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Abstract. We present a computer algebra approach to proving identities on Bernoulli
polynomials and Euler polynomials by using the extended Zeilberger’s algorithm given
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1. Introduction

Bernoulli polynomials and Euler polynomials play fundamental roles in various branch-
es of mathematics including combinatorics, number theory, special functions and anal-
ysis, see for example [5, 15, 22]. At first glance, the Bernoulli numbers, Euler numbers,
and the corresponding polynomials do not seem to fall in the framework of hypergeo-
metric identities. The powerful algorithm of Zeilberger [26] does not look like the right
mechanism to handle the Bernoulli and Euler numbers or polynomials.

However, as will be seen, the Cauchy contour integral representations of the Bernoul-
li numbers and Euler numbers make it possible to transform identities on these numbers
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and polynomials into identities on hypergeometric sums. In order to avoid the com-
putation of the contour integrals, it is desirable to derive recurrence relations of the
hypergeometric summands with certain parameter free properties. At the first tri-
al, one finds it quite disappointing that the recurrence relations given by Zeilberger’s
algorithm seldom have the desired parameter free properties. Nevertheless, this draw-
back can be overcome by using an extended version of Zeilberger’s algorithm. Paule
[18] first noticed that Zeilberger’s algorithm can be extended to derive mixed recur-
rence relations for a hypergeometric term F (n,m1,m2, . . . ,mr, k), where r ≥ 1 and
m1,m2, . . . ,mr are parameters. Chen, Hou and Mu [4] further extended Paule’s algo-
rithm to the case with additional parameter free properties. In this paradigm, many
identities on Bernoulli and Euler numbers and polynomials can be verified. Moreover,
some new identities can be discovered from the recurrences generated by the original
Zeilberger’s algorithm without the consideration of the parameter free properties.

2. Background

Let us recall the background on Bernoulli and Euler numbers and polynomials. Let
N = {0, 1, 2, · · · } and Z+ = {1, 2, 3 · · · }. The well-known Bernoulli numbers and Euler
numbers are defined by the generating functions

∞∑
n=0

Bn
zn

n!
=

z

ez − 1
and

∞∑
n=0

En
zn

n!
=

2ez

e2z + 1
.

By the Cauchy integral formula, we have the contour integral definitions of the Bernoulli
numbers and the Euler numbers

Bn =
n!

2πi

∮
z

ez − 1

dz

zn+1
, (2.1)

En =
n!

2πi

∮
2ez

e2z + 1

dz

zn+1
, (2.2)

where the contour encloses the origin, has radius less than 2π (to avoid the poles at
±2πi), and is traversed in a counterclockwise direction. Actually, as will be seen,
there will be no need to compute the contour integrals, and one can formally treat the
contour integrals as linear operators. The integral representation plays a crucial role
in connecting the Bernoulli numbers and Euler numbers to hypergeometric terms.

The Bernoulli numbers are also given by the following recursion

n∑
k=0

(
n+ 1

k

)
Bk = 0, n > 0, (2.3)
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with B0 = 1. The Bernoulli numbers are rational and it is well known that B2n+1 = 0
for n ≥ 1. The first few values of the Bernoulli numbers are as follows

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
.

For the Euler numbers, E2n+1 = 0 for n ≥ 0.

The Bernoulli polynomials and Euler polynomials can be defined by the generating
functions

∞∑
n=0

Bn(x)
tn

n!
=

text

et − 1
and

∞∑
n=0

En(x)
tn

n!
=

2ext

et + 1
.

Clearly Bn = Bn(0) and En = 2nEn(1
2
). The polynomials Bn(x) and En(x) obey the

following relations

Bn(x) =
n∑

k=0

(
n

k

)
xn−kBk, (2.4)

En(x) =
n∑

k=0

(
n

k

)(
x− 1

2

)n−kEk

2k
. (2.5)

We will need the following basic properties of Bn(x) and En(x). Lehmer [14] showed
that the Bernoulli polynomials satisfy the relations Bn(1) = (−1)nBn(0) and

Bn(1− x) = (−1)nBn(x). (2.6)

Similarly, the Euler polynomials satisfy the relation

En(1− x) = (−1)nEn(x). (2.7)

It is well known that the Bernoulli and Euler polynomials have the following binomial
expansions

Bn(x+ y) =
n∑

k=0

(
n

k

)
Bk(x)yn−k and En(x+ y) =

n∑
k=0

(
n

k

)
Ek(x)yn−k. (2.8)

These basic properties will be needed for the computation of initial values for the
recurrence relations derived by our algorithm.

3. The Algorithm

In this section, we present an approach to proving Bernoulli number identities by using
the extended Zeilberger’s algorithm, and we will use an example to describe the four
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steps of our algorithm. The original Zeilberger’s algorithm is devised to find recurrence
relations of the summation

∑
k F (n, k) by solving the equation

a0(n)F (n, k) + a1(n)F (n+ 1, k) + · · ·+ aJ(n)F (n+ J, k) = G(n, k + 1)−G(n, k),

where F (n, k) is a hypergeometric term in n and k, ai(n) are polynomials in n and are
k-free, G(n, k)/F (n, k) is a rational function in n and k. It is known that Zeilberger’s
algorithm can be applied to summands with parameters in order to establish multiple
index recurrence relations, for example, see [2, Section 4.3.1] and [18]. Recently, Chen,
Hou and Mu [4] have found an extension of Zeilberger’s algorithm to summations of
hypergeometric terms

∑
k F (n,m1,m2, . . . ,mr, k), where r ≥ 1 and m1,m2, . . . ,mr are

parameters. In fact, there are cases when the extended Zeilberger’s algorithm becomes
more efficient than the original form, see [4]. We will not give a rigorous description
of the extended Zeilberger’s algorithm, since it will become apparent when it is being
used.

For example, let us consider an identity of Gessel [8, Lemma 7.2].

Theorem 3.1. We have
m∑
k=0

(
m

k

)
Bn+k = (−1)m+n

n∑
k=0

(
n

k

)
Bm+k, (3.1)

where m and n are nonnegative integers.

