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Abstract. Recently, there has been a revival of interest in the Pfaff identity on hy-
pergeometric series because of the specialization of Simons and a generalization of
Munarini. We present combinatorial settings and interpretations of the specialization
and the generalization; one is based on free Dyck paths and free Schröder paths, and
the other relies on a correspondence of Foata and Labelle between the Meixner endo-
functions and bicolored permutations, and an extension of the technique developed by
Labelle and Yeh for the Pfaff identity. Applying the involution on weighted Schröder
paths, we derive a formula for the Narayana numbers as an alternating sum of the
Catalan numbers.
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1 Introduction

Simons [23] has established the following identity

n∑
k=0

(−1)n+k(n+ k)!(1 + x)k

(n− k)!k!2
=

n∑
k=0

(n+ k)!xk

(n− k)!k!2
. (1.1)

Chapman [2] and Prodinger [21] gave short proofs by the snake oil method and the
Cauchy integral formula. Recently, Wang and Sun [25] showed the same identity by
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an operator method. Hirschhorn [12] pointed out that the above identity is a special
case of the Pfaff identity [1, (2.3.14)] on 2F1 hypergeometric series:

2F1

(
−n, b
c

;x

)
=

(c− b)n
(c)n

2F1

(
−n, b

b+ 1− n− c ; 1− x
)
. (1.2)

Recall that a 2F1 hypergeometric series is defined by

2F1

(
a, b
c

; z

)
=
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, (1.3)

where (a)n stands for the rising factorial (a)n = a(a + 1) · · · (a + n − 1). Thus (1.1)
can be deduced from (1.2) by setting b = n+ 1, c = 1 and substituting x for −x. The
Pfaff identity has been given a combinatorial interpretation by Labelle and Yeh [14]. It
should be noted that (1.2) can be verified by using Zeilberger’s algorithm which gives
the following recurrence relation for both sides of (1.2):

(1+n)(x−1)S(n)− (x−2+xn− c+ bx−2n)S(n+1)− (1+n+ c)S(n+2) = 0. (1.4)

As to the special case (1.1) the recurrence relation becomes

(n+ 2)S(n+ 2)− (1 + 2x)(2n+ 3)S(n+ 1) + (n+ 1)S(n) = 0.

Munarini [20] derived the following generalization of Simons’ identity by using
Cauchy’s integral formula,

[tn]
(1 + yt)α

(1− xt)β
= [tn]

(1 + (y − s)t)α

(1− (x+ s)t)β
(1− st)β−α+n−1, (1.5)

which can be restated as∑
i+j=n

(
β + i− 1

i

)(
α

j

)
xiyj

=
∑

i+j+k=n

(
α

i

)(
β − α + n− 1

j

)(
−β
k

)
(y − s)i(−s)j(−(x+ s))k. (1.6)

By Zeilberger’s algorithm and the telescoping method developed by Chen, Hou and
Mu [4], we can get the same recurrence relation for the summations on the left and
right sides of the above identity:

(n+ 2)S(n+ 2)− (nx− yn+βx+x− y+ yα)S(n+ 1)−xy(β−α+n)S(n) = 0. (1.7)
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We notice that Munarini’s identity (1.6) reduces to Pfaff’s identity (1.2) by setting
x = 1, y = x − 1, s = −1, β = c − b and α = −b. The aim of this work is to present
the combinatorial structures and transformations for the above specialization and gen-
eralization of Pfaff’s identity. It turns out that the Simons identity can be formulated
in terms of free Schröder paths and free Dyck paths, whereas the Munarini identity is
related to refined structures of reluctant functions. Our combinatorial interpretation
of the Munarini identity relies on the correspondence of Foata and Labelle between
Meixner endofunctions and bicolored permutations [10] and the technique developed
by Labelle and Yeh for the Pfaff identity [14].

When we restrict our attention to the involution on ordinary Schröder paths, we
obtain an expression of the Narayana numbers as an alternating sum of the Catalan
numbers. As a consequence, it follows an identity on the alternating sum of the Catalan
numbers.

