le@

It is not difficult to see that the polynomials ¢ (z), L € @, are linearly independent. There-
fore, we conclude that 3y, = 0 for each L € Q).

By Claims 1-3, we now have

> wiKi(z) =0. (3.4)

Iew
Since H = {|A;| — 1(mod p)|A; € A} U {|A4;|(mod p)|A; € A} and s < max [; < min{|A;] :
1<i<m}, HC{0,1,...,p— 1} and H has a gap at least s. Recall that

f) =1] (nz_lxj —h> :

heH \j=1
By applying Lemma 2.1 with d — 1 = s — 2r, we conclude that the set of polynomials
{K(z) = xrf(z)|I € W} is linearly independent over F,, and so pu; = 0 for each I € W in
equation (3.4).

In summary, we have shown that the polynomials in
{fo.(@)]1 <i<m}U{q(z)|L € Q}U{K(z)|] € W}

are linearly independent. Since the set of all monomials in variables x;, 1 < i < n, of degree

at most s forms a basis for the vector space of multilinear polynomials of degree at most s,

()5 0750

1=0 i=0

it follows that
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which implies that

< n—1 . n—1 n . n—1
m .
- S s—1 s—2r+1

This completes the proof of the theorem. ([l
We remark that with exactly the same proof as above, we can obtain the following

stronger result than Theorem 1.15.

Theorem 3.1. Let p be a prime and £ = {l1,l5,...,l;} € {1,2,...,p — 1}. Suppose that
A={A,As,..., Ay} and B = {By, By, ..., By, } are two collections of subsets of X such
that |A; N B;|(mod p) € L for i # j, |A; N B;|(mod p) ¢ L and n ¢ A; N B, for every i. If

maz 1; < min{|A;|(mod p)|1 <i < m}, then

< n—1 . n—1 i n n—1

m P

- s s—1 s—=2r+1)’
where 7 is the number of different set sizes in A.

Note that if the set sizes (mod p) in A (or in B) is a set of r consecutive integers in
{1,2,...,p — 1}, then H = {|A;| — 1(mod p)|A; € A} U {|A;|(mod p)|A; € A} has size
|H| = r + 1. Thus, with a little bit modification in the proof of Theorem 1.15, we obtain a

proof for Theorem 1.18.

Proof of Theorem 1.18. The proof is almost identical to the proof of Theorem 1.15 by
selecting W to be the set of all subsets of [n] with sizes at most s — r — 1 which do not

contain n. 0
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