Proof. To justify the above identity, we aim to find recurrence relations for both
sides. If they agree with each other, then the equality is established by considering the
initial values. There are three steps to compute the recurrence relations for the above
summations. We will give detailed steps for the left hand side of (3.1).

Step 1. Extract the hypergeometric sum from the Cauchy integral formula.

Denote the left hand side of (3.1) by L(n,m). By the contour integral formula for
Bn, we have

L(n,m) =
1

2πi

∮
1

ez − 1

m∑
k=0

(
m

k

)
(n+ k)!

zn+k
dz.

Denote the summand in the above integral by

C(n,m, k) =

(
m

k

)
(n+ k)!

zn+k
,

and let

S(n,m) =
m∑
k=0

C(n,m, k).
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Step 2. Construct an extended telescoping equation with a shift on the parameter
m of the summand C(n,m, k), and solve this equation by the extended Zeilberger’s
algorithm.

Set the hypergeometric term

F (n,m, k) = b0C(n,m, k) + b1C(n,m+ 1, k) + b2C(n+ 1,m, k) + b3C(n+ 1,m+ 1, k),
(3.2)

where bi’s are k-free rational functions of n and m, namely, k does not appear in bi’s.
Moreover, we require that the rational functions bi’s are independent of the variable z.

By Gosper’s algorithm, it is easy to check that C(n,m, k) = zk+1 − zk has no
hypergeometric solution for zk. Moreover, since the Bernoulli numbers are not P -
recursive, one sees that Zeilberger’s algorithm does not work in this case. Instead, we
will try to solve the equation

F (n,m, k) = G(n,m, k + 1)−G(n,m, k) (3.3)

where G(n,m, k) is a hypergeometric term. By Gosper’s algorithm, we get

r(k) =
F (n,m, k + 1)

F (n,m, k)
=
a(k)

b(k)

c(k + 1)

c(k)
, (3.4)

where

a(k) = (m− k + 1)(n+ k + 1),

b(k) = z(k + 1),

c(k) = b2k
2 + (b2n− b2m+ b0z − b3m− b3)k − b0z(m+ 1)

− b1z(m+ 1)− b2(n+ 1)(m+ 1)− b3(n+ 1)(m+ 1).

Assume that G(n,m, k) = y(k)F (n,m, k), where y(k) is an unknown rational func-
tion of k. Substituting y(k)F (n,m, k) for G(n,m, k) in (3.3) reveals that y(k) satisfies

r(k)y(k + 1)− y(k) = 1.

Substituting the factorization (3.4) into the above equation, and setting

x(k) =
y(k)c(k)

b(k − 1)
,

then Zeilberger’s algorithm reduces the problem further to that of finding polynomial
solutions (see [19, Theorem 5.2.1]) of the following equation

a(k)x(k + 1)− b(k − 1)x(k) = c(k). (3.5)
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Notice that the coefficients a(k) and b(k) are independent of the unknowns bi’s, and
c(k) is a linear combination of bi’s. One can estimate the degree of the polynomial x(k),
as in Gosper’s algorithm. In this case, x(k) is of degree 0. Assume that x(k) = a0.
Then the equation (3.5) becomes

(−a0 − b2)k2 +
(
mb2 − nb2 +mb3 − b0z − (n−m)a0 − a0z + b3

)
k

+
(
(n+ 1)(m+ 1)a0 + b0z + nb3 + b3nm+ b0zm+ b2nm+ nb2

+ b1zm+ b1z + b2 +mb2 +mb3 + b3
)

= 0.

By setting the coefficient of each power of k to zero, we get a system of linear equations
in a0 and bi’s. Note that in the solution of this system, a0 and bi’s may contain the
variable z. To prevent z from appearing in bi’s, we should go one step further to impose
that the coefficient of any positive power of z in bi’s is zero. This may also lead to
additional equations. Combining all these equations, if we can find a nonzero solution,
then take this solution to the next step. Otherwise, we may try recurrences of higher
order. In this case, we get a nonzero solution a0 = −1, b0 = 1, b1 = −1, b2 = 1, b3 = 0.
Note that in general the bi’s are polynomials in n and m.

Step 3. Compute the recurrence for L(n,m).

By Step 2, the solution of a0, b0, . . . , b3 leads to the following telescoping equation

C(n,m, k)− C(n,m+ 1, k) + C(n+ 1,m, k) = G(n,m, k + 1)−G(n,m, k), (3.6)

where

G(n,m, k) =
m!(n+ k)!

(k − 1)!(m− k + 1)!zn+k
. (3.7)

Summing the above recurrence over k from 0 to m+ 1, we obtain

S(n,m)− S(n,m+ 1) + S(n+ 1,m) = 0.

Substituting the above recurrence relation to the contour integral definition of Bn, we
find that L(n,m) satisfies

L(n,m)− L(n,m+ 1) + L(n+ 1,m) = 0.

By the same procedure, we see that the right hand side of (3.1), denoted by R(n,m),
satisfies the same recurrence relation as L(n,m), namely,

R(n,m)−R(n,m+ 1) +R(n+ 1,m) = 0.

Step 4. Verify initial values.
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By considering the parity of Bm, we see that (−1)mBm = Bm unless m = 1.
Therefore L(0, 1) = R(0, 1) = 1/2 and L(0,m) = R(0,m) = Bm for m 6= 1. This
completes the proof.

It is known that the Bernoulli numbers and Euler numbers are not P -recursive,
see [6]. Roughly speaking, this fact implies that the original Zeilberger’s algorithm
is not applicable to derive a recurrence relation of any order for summations involv-
ing Bernoulli numbers. For this reason, the extended Zeilberger’s algorithm becomes
necessary, and it also suggests that in the study of P -recursiveness of a polynomial
sequence with parameters it is likely that one can get a recurrence relation with poly-
nomial coefficients even for the sequence is not P -recursive, as long as one allows shifts
on the parameters.

4. Bernoulli Number Identities

In this section, we give several examples of proving identities on Bernoulli numbers by
using the extended Zeilberger’s algorithm.