2 The Simons identity and lattice paths

In this section, we give a lattice path interpretation of the Simons identity (1.1). Sub-
stituting n− k for k on the left hand side of (1.1) gives the following equivalent form:

n∑
k=0

(−1)k
(

2n− k
k

)(
2n− 2k

n− k

)
(1 + x)n−k =

n∑
k=0

(
n

k

)(
n+ k

k

)
xk. (2.1)

A free Dyck path of semilength n is a lattice path from the origin to (2n, 0) consisting
of up steps (1, 1) and down steps (1,−1), whereas a Dyck path is a free Dyck path that
does not go below the x-axis. Free Dyck paths have been studied in [5] in connection
with the enumeration of plane trees. A free Schröder path of semilength n is a lattice
path from (0, 0) to (2n, 0) with up steps (1, 1), horizontal steps (2, 0) and down steps
(1,−1). A free Schröder path that does not go below the x-axis is called a Schröder
path. Figure 1 is an illustration of a free Dyck path and a free Schröder path.

A weighted path is a path for which every step is endowed with a weight. The
weight of a path is the product of the weights of the steps; the weight of a set of paths
means the sum of the weights of the paths. Weighted lattices have been used to give
combinatorial interpretations of combinatorial identities, see, for example [5, 6]. To
connect the Simons identity to lattice paths, we use the following rule to assign the
weight of a free Schröder path:

• A horizontal step is given the weight −1.

• A down step is given the weight 1.
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• An up step is given the weight 1 + x. Equivalently, we may say that an up step
has either weight 1 or weight x.

For free Dyck paths, the weight assignment is related to the peaks. Recall that a
peak in a free Dyck path consists of an up step immediately followed by a down step.
The weight of a free Dyck path inherits the weights of steps when the path is viewed
as a free Schröder path. However, there is a special constraint for weighted Dyck path,
namely, the up step in a peak is weighted by x. For this reason, a peak in a weighted
free Schröder path is said to have weight 1 if the up step has weight 1.

Let us use FDn and FSn to denote the sets of weighted free Dyck paths and
weighted free Schröder paths of semilength n, respectively. We now give the weighted
counting of free Dyck paths and free Schröder paths of semilength n.

Proposition 2.1. The sum of weigths of free Dyck paths of semilength n with exactly
k up steps with weight x equals

(
n
k

)(
n+k
k

)
xk.

Proof. Subject to the condition that every peak in a weighted Dyck path has weight x,
the n− k up steps with weight 1 are not followed by down steps. We proceed to count
the number of such paths by the following procedure. We use X to represent the up
steps with weight x, and use U to denote the up steps with weight 1. First, consider
the relative positions of X and U , they form a sequence of k X’s and n − k U ’s. So
there are

(
n
k

)
such sequences. Second, we need to insert the n down steps D. Keep in

mind that D cannot appear to the right of U in the sequence. So D can be inserted
either at the beginning of the sequence or after X. For example, given a sequence
UUXUXXU , the bars in |UUX|UX|X|U signifies where D can be inserted. In other
words, as far as the insertions are concerned, the three segments UUX, UX and X
can be regarded as inseparable segments. Therefore, the number of ways to insert n
D’s equals

(
n+k
k

)
. This implies the desired assertion.

Proposition 2.2. The number of free Schröder paths of semilength n with k horizontal
steps equals

(
2n−k
k

)(
2n−2k
n−k

)
.

Proof. Clearly, if there are k horizontal steps in a free Schröder path, then there are
n − k up steps and n − k down steps. First, there are

(
2n−k
k

)
ways to place the k

horizontal steps. After the positions of the horizontal steps are determined, there are(
2n−2k
n−k

)
ways to place the n − k up steps, and the down steps can be fitted into the

path in a unique way. This completes the proof.

From the above proposition, one sees that the summation on the left hand side of
(2.1) equals the sum of weights of free Schröder paths of semilength n. With the above
interpretations of two sides of the identity (2.1), the equality is a consequence of the
following involution on the set FSn\FDn.
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Figure 1: A free Dyck path and a free Schröder path
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Figure 2: The involution on FSn\FDn

Theorem 2.3. There is a sign reversing involution on FSn\FDn.

Proof. Observe that a weighted free Schröder path is in FSn\FDn if and only if it
contains either a horizontal step or a peak with weight 1. Then consider the first
occurrence of a horizontal step or a peak with weight 1, whichever comes first. If we
first encounter a horizontal step, then change it to a peak with weight 1. If we first
encounter a peak with weight 1, then change it to a horizontal step. Clearly, the above
operation gives a sign reversing involution on FSn\FDn.