The first example is the extension of Kaneko’s identity given by Momiyama [16]. It
was proved by using a p-adic integral over Zp. The Kaneko identity is stated as follows
[11]

n+1∑
k=0

(
n+ 1

k

)
B̃n+k = 0, (4.1)

where B̃n = (n+ 1)Bn.

While our approach does not directly apply to Kaneko’s identity because it has no
parameters, we can deal with Momiyama’s identity which reduces Kaneko’s identity
by setting m = n.

Theorem 4.1 (Momiyama’s identity).

(−1)m
m∑
k=0

(
m+ 1

k

)
(n+ k + 1)Bn+k = −(−1)n

n∑
k=0

(
n+ 1

k

)
(m+ k + 1)Bm+k, (4.2)

where m and n are integers and m+ n > 0.

Proof. Denote the left hand side and the right hand side of (4.2) by L(n,m) and
R(n,m), respectively. By the contour integral definition of the Bernoulli numbers, we
have

L(n,m) =
1

2πi

∮
1

ez − 1

(
m∑
k=0

(−1)m
(
m+ 1

k

)
(n+ k + 1)

(n+ k)!

zn+k

)
dz.
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Denote the summand in the above summation by F (n,m, k), that is,

F (n,m, k) = (−1)m
(
m+ 1

k

)
(n+ k + 1)

(n+ k)!

zn+k
.

Applying the extended Zeilberger’s algorithm to F (n,m, k) and assuming that the
output is independent of z, we obtain

F (n,m, k) + F (n,m+ 1, k) + F (n+ 1,m, k) = G(n,m, k + 1)−G(n,m, k), (4.3)

where

G(n,m, k) =
(−1)m(m+ 1)!(n+ k + 1)!

(k − 1)!(m+ 2− k)!zn+k
.

Summing the telescoping equation (4.3) over k from 0 to m, we are led to the following
recurrence relation for L(n,m)

L(n,m) + L(n,m+ 1) + L(n+ 1,m) = −(−1)m(n+m+ 2)Bn+m+1.

Similarly, we find that R(n,m) also satisfies

R(n,m) +R(n,m+ 1) +R(n+ 1,m) = (−1)n(n+m+ 2)Bn+m+1.

Considering the parity of Bn, it is easy to see that(
(−1)m + (−1)n

)
(n+m+ 2)Bn+m+1 = 0.

Therefore, both sides of Momiyama’s identity (4.2) satisfy the same recurrence relation.

To compute the initial values, setting m = 0 we get L(n, 0) = (n+ 1)Bn. It follows
from the recursion (2.3) that

n∑
k=0

(
n+ 1

k

)
Bk =

n∑
k=0

(
n

k

)
Bk +

n∑
k=0

(
n

k − 1

)
Bk = 0.

On the other hand, for n 6= 1, we have

R(n, 0) = −(−1)n
n∑

k=0

(
n+ 1

k

)
(k + 1)Bk

= −(−1)n

(
n∑

k=0

(
n+ 1

k

)
kBk +

n∑
k=0

(
n+ 1

k

)
Bk

)

= −(−1)n(n+ 1)
n∑

k=0

(
n

k − 1

)
Bk

= (−1)n(n+ 1)Bn = (n+ 1)Bn.
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It is easily checked that L(1, 0) = R(1, 0) = −1. So we deduce that L(n, 0) = R(n, 0)
for all n ≥ 0. This completes the proof.

The following identity is due to Gessel and Viennot [9].

Theorem 4.2 (Gessel-Viennot).

b(k−1)/2c∑
j=0

1

k − j

(
2k − 2j

k + 1

)(
2n+ 1

2j + 1

)
B2n−2j =

2n+ 1

2k − 2n+ 1

(
2k − 2n+ 1

k + 1

)
, n < k.

(4.4)

Proof. Denote the left hand side and the right hand side of the above identity by
L(n, k) and R(n, k), respectively. So we get

L(n, k) =
1

2πi

∮
1

ez − 1

( b(k−1)/2c∑
j=0

1

k − j

(
2k − 2j

k + 1

)(
2n+ 1

2j + 1

)
(2n− 2j)!

z2n−2j

)
dz.

Let

F (n, k, j) =
1

k − j

(
2k − 2j

k + 1

)(
2n+ 1

2j + 1

)
(2n− 2j)!

z2n−2j
.

Applying the extended Zeilberger’s algorithm, we get the following recurrence

2(n+ 1)(2n+ 3)F (n, k, j) + 2(k + 2)(2k + 3)F (n+ 1, k + 1, j)

− (k + 2)(k + 3)F (n+ 1, k + 2, j) = G(n, k, j + 1)−G(n, k, j),

where

G(n, k, j) =
4j(2n+ 3)!(2k − 2j + 1)!

(k − 2j + 1)!(2j)!(k + 1)!z2n−2j+2
.

By summing the above telescoping equation over j, we obtain the following recurrence
relation for L(n, k)

2(n+1)(2n+3)L(n, k)+2(k+2)(2k+3)L(n+1, k+1)−(k+2)(k+3)L(n+1, k+2) = 0.
(4.5)

It is easy to check that R(n, k) also satisfies the above recurrence relation. Since
n < k, we can define L(n, n) = R(n, n) = 0 for n 6= 0. It is also easy to verify the
initial conditions

L(0, k) = R(0, k) =
1

2k + 1

(
2k + 1

k + 1

)
.

This completes the proof.

It should be noted that the recurrence relation (4.5) for L(n, k) was derived by
Jacobi [10] in 1834, see Gessel and Viennot [9].

The next identity is due to Gelfand [7].
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Theorem 4.3. We have

(−1)n−1
m∑
k=1

(
m

k − 1

)
Bn+k

n+ k
+ (−1)m−1

n∑
k=1

(
n

k − 1

)
Bm+k

m+ k
=

m!n!

(m+ n+ 1)!
, (4.6)

provided that the integers m,n ≥ 0 are not both zero.