Figure 2 is an illustration of the involution. Thus, we are led to a combinatorial
interpretation of the identity (2.1).

By using the above involution applied to Schröder paths and Dyck paths, we may
derive an identity on the Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
,

and the Narayana numbers

Nn,k =
1

n

(
n

k

)(
n

k − 1

)
.

Theorem 2.4. For n ≥ 1, we have

n∑
k=0

Nn,ky
k =

n∑
k=0

(
2n− k
k

)
Cn−k(y − 1)k, (2.2)

n∑
k=0

Nn,ky
2k(y + 1)2(n−k)

=
n∑
k=0

(−1)k
(

2n− k
k

)
Cn−k(1 + 2y)k(y + 1)2(n−k). (2.3)
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Proof. It is well known that the set of Dyck paths of semilength n with k peaks is
counted by Nn,k, see, for example, [8]. Note that the number of Schröder paths of
semilength n with n− k horizontal steps, k up steps and k down steps equals

(
n+k
n−k

)
Ck

because there are
(
n+k
n−k

)
choices to place the (n − k) horizontal steps relative to the

positions of the up steps and down steps. Now the remaining 2k steps simply form a
Dyck path of semilength k. Inheriting the weights from the free Dyck paths and free
Schröder paths and applying the above involution to Dyck paths and Schröder paths,
it follows that

n∑
k=0

Nn,kx
k(x+ 1)n−k =

n∑
k=0

(−1)n−k
(
n+ k

n− k

)
Ck(x+ 1)k, (2.4)

or equivalently,

n∑
k=0

Nn,kx
k(x+ 1)n−k =

n∑
k=0

(−1)k
(

2n− k
k

)
Cn−k(x+ 1)n−k. (2.5)

Setting x = y/(1− y) or x = y2/(1 + 2y) in (2.5), we obtain (2.2) or (2.3).

We notice that a general version of (2.2) is derived by Mansour and Sun [18, Ex-
ample 2.13]. From (2.2) it follows that the Narayana number Nn,k can be expressed as
an alternating sum of the Catalan numbers:

Nn,k =
n∑
i=0

(−1)i−k
(

2n− i
i

)(
i

k

)
Cn−i. (2.6)

Setting k = 0, since Nn,0 = 0 it follows that

n∑
i=0

(−1)i
(

2n− i
i

)
Cn−i = 0. (2.7)

For comparison, let us recall the following two identities of Coker [6, 7]:

n−1∑
k=0

1

n

(
n

k

)(
n

k + 1

)
yk =

bn−1
2
c∑

k=0

(
n− 1

2k

)
Cky

k(1 + y)n−2k−1, (2.8)

n−1∑
k=0

1

n

(
n

k

)(
n

k + 1

)
y2k(1 + y)2(n−1−k) =

n−1∑
k=0

(
n− 1

k

)
Ck+1y

k(1 + y)k. (2.9)

We remark that the identity (2.8) is the same as an identity of Simion and Ull-
man [22, Corollary 3.2]. A bijective proof of (2.8) is given in [3]. Combinatorial inter-
pretations of both (2.8) and (2.9) in terms of weighted 2-Motzkin paths are obtained
in [6].
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3 The Munarini identity and reluctant functions

The purpose of this section is to present a combinatorial interpretation of the Munarini
identity (1.6). We follow the approach of Foata-Labelle [10] and Labelle-Yeh [14,16] to
combinatorial interpretations of hypergeometric series and special function identities
including the Pfaff identity. Since we will deal with an extension of the Pfaff identity, we
need to introduce the notions of reluctant bi-permutation and partisan permutations.
The reluctant bi-permutations are a generalization of the Meixner endofunctions intro-
duced by Foata and Labelle [10]. We will show that the Munarini identity follows from
the correspondence between reluctant bi-permutations and the partisan permutations.

As mentioned in the previous section (1.6) is a generalization of the Pfaff identity, it
is natural to expect that the combinatorial interpretation of the Pfaff identity as given
by Labelle and Yeh [14] can be extended to the Munarini identity. We find that this
is indeed the case. In order to fit our combinatorial setting, it is necessary to rewrite
(1.6) in the following form after substituting −α by α and −y by y:∑

i+j=n

(
n

i, j

)
(β)i(α)jx

iyj

=
∑

i+j+k=n

(
n

i, j, k

)
(α)i(β + α + i+ k)j(β)k(y + s)i(−s)j(x+ s)k. (3.1)

A basic ingredient of the combinatorial settings for hypergeometric identities is the
interpretation of the rising factorial (x)n = x(x + 1) · · · (x + n − 1), or, in general, of
(x + k)n. It is well known that (x)n can be expanded in terms of the signless Stirling
numbers of the first kind. Note that (x)n can also be interpreted as the number of
dispositions from [n] = {1, 2, . . . , n} to a set X with x elements, see [13]. Let us recall
that the fiber of a function f from [n] to X is defined as a partition of [n] such that
i and j are in the same block if and only if i and j have the same image. Then a
disposition from [n] to X can be considered as a function f from [n] to X whose fiber
is endowed with the structure that each block is linearly ordered. Intuitively speaking,
a disposition can be viewed as a configuration of n people queuing at the x windows
of a box office.

In general, the rising factorial (x+ j)i can be explained as the number of reluctant
functions from A to B, where |A| = i and |B| = j, introduced by Mullin and Rota in
their theory of sequences of polynomials of binomial type [19]. A reluctant function
f from A to B, where A and B are two disjoint finite sets, is defined as an injective
map from A to A ∪ B. The functional digraph of f is a digraph on A ∪ B with arcs
(k, f(k)) for k ∈ A. The weight of f is defined as ak, where k is the number of cycles
in the functional digraph of f .
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Figure 3: The digraph for a reluctant function

Evidently, the functional digraph of any reluctant function f has a unique decompo-
sition into disjoint cycles on elements in A and directed paths ending with an element
in B. The ending points in B are called terminals. Now we proceed to give a canonical
cycle representation of a reluctant function.

Let us recall the canonical cycle representation of a permutation, see, Stanley [24,
page 17]. Suppose that π is a permutation on [n] with k cycles C1, C2, . . . , Ck. We may
always write a cycle C = (i1i2 · · · ir) in a form that i1 is the minimum element of C.
Moreover, we may arrange the cycles C1, C2, . . . , Ck in such a way that their minimum
elements are in decreasing order. For example π = (6)(38)(274)(15) is a canonical
cycle representation. Note that the permutation π can be recovered given the sequence
obtained from the canonical cycle representation by removing the parentheses.

In fact, we can extend the notion of the canonical cycle representation of a permu-
tation to a reluctant function. Assume f is a reluctant function from A to B and its
functional digraph can be decomposed into k cycles C1, C2, . . . , Ck, and s directed paths
P1, P2, . . . , Ps. We first write down the cycles in canonical cycle representation. Then
each path Pi is written as (i1, i2, · · · , ir) with i1 ∈ B and f(it) = it−1 for 2 ≤ t ≤ r,
and P1, P2, . . . , Ps are arranged in such a way that their first elements are increasing.

For example, the reluctant function as given in Figure 3, whereA = {1, 2, 3, 4, 5, 6, 7}
and B = {8, 9}, the canonical cycle representation is

(4)(265)(87)(931).

The reluctant function f can be recovered from the sequence 426587931 according to
the elements in B as printed in boldface and the left-to-right minimum elements in A
before the first appearance of an element in B.

The following proposition is well known, see, for example, [9, 11, 15, 17]. For com-
pleteness, we present a proof based on the notion of the canonical cycle representation
of reluctant function.

Proposition 3.1. Let A and B be two disjoint subsets of [n], and let |A| = i and
|B| = j. Then the sum of weights of reluctant functions from A to B equals (a+ j)i.

Proof. There is no restriction in supposing that A = {1, 2, · · · , i} and B = {i + 1, i +
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2, · · · , i + j}. The weight of a reluctant function f from A to B can be visualized as
assigning a weight a to each cycle. In the above notation of linear representation of
reluctant function f , we see that the weight f is given by ak, where k is the number of
the left-to-right minimum elements in A before the first appearance of the elements in
B, equivalently, the left-to-right minimum elements in A before i+ 1.

On the other hand, the linear representation of f can be generated by the following
insertion procedure. Initially, we have the sequence i+1, i+2, · · · , i+j on B. Then we
successively insert the elements of {1, 2, · · · , i}. Let us first consider how the element
1 can be inserted.