Proof. Denote the left and right hand sides of the above identity (4.6) by L(n,m) =
S(n,m) + T (n,m) and R(n,m), respectively, where S(n,m) and T (n,m) are the first
and second sums of L(n,m). Note that

S(n,m) =
1

2πi

∮
1

ez − 1

( m∑
k=1

(−1)n−1
(

m

k − 1

)
(n+ k)!

(n+ k)zn+k

)
dz,

T (n,m) =
1

2πi

∮
1

ez − 1

( n∑
k=1

(−1)m−1
(

n

k − 1

)
(m+ k)!

(m+ k)zm+k

)
dz.

Denote the summand in S(n,m) by F (n,m, k), and by the extended Zeilberger’s algo-
rithm, we obtain

F (n,m, k)− F (n,m+ 1)− F (n+ 1,m) = G(n,m, k + 1)−G(n,m, k),

where

G(n,m, k) = (−1)n−1
m!(n+ k − 1)!

(k − 2)!(m+ 2− k)!zn+k
.

Summing the above telescoping equation over k from 1 to m, we get a recurrence for
S(n,m)

S(n,m)− S(n,m+ 1)− S(n+ 1,m) = (−1)n
Bm+n+1

m+ n+ 1
.

By the same procedure, or by the symmetric property T (n,m) = S(m,n), we find that

T (n,m)− T (n,m+ 1)− T (n+ 1,m) = (−1)m
Bm+n+1

m+ n+ 1
.

With the aid of the property B2n+1 = 0 for n ≥ 1, we have

L(n,m)− L(n,m+ 1)− L(n+ 1,m) =
(
(−1)m + (−1)n

) Bm+n+1

m+ n+ 1
= 0.

It is easy to verify that R(n,m) also satisfies the above recurrence relation. To check
the initial values, we have

L(n, 0) = 0−
n∑

k=1

(
n

k − 1

)
Bk

k
= − 1

n+ 1

n∑
k=1

(
n+ 1

k

)
Bk =

1

n+ 1
= R(n, 0).
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This completes the proof.

Agoh and Dilcher [1, Theorem 2.1] obtained a convolution identity for Bernoulli
numbers. By the extended Zeilberger’s algorithm and Woodcock’s identity (4.10), we
can give a direct proof of this result which is restated in the following equivalent form.

Theorem 4.4. Let m,n, k ≥ 0 be integers, with m and k not both zero. Then

n∑
j=0

(
n

j

)
Bk+jBm+n−j = − k!m!

(m+ k + 1)!

(
n+ δ(m, k)(m+ k + 1)

)
Bm+n+k

+
m+k∑
r=0

(−1)r
Bm+k+1−r

m+ k + 1− r
(−1)k

(
k + 1

r

)(k + 1− r
k + 1

n− rm

k + 1

)
Bn+r−1

+
m+k∑
r=0

(−1)r
Bm+k+1−r

m+ k + 1− r
(−1)m

(
m+ 1

r

)(m+ 1− r
m+ 1

n− rk

m+ 1

)
Bn+r−1,

(4.7)

where δ(m, k) = 0 when m = 0 or k = 0, and δ(m, k) = 1 otherwise.

Proof. Let L(n,m, k) and R(n,m, k) denote the left hand side and the right hand side
of the above identity (4.7), respectively. Our approach leads to the recurrence relation

S(n,m+ 1, k)− S(n+ 1,m, k) + S(n,m, k + 1) = 0, (4.8)

where m 6= 0 and k 6= 0. Considering the parity of the Bernoulli numbers, we have
(−1)kBk = Bk for k 6= 1. The known convolution identity on Bernoulli numbers

n∑
k=0

(
n

k

)
BkBn−k = −nBn−1 − (n− 1)Bn, n ≥ 1 (4.9)
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yields that

L(0,m, 1) =B1Bm = −1

2
Bm,

R(0,m, 1) =− 1

m+ 1
Bm+1 +

m+1∑
r=0

(−1)r
Bm+2−r

m+ 2− r
(−1)

(
2

r

)(
− rm

2

)
Br−1

+
m+1∑
r=0

(−1)r
Bm+2−r

m+ 2− r
(−1)m

(
m+ 1

r

)(
− r

m+ 1

)
Br−1

=− 1

m+ 1
Bm+1 −

m

m+ 1
Bm+1 +BmB1 +

(−1)m

m+ 1

m∑
r=0

(−1)r
(
m+ 1

r

)
Bm+1−rBr

=−Bm+1 +BmB1 +
(−1)m

m+ 1

(m+1∑
r=0

(
m+ 1

r

)
Bm+1−rBr − 2(m+ 1)BmB1 −Bm+1

)
=−Bm+1 +BmB1 − (−1)mBm+1

=− 1

2
Bm.

This gives the proof for (4.7) when m 6= 0 and k 6= 0.

Moreover, if m = 0 or k = 0, we can simplify the identity to an equivalent form of
a known identity discovered by Woodcock [24]

1

m

m∑
k=1

(−1)k
(
m

k

)
Bm−kBn−1+k =

1

n

n∑
k=1

(−1)k
(
n

k

)
Bn−kBm−1+k. (4.10)

This completes the proof.

5. Bernoulli Polynomial Identities

In this section, we show that our approach is also valid for proving identities on Bernoul-
li polynomials. We will explain how this method works by considering an identity due
to Sun [21].

Theorem 5.1. We have

(−1)k
k∑

j=0

(
k

j

)
xk−jBl+j(y) = (−1)l

l∑
j=0

(
l

j

)
xl−jBk+j(z), (5.1)

provided that x+ y + z = 1.

12



Proof. Denote both sides of the above equation by L(k, l) and R(k, l), respectively.
We have

L(k, l) =
1

2πi

∮
1

eu − 1

(
k∑

j=0

l+j∑
h=0

(−1)k
(
k

j

)(
l + j

h

)
xk−jyl+j−h h!

uh

)
du.

Let F (k, l, h, j) denote the summand in the above integral, that is,

F (k, l, h, j) = (−1)k
(
k

j

)(
l + j

h

)
xk−jyl+j−h h!

uh
.