If 1 is inserted at the beginning of the sequence i + 1, i + 2, · · · , i + j, we obtain
a sequence beginning with 1 for which 1 forms a new cycle contributing weight a.
Otherwise, there are j possibilities for the insertion of 1 after some element in the
sequence i+ 1, i+ 2, · · · , i+ j. In any case, 1 always joins a path with a terminal in B.
Hence the total contribution to the weight sums to j, and we have the factor (a+ j).

In general, suppose that 1, 2, . . . , k − 1 have already been inserted. We proceed to
insert k in an analogous way as we did for the insert of 1. If k is placed at the beginning
of the sequence, then k is surely left-to-right minimum, in which case it induces a new
cycle with weight a. Otherwise, there are j + k − 1 possibilities for the insertion of k
after some element in the given sequence. So k will join a cycle or a path, and in either
case this insertion does not change the weight of the resulting digraph. Therefore, the
total contribution is j+k−1 and we are led to the factor (a+j+k−1). This completes
the proof.

Setting B = ∅ in Proposition 3.1, a reluctant function from A to B reduces to a
permutation of A, and the proposition says that the rising factorial (x)n equals the
generating function of permutations on [n] with respect to the number of cycles.

We now present the combinatorial structures that are needed in our bijection of the
Munarini identity.

1. Suppose (A1, A2) is a composition of [n], namely, A1 ∩A2 = ∅ and A1 ∪A2 = [n],
A1 and A2 are allowed to be empty. A pair of permutations (π1, π2) on A1 and
A2 is called a bi-permutation, denoted (A1, A2; π1, π2).

2. Suppose (A1, A2, A3) is a composition of [n], defined in the same manner as
for the compositions of two components, and suppose (A1, A2; π1, π2) is a bi-
permutation. If f is a reluctant function from A3 to A1 ∪ A2 then we say that
(A1, A2, A3; π1, π2; f) is a reluctant bi-permutation.

3. Given a 3-coloring of [n], say by the three colors red, black and white, a partisan
permutation is defined as a permutation on [n] such that a red element and a
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black element cannot appear simultaneously in the same cycle. We may regard
the red color and black color as banners of two rivalry parties, and consider the
white color as a sign for those who are independent. For example,

(8, 7, 9)(2, 5,4)(10, 1)(3)(11, 12)(6)

is a partisan permutation, where we represent the red elements as underlined and
the black elements in boldface.

To construct the desired combinatorial transformation, we need an extension of
Foata’s bijection [10,16] between ‘Meixner endofunctions’ and ‘bicolored permutations’.
Recall that a Meixner endofunction on a finite set S is represented by (A,B; f), where
(A,B) is a composition of S and f is a map from S to S such that the restriction of
f on A is injective and the restriction of f on B is a permutation on B. A bicolored
permutation on a finite set S is represented by (A,B;σ), where (A,B) is a composition
of S, and σ is a permutation on S. Note that a composition (A,B) of a set S can be
considered as a 2-coloring of S. Foata’s bijection can be described as follows.

Proposition 3.2. There is a bijection between the set of Meixner endofunctions on [n]
and the set of bicolored permutations on [n].

The following correspondence is essentially Foata’s bijection applied to both red
cycles and black cycles. Notice that a reluctant bi-permutation (A1, A2, A3; π1, π2; f)
becomes a Meixner endofunction when A2 = ∅.

Proposition 3.3. There is a bijection Φ between the set of reluctant bi-permutations
on [n] and the set of partisan permutations on [n].

Proof. Given a reluctant bi-permutation (A1, A2, A3; π1, π2; f), we color the elements
in A1, A2 and A3 red, black and white respectively. Consider the cycle decomposition
of π1 and π2 on A1 and A2. We may view a reluctant bi-permutation as a union of
disjoint cycles on A3 and some directed paths on A3 attached to elements in A1 ∪ A2

together with some permutations on A1 and A2. Since f is injective, two directed paths
on A3 cannot be incident to the same element in A1 ∪ A2.