Applying the extended Zeilberger’s algorithm to F (k, l, h, j) with the assumption that
the output is independent of the variables u and h, we arrive at the relation

xF (k, l, h, j) +F (k+ 1, l, h, j) +F (k, l+ 1, h, j) = G(k, l, h, j+ 1)−G(k, l, h, j), (5.2)

where

G(k, l, h, j) =
xj

k − j + 1
F (k, l, h, j).

Summing both sides of (5.2) over h and j gives the recurrence relation

xL(k, l) + L(k + 1, l) + L(k, l + 1) = 0.

Similarly, it can be shown that R(k, l) satisfies the same recurrence relation. It remains
to check the initial values

L(0, l) = Bl(y),

R(0, l) = (−1)l
l∑

j=0

(
l

j

)
xl−jBj(z) = (−1)l

l∑
j=0

(
l

j

)
xl−j(B + z)j

= (−1)l(B + x+ z)l = (−1)lBl(x+ z) = (−1)lBl(1− y) = Bl(y),

as desired.

It is worth noting that the extended Zeilberger’s algorithm is indeed efficient in
deriving recurrence relations for multiple sums. The next identity is given by Wu, Sun
and Pan [25].

Theorem 5.2. We have

(−1)m
m∑
k=0

(
m+ 1

k

)
(n+ k + 1)Bn+k(x)

+ (−1)n
n∑

k=0

(
n+ 1

k

)
(m+ k + 1)Bm+k(−x)

= (−1)m(n+m+ 1)(n+m+ 2)xn+m. (5.3)

13



Proof. Denote the two sums on the left hand side of (5.3) by S(n,m) and T (n,m)
respectively. Let L(n,m) = S(n,m) + T (n,m), and let R(n,m) denote the right hand
side of (5.3). Write

S(n,m) =
1

2πi

∮
1

ez − 1

(
m∑
k=0

n+k∑
j=0

(−1)m
(
m+ 1

k

)
(n+ k + 1)

(
n+ k

j

)
xn+k−j j!

zj

)
dz.

Denote the summand in the above expression by F (n,m, k, j). Applying the extend-
ed Zeilberger’s algorithm with the assumption that the output is independent of the
parameters z and j, we obtain that

F (n,m, k, j) + F (n+ 1,m, k, j) + F (n,m+ 1, k, j) = G(n,m, k + 1, j)−G(n,m, k, j),

where

G(n,m, k, j) =
k

m− k + 1
F (n,m, k, j).

By summing the above telescoping equation over j from 0 to n + k and k from 0 to
m+ 1, we deduce that

S(n,m) + S(n+ 1,m) + S(n,m+ 1) = (−1)m+1(n+m+ 2)Bn+m+1(x). (5.4)

From the symmetry property it follows that T (n,m)(x) = S(m,n)(−x). This leads to
the following recurrence relation for T (n,m)

T (n,m) + T (n,m+ 1) + T (n+ 1,m) = (−1)n+1(n+m+ 2)Bn+m+1(−x). (5.5)

Adding (5.4) to (5.5), we derive a recurrence relation satisfied by L(n,m)

L(n,m) + L(n+ 1,m) + L(n,m+ 1)

= (−1)m+1(n+m+ 2)Bn+m+1(x) + (−1)n+1(n+m+ 2)Bn+m+1(−x)

= (−1)m+1(n+m+ 2)
n+m+1∑
k=0

(
n+m+ 1

k

)
xn+m+1−kBk

(
1 + (−1)k+1

)

= 2(−1)m+1(n+m+ 2)
n+m+1∑

k=0
k,odd

(
n+m+ 1

k

)
xn+m+1−kBk

= 2(−1)m+1(n+m+ 2)(n+m+ 1)xn+mB1

= (−1)m(n+m+ 1)(n+m+ 2)xn+m.

It is easy to see that R(n,m) satisfies the same recurrence relation as L(n,m). Based
on the well-known identity for Bernoulli polynomials

nxn−1 =
n∑

k=1

(
n

k

)
Bn−k(x) =

n−1∑
k=0

(
n

k

)
Bk(x),
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it is straightforward to verify that

L(n,−1) = 0 + (−1)n
n∑

k=0

(
n+ 1

k

)
kBk−1(−x)

= (−1)n(n+ 1)
n−1∑
k=0

(
n

k

)
Bk(−x)

= (−1)n(n+ 1)n(−x)n−1 = −n(n+ 1)xn−1 = R(n,−1).

This completes the proof.

Note that the above identity (5.3) reduces to Momiyama’s identity (4.2) by setting
x = 0. We also note that integrating the identity (5.3) over x and using the Bernoulli
number identity (3.1), one can derive the following identity of Wu, Sun and Pan [25]

(−1)m
m∑
i=0

(
m

i

)
Bn+i(x) = (−1)n

n∑
j=0

(
n

j

)
Bm+j(−x). (5.6)

The following identity is derived by Sun [21].

Theorem 5.3. We have

(−1)k
k∑

j=0

(
k

j

)
xk−j

Bl+j+1(y)

l + j + 1
+ (−1)l

l∑
j=0

(
l

j

)
xl−j

Bk+j+1(z)

k + j + 1
=

(−x)k+l+1

(k + l + 1)
(
k+l
k

) ,
(5.7)

provided that x+ y + z = 1.

Proof. Let L(k, l) and R(k, l) denote the left hand side and the right hand side of
(5.7), respectively. It can be shown that

xL(k, l) + L(k + 1, l) + L(k, l + 1) = 0.

It can also be shown that R(k, l) satisfies the same recurrence relation. To check the
initial conditions, we have

L(0, l) =
Bl+1(y)

l + 1
+ (−1)l

l∑
j=0

(
l

j

)
xl−j

Bj+1(z)

j + 1

=
Bl+1(y)

l + 1
+

(−1)l

l + 1

l∑
j=0

(
l + 1

l − j + 1

)
xjBl−j+1(z)
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=
Bl+1(y)

l + 1
+

(−1)l

l + 1

l∑
j=0

(
l + 1

j

)
xj(B + z)l−j+1

=
Bl+1(y)

l + 1
+

(−1)l

l + 1
(B + x+ z)l+1 − (−1)l

l + 1
xl+1

=
Bl+1(y)

l + 1
+

(−1)l

l + 1
Bl+1(1− y)− (−1)l

l + 1
xl+1

=
Bl+1(y)

l + 1
− 1

l + 1
Bl+1(y)− (−1)l

l + 1
xl+1 (by (2.6))

=
(−x)l+1

l + 1
= R(0, l),

as desired.