The bijection will be concerned with only the components consisting with cycles on
a subset of A1 or A2 attached with some paths on A3. Let C be such a cycle, and P a
directed path attached to C. Assume that x is the terminal element of P that is on C.
Let y be the element pointing to x on C. Then we can break the arc from y to x, and
make y point to the initial element of P . From the color of the elements on the path
P , the above operation is reversible. Taking all the paths attached to C into account,
we obtain the desired bijection.
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Figure 4: The bijection Φ

For example, as illustrated in Figure 4, the reluctant bi-permutation

({1, 3, 6}, ∅, {2, 4, 5}; (1, 6, 3), ∅; (1, 4)(6, 5, 2)),

corresponds to the partisan permutation (3, 4, 1, 2, 5, 6), where red elements are under-
lined.

We are now ready to give a combinatorial proof of the identity (3.1) via the road
map:

reluctant bi-permutations ⇐⇒ partisan permutations =⇒ bi-permutations.

The ⇐⇒ stands for a weight preserving bijection. The =⇒ indicates the equality for
the sums of weights, which will be established by an easy binomial summation. Here
we note that the equality indicated by =⇒ can be demonstrated combinatorially by a
trivial involution, and such formality will be omitted.

We now give the definitions of weights for reluctant bi-permutations and bi-permutations.
The weight of a reluctant bi-permutation (A1, A2, A3; π1, π2; f) on [n] is defined as fol-
lows. An element in A1, A2, A3 is assigned the weight

y + s, x+ s, −s,

respectively. The weight of a cycle in π1, π2 and f is given by

α, β, β + α,

respectively. Then the weight of a reluctant bi-permutation is the product of the
weights of the elements and the weights of the cycles.

We define the weight of a bi-permutation (A,B; π1, π2). The weight of an element
in A is given by x, the weight of an element in B is given by y, the weight of a cycle
in π1 is given by β and the weight of a cycle in π2 is given by α. Then the weight of
a bi-permutation is the product of the weights of the elements and the weights of the
cycles. We will see that equation (3.1) expresses the fact that the sum of weights of
reluctant bi-permutations on [n] equals the sum of weights of bi-permutations on [n].
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Proof. By the definition of the weight of a bi-permutation, it is easily seen that the
sum of weights over bi-permutations on [n] equals the the summation on the left hand
side of (3.1): ∑

i+j=n

(
n

i, j

)
xiyj(β)i(α)j. (3.2)

On the other hand, a bi-permutation can be viewed as a permutation on [n] for
which each cycle is colored black or white. Hence (3.2) can be expressed in terms
of cycle decompositions of permutations on [n], where the weight of a cycle C with
cardinality |C| is given by

x|C|β + y|C|α. (3.3)

We proceed to show that the right hand side of (3.1) can also be reduced to a
summation over permutations on [n] with each cycle having the above weight (3.3).
First, from Proposition 3.1 we see that the sum of weights of reluctant bi-permutations
(A1, A2, A3; π1, π2; f) on [n] equals the summation on the right hand side of (3.1):∑

i+j+k=n

(
n

i, j, k

)
(α)i(β + α + i+ k)j(β)k(y + s)i(−s)j(x+ s)k. (3.4)

Applying the bijection Φ in Proposition 3.3 between reluctant bi-permutations on
[n] and the partisan permutations on [n], (3.1) can be rewritten as a summation of
weights of partisan permutations on [n] with the following weight assignments. A red,
black, or white element is given the weight

y + s, x+ s, −s

respectively. A cycle containing at least one red element is given the weight α, a cycle
containing at least one black element is given the weight β, and a cycle consisting of
only white elements is given the weight β + α.

On the other hand, the total weight of the partisan permutations on [n] can be
computed based on the cycle decompositions of permutations on [n]. Given a permu-
tation π on [n] and a cycle C in π with |C| = m, if C is a cycle consisting of white
elements, the weight contribution is

(−s)m(β + α); (3.5)

if C is used to form a cycle containing at least one red element, the total weight
contribution equals

m∑
i=1

(
m

i

)
(y + s)i(−s)m−iα = ymα− (−s)mα; (3.6)

12



and if C is used to a cycle containing a black element, the total weight contribution
equals

m∑
i=1

(
m

i

)
(x+ s)i(−s)m−iβ = xmβ − (−s)mβ. (3.7)

Summing up (3.5), (3.6) and (3.7), we get the total weight contribution of the cycle C
to the summation of weights of partisan permutations on [n]:

xmβ + ymα. (3.8)

Noting that the equalities (3.6) and (3.7) can be easily justified by an involutional
argument. Comparing (3.3) and (3.8) completes the combinatorial proof of (3.1).
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