We remark that the above identity (5.7) reduces to (5.1) by viewing z = 1− x− y
as a function of y and by taking partial derivative with respect to y. It also specializes
to (5.6) when setting y → x and z = −y → −x. Moreover, differentiating both sides
of (5.7) with respect to y twice, we obtain the following identity derived by Sun [21],
which can be verified by our approach. The proof is omitted.

Theorem 5.4. Suppose that x+ y + z = 1, then

(−1)k
k∑

j=0

(
k + 1

j

)
xk−j+1(l + j + 1)Bl+j(y)

+ (−1)l
l∑

j=0

(
l + 1

j

)
xl−j+1(k + j + 1)Bk+j(z)

= (−1)k(k + l + 2)(Bk+l+1(x+ y)−Bk+l+1(y)). (5.8)

In [22, Theorem 1.1], Sun and Pan find a symmetric relation between products of
the Bernoulli polynomials.

Theorem 5.5. Let n ∈ Z+ and x+ y + z = 1. If r + s+ t = n, then

r

n∑
k=0

(−1)k
(
s

k

)(
t

n− k

)
Bn−k(x)Bk(y)

+ s

n∑
k=0

(−1)k
(
t

k

)(
r

n− k

)
Bn−k(y)Bk(z)

+ t

n∑
k=0

(−1)k
(
r

k

)(
s

n− k

)
Bn−k(z)Bk(x) = 0. (5.9)
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Proof. Denote the three sums on the left hand side of the above identity by S(n, r, s),
T (n, r, s), R(n, r, s) respectively. Since n = r + s+ t, S(n, r, s) can be expressed as( 1

2πi

)2 ∮ 1

eu − 1

∮
1

ev − 1

(∑
k,j,h

(−1)k
(
s

k

)(
n− r − s
n− k

)(
n− k
j

)(
k

h

)
j!

uj
h!

vh
rxn−k−jyk−h

)
dudv.

Our approach yields the following recurrence relation

(s+ 1)S(n, r + 1, s) + (r + 1)S(n, r, s+ 1) + (n− r − s− 1)S(n, r + 1, s+ 1) = 0.

Similarly, it can be shown that T (n, r, s) and R(n, r, s) satisfy the same recurrence
relation. Since r + s+ t = n, we obtain that

S(n, 0, s) + T (n, 0, s) +R(n, 0, s) = (−1)ns

(
n− s
n

)
Bn(z) + (n− s)

(
s

n

)
Bn(z) = 0,

and

S(n, r, 0) + T (n, r, 0) +R(n, r, 0) = r

(
n− r
n

)
Bn(x) + (n− r)(−1)n

(
r

n

)
Bn(x) = 0.

It follows that S(n, r, s) + T (n, r, s) + R(n, r, s) is identically zero. This completes
the proof for all integers r, s and t. Then by taking the left hand side of (5.9) as a
polynomial in r, s, t, it follows that (5.9) is true for all r, s, t such that r + s+ t = n.

6. Euler Number and Polynomial Identities

In this section, we show how to prove identities on Euler numbers and polynomials by
using our approach. As the first example, we consider the following identity due to
Wu, Sun and Pan [25].

Theorem 6.1. We have

(−1)m
m∑
k=0

(
m

k

)
En+k

2n+k
= (−1)n

n∑
j=0

(
n

j

)
Em+j

(
−1

2

)
, (6.1)

where m and n are nonnegative integers.

Proof. Denote the left and right hand sides of (6.1) by L(n,m) and R(n,m), respec-
tively. By the contour integral definition of the Euler numbers (2.2) and the relation
(2.5), we have

L(n,m) =
1

2πi

∮
2ez

e2z + 1

(
m∑
k=0

(−1)m
(
m

k

)
(n+ k)!

2n+kzn+k+1

)
dz,
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R(n,m) =
1

2πi

∮
2ez

e2z + 1

(
n∑

j=0

m+j∑
k=0

(−1)n
(
n

j

)(
m+ j

k

)
(−1)m+j−k k!

2kzk+1

)
dz.

Denote the summands in the above two integrands by

S(m,n, k) = (−1)m
(
m

k

)
(n+ k)!

2n+kzn+k+1
,

T (m,n, k, j) = (−1)n
(
n

j

)(
m+ j

k

)
(−1)m+j−k k!

2kzk+1
.

Applying the extended Zeilberger’s algorithm, we obtain

S(n,m, k) + S(n,m+ 1, k) + S(n+ 1,m, k) = G(n,m, k + 1)−G(n,m, k),

T (n,m, k, j) + T (n,m+ 1, k, j) + T (n+ 1,m, k, j) = H(n,m, k, j + 1)−H(n,m, k, j),

where

G(n,m, k) =
k

m+ 1− k
S(n,m, k), H(n,m, k, j) =

j

n+ 1− j
T (n,m, k, j).

Therefore, L(n,m) and R(n,m) satisfy the same recurrence

L(n,m) + L(n,m+ 1) + L(n+ 1,m) = 0.

Consequently, the identity (6.1) can be verified by computing the initial values

L(0,m) = (−1)m
m∑
k=0

(
m

k

)
Ek

2k
=

m∑
k=0

(
m

k

)
(−1)m−k

Ek

2k
= Em

(
− 1

2

)
= R(0,m),

as desired.

Wu, Sun and Pan [25] also derived an identity by substituting the Bernoulli poly-
nomials in (5.6) with Euler polynomials. This identity can be verified by our approach.
The proof is omitted.

Theorem 6.2. We have

(−1)m
m∑
k=0

(
m

k

)
En+k(x) = (−1)n

n∑
k=0

(
n

k

)
Em+k(−x). (6.2)

Note that differentiating both sides of the identity (6.2) with respect to x leads to
the following identity also due to Wu, Sun and Pan [25]:

(−1)m
m∑
k=0

(
m+ 1

k

)
(n+ k + 1)En+k(x)
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+ (−1)n
n∑

k=0

(
n+ 1

k

)
(m+ k + 1)Em+k(−x)

= (−1)m2(n+m+ 2)(xn+m+1 − En+m+1(x)). (6.3)

The following identity is derived by Sun [21].

Theorem 6.3.

(−1)k
k∑

j=0

(
k

j

)
xk−j

El+j+1(y)

l + j + 1
+ (−1)l

l∑
j=0

(
l

j

)
xl−j

Ek+j+1(z)

k + j + 1
=

(−x)k+l+1

(k + l + 1)
(
k+l
k

) ,
(6.4)

provided that x+ y + z = 1.

Proof. Denote the two sums in the left hand side of the above identity by S(k, l) and
T (k, l) respectively. Let L(k, l) = S(k, l)+T (k, l), and let R(k, l) denote the right hand
side of (6.4). By computation, we find

xS(k, l) + S(k + 1, l) + S(k, l + 1) = 0.

Since T (k, l) = S(l, k),

xT (k, l) + T (k + 1, l) + T (k, l + 1) = 0.

Therefore,
xL(k, l) + L(k + 1, l) + L(k, l + 1) = 0.

It is easy to check that R(k, l) satisfies the same recurrence relation. To check the
initial values, we have

L(0, l) =
El+1

l + 1
+ (−1)l

1

l + 1

l∑
j=0

(
l + 1

j + 1

)
xl−jEj+1(z)

=
El+1

l + 1
+ (−1)l

1

l + 1

l+1∑
j=1

(
l + 1

j

)
xl+1−jEj(z)

=
El+1

l + 1
+ (−1)l

1

l + 1

(
El+1(x+ z)− xl+1

)
=

(−x)l+1

l + 1
= R(0, l),

as desired.
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Our approach can also be applied to identities involving products of the Euler
polynomials and the Bernoulli polynomials. We take the following identity of Sun
and Pan [22, Theorem 1.1] as an example. Note that in Sun and Pan’s identity, the
variables r, s and t should be real numbers.

Theorem 6.4. Let n ∈ Z+, r + s+ t = n− 1 and x+ y + z = 1, then

n∑
k=0

(−1)k
(
r

k

)(
s

n− k

)
Bk(x)En−k(z)

− (−1)n
n∑

k=0

(−1)k
(
r

k

)(
t

n− k

)
Bk(y)En−k(z)

=
r

2

n−1∑
l=0

(−1)l
(
s

l

)(
t

n− 1− l

)
El(y)En−1−l(x). (6.5)

Proof. Denote the two sums on the left hand side of the above identity (6.5) by
S(n, r, s) and T (n, r, s) respectively. Let L(n, r, s) = S(n, r, s)− T (n, r, s), and denote
the right hand side of (6.5) by R(n, r, s). Note that

S(n, r, s) =

(
1

2πi

)2 ∮
1

eu − 1

∮
2ev

e2v + 1

(
n∑

k=0

k∑
j=0

n−k∑
h=0

(−1)k
(
r

k

)(
s

n− k

)(
k

j

)

× xk−j j!
uj

(
n− k
h

)(
z − 1

2

)n−k−h h!

2hvh+1

)
dudv.

Applying the extended Zeilberger’s algorithm, we have

(s+ 1)S(n, r + 1, s) + (r + 1)S(n, r, s+ 1) + (n− s− r − 2)S(n, r + 1, s+ 1) = 0.

It can also be shown that T (n, r, s) and R(n, r, s) satisfy the same recurrence relation.
Setting r = 0, since r + s+ t = n− 1, it follows that

L(n, 0, s) =

((
s

n

)
− (−1)n

(
n− 1− s

n

))
En(z) = 0 = R(n, 0, s).

To show that L(n, r, 0) = R(n, r, 0), it is equivalent to verify

n∑
k=0

(−1)n+k

(
r

k

)(
n− 1− r
n− k

)
Bk(y)En−k(z) = (−1)n

(
r

n

)
Bn(x)− r

2

(
n− 1− r
n− 1

)
En−1(x).

(6.6)

It is easy to see that both sides of the above identity satisfy the following recurrence
relation

(r + 1)S(n, r) + (n− 1− r)S(n, r + 1) = 0.
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Then (6.6) can be proved by checking the initial case r = 0. This completes the proof
of (6.5) for all integers r, s and t. Considering both sides of (6.5) as polynomials in
r, s, t, we deduce that (6.5) holds for all r, s, t such that r + s+ t = n− 1.

7. Deriving New Identities

Applying the original Zeilberger’s algorithm to a Bernoulli number summation, we may
obtain a recurrence relation for the summand which contains the integral variable z.
Although such a recurrence cannot be used to prove the Bernoulli number identity
itself, it may lead to a new identity. For example, let us consider Kaneko’s identity
(4.1)

n+1∑
k=0

(
n+ 1

k

)
B̃n+k = 0,

where B̃n = (n + 1)Bn. From the recurrence obtained by Zeilberger’s algorithm, we
can get the following generalization of this identity.

Theorem 7.1. We have

n+3∑
k=0

(
n+ 3

k

)
(n+ k + 3)(n+ k + 2)B̃n+k = 0. (7.1)

Proof. Denote the left hand side of Kaneko’s identity by L(n). By the contour integral
definition of the Bernoulli numbers, we have

L(n) =
n+1∑
k=0

(
n+ 1

k

)
(n+ k + 1)Bn+k

=
1

2πi

∮
1

ez − 1

(
n+1∑
k=0

(
n+ 1

k

)
(n+ k + 1)

(n+ k)!

zn+k

)
dz.

Denote the summation in the above integral by S(n). Obviously,

L(n) =
1

2πi

∮
1

ez − 1
S(n)dz = 0

for all n ≥ 0. Applying Zeilberger’s algorithm, we get

z2S(n+ 2) = 2(n+ 3)(2n+ 5)S(n+ 1) + (n+ 2)(n+ 3)S(n).
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By integrating over z on both sides of the above recurrence, it follows that

1

2πi

∮
1

ez − 1
z2S(n+ 2)dz

=
1

2πi

∮
1

ez − 1

(
n+3∑
k=0

(
n+ 3

k

)
(n+ k + 3)

(n+ k + 2)!

zn+k

)
dz

=
n+3∑
k=0

(
n+ 3

k

)
(n+ k + 3)(n+ k + 2)(n+ k + 1)Bn+k

=
n+3∑
k=0

(
n+ 3

k

)
(n+ k + 3)(n+ k + 2)B̃n+k

= 2(n+ 3)(2n+ 5)
1

2πi

∮
1

ez − 1
S(n+ 1)dz + (n+ 2)(n+ 3)

1

2πi

∮
1

ez − 1
S(n)dz = 0.

This completes the proof.

It should be mentioned that the above identity (7.1) is the special case s = r = 3
of an identity of K.-W. Chen [3]:

n+r∑
k=0

(
n+ r

k

)(
n+ r + k

s

)
Bn+r+k−s = 0, n ∈ N, r, s ∈ Z+ and s is odd. (7.2)

It can be seen that our approach also applies to the above identity (7.2).

Gessel [8, Theorem 7.3] extended Kaneko’s identity (4.1) to the following form

1

n+ 1

n+1∑
k=0

mn+1−k
(
n+ 1

k

)
B̃n+k =

m−1∑
k=1

(
(2n+ 1)k − (n+ 1)m

)
kn(k −m)n−1. (7.3)

Notice that when m = 1, the above identity becomes Kaneko’s identity. From the above
identity, we can deduce the following theorem by applying Zeilberger’s algorithm.

Theorem 7.2. We have

1

(n+ 3)

n+3∑
k=0

mn+3−k
(
n+ 3

k

)
(n+ k + 3)(n+ k + 2)B̃n+k =

m−1∑
k=1

p(n,m, k)kn(k −m)n−1,

(7.4)
where

p(n,m, k) =2(n+ 2)(2n+ 3)(2n+ 5)k3 − 2m(n+ 2)(2n+ 5)(3n+ 5)k2

+ 3m2(n+ 2)(2n2 + 7n+ 7)k −m3(n+ 1)2(n+ 2).
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Proof. Denote the left hand side and the right hand side of (7.3) by L(n,m) and
R(n,m), respectively. Then we have

L(n,m) =
1

n+ 1

n+1∑
k=0

mn+1−k
(
n+ 1

k

)
(n+ k + 1)Bn+k

=
1

2πi

∮
1

ez − 1

(
n+1∑
k=0

mn+1−k
(
n+ 1

k

)
(n+ k + 1)

n+ 1

(n+ k)!

zn+k

)
dz.

Denote the summation in the above integral by S(n,m). By Zeilberger’s algorithm, we
find that

z2S(n+ 2,m) = 2(n+ 2)(2n+ 5)S(n+ 1,m) +m2(n+ 1)(n+ 2)S(n,m). (7.5)

Integrating the left hand side of the above recurrence over z, we get

1

2πi

∮
1

ez − 1

(
z2S(n+ 2,m)

)
dz

=
1

2πi

∮
1

ez − 1

(
n+3∑
k=0

mn+3−k
(
n+ 3

k

)
(n+ k + 3)

n+ 3

(n+ 2 + k)!

zn+k

)
dz

=
1

(n+ 3)

n+3∑
k=0

mn+3−k
(
n+ 3

k

)
(n+ k + 3)(n+ k + 2)B̃n+k.

On the other hand, integrating the right hand side of (7.5) over z and substituting
L(n,m) by R(n,m), we obtain

1

2πi

∮
1

ez − 1

(
2(n+ 2)(2n+ 5)S(n+ 1,m) +m2(n+ 1)(n+ 2)S(n,m)

)
dz

= 2(n+ 2)(2n+ 5)L(n+ 1,m) +m2(n+ 1)(n+ 2)L(n,m)

= 2(n+ 2)(2n+ 5)
m−1∑
k=1

(
(2n+ 3)k − (n+ 2)m

)
kn+1(k −m)n

+m2(n+ 1)(n+ 2)
m−1∑
k=1

(
(2n+ 1)k − (n+ 1)m

)
kn(k −m)n−1

=
m−1∑
k=1

p(n,m, k)kn(k −m)n−1,

as desired.

Obviously, the above identity (7.4) reduces to (7.1) by setting m = 1.
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8. Concluding Remarks

To conclude this paper, we remark that our approach is not restricted to identities
on Bernoulli and Euler polynomials. It also applies to sequences a0, a1, a2, . . . whose
generating functions f(z) lead to contour integral representations of an with hyper-
geometric integrands. For example, the Genocchi numbers fall into this framework.
We can apply the extended Zeilberger’s algorithm to prove the following identity on
Genocchi numbers

n∑
k=0

(−1)k
(
n

k

)
Gm+k =

m∑
k=0

(−1)k
(
m

k

) n+k∑
j=0

(−1)j
(
n+ k

j

)
Gj, (8.1)

where m,n ∈ Z+. Recall that the Genocchi numbers can be defined by the generating
function

∞∑
n=1

Gn
zn

n!
=

2z

ez + 1
.

We note that there are other approaches to proving identities related to special
numbers and functions. For example, Paule and Schneider [17] used Karr’s summation
algorithm in difference fields [12] and Zeilberger’s algorithm to prove harmonic num-
ber identities and derive new identities. Kauers [13] gave an algorithm which can be
applied to verify many known identities on Stirling numbers and to discover new iden-
tities. Stan [20] applied Wegschaider’s mathematica software package MultiSum [23] to
deal with identities related to Poisson integrals. Moreover, the package MultiSum can
establish multiple index recurrence relations for the hypergeometric terms with param-
eters which can also be established by using the extended Zeilberger’s algorithm.
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