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In this paper we introduce a combinatorial framework which p ro-
vides an interpretation of RNA pseudoknot structures as sam -
pling paths of a Markov process. Our results give insight int o
the cross-serial interactions of RNA pseudoknot structure s, i.e.
their crossings. They facilitate a variety of applications ranging
from the energy based sampling of pseudoknot structures as w ell
as the ab initio folding via hidden Markov models. Our main re-
sult is an algorithm which generates RNA pseudoknot structu res
with uniform probability in linear time. This algorithm ser ves as
a stepping stone to sequence specific as well as energy based
transition probabilities. The approach employs a correspo ndence
between pseudoknotstructures, parametrized in terms of th e max-
imal number of mutually crossing arcs and certain tableau se -
quences. The latter can be viewed as lattice paths, whose gen -
erating functions are shown to be D-finite. The main idea of this
paper is to view each such lattice path as a sampling path of a
stochastic process and to make use of D-finiteness for the effi-
cient computation of the corresponding transition probabi lities.

RNA pseudoknot structure | k-noncrossing structure | uniform generation |
tableau | lattice path

Abbreviations:

Pseudoknots have long been known as important structural ele-
ments [34], see Fig. 1. These cross-serial interactions between

RNA nucleotides are functionally important in tRNAs, RNaseP [20],
telomerase RNA [28], and ribosomal RNAs [18]. Pseudoknots in
plant virus RNAs mimic tRNA structures, andin vitro selection ex-
periments have produced pseudoknotted RNA families that bind to the
HIV-1 reverse transcriptase [31]. Import general mechanisms, such
as ribosomal frame shifting, are dependent upon pseudoknots [2].
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Fig. 1. The Hepatitis Delta Virus (HDV)-pseudoknot structure represented as
a planar graph and as a diagram: we display the structure as folded by the
ab initio folding algorithmcross [10] (left) and the diagram representation
(right).

Despite their biological importance, pseudoknots are typically ex-
cluded from large-scale computational studies. Although the problem
has attracted considerable attention in the last decade, and several soft-
ware tools [26] have become available, the required resources have
remained prohibitive for applications beyond individual molecules.
Lyngsoet al. [22] have shown that the prediction of general RNA
pseudoknot structures is NP-complete. In the literature, oftentimes
some variant of the dynamic programming (DP) paradigm is employed
[26]. This DP-method generates certain subclasses of pseudoknots.

We will discuss below that the DP-paradigm is ideally suitedfor an
inductive, or context-free, structure-class. However, due to the cross-
serial bonds RNA pseudoknot structures cannot be recursively gen-
erated. Accordingly, wea priori know that the DP-paradigm is only
of limited applicability for RNA pseudoknot structures. Inaddition,
DP-based approaches are not even particularly time efficient, point in
case is [26] exhibiting a time complexity ofO(n6). The algorithmic
difficulties are confounded by the fact that the thermodynamics of
pseudoknots is poorly understood; we suspect that this is atleast in
part the case because of the well-known difficulties in making use of
such information even if it were available.

Within the DP-paradigm, it is unlikely that substantial improve-
ments can still be made. Here, we introduce the mathematicalframe-
work for a completely different view on pseudoknotted structures that
is not based on recursive decomposition, i.e., parsing w.r.t. to (some
extension of) context-free grammars (CFG). The approach that we
take here is based on the observation that pseudoknotted RNAstruc-
tures are in a natural way related to well-understood combinatorial
objects. The key algorithmic innovation is a Markov processthat ef-
ficiently generates pseudoknotted structures with a uniform measure.
Biophysical realism can be added by modifying the transition rates of
this fundamental Markov process.

In order to put our approach into context, let us give a retrospective
overview. Three decades ago Watermanet al. [33, 24, 13] analyzed
RNA secondary structures. Secondary structures are coarsegrained
RNA contact structures, see Fig. 2.
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Fig. 2. The phenylalanine tRNA secondary structure represented asa pla-
nar graph (top),2-noncrossing diagram (middle) and Motzkin-path (bottom),
where up/down/horizontal-steps correspond to start/end/unpaired vertices, re-
spectively.

They can be represented as diagrams, i.e. labeled graphs over the
vertex set[n] = {1, . . . , n} with vertex degrees≤ 1, represented by
drawing its vertices on a horizontal line and its arcs(i, j) (i < j), in
the upper half-plane, see Fig. 1 and Fig. 3. Here, vertices and arcs
correspond to the nucleotidesA, G, U andC and Watson-Crick (A-U,
G-C) and (U-G) base pairs, respectively.

In a diagram two arcs(i1, j1) and(i2, j2) are called crossing if
i1 < i2 < j1 < j2 holds. Accordingly, ak-crossing is a sequence
of arcs(i1, j1), . . . , (ik, jk) such thati1 < i2 < · · · < ik < j1 <
j2 < · · · < jk, Fig. 3.
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Fig. 3. k-noncrossing diagrams: a noncrossing (left) and a4-noncrossing dia-
gram (right) containing the three mutually crossing arcs(1, 7), (4, 9), (5, 11).

We call diagrams containing at most(k − 1)-crossings,k-
noncrossing diagrams (k-noncrossing partial matchings). RNA sec-
ondary structures have no crossings in their diagram representation,
see Fig. 3 (l.h.s.) and Fig. 2, and are therefore2-noncrossing diagrams.

The efficient minimum free energy (mfe) folding of secondary
structures is a consequence of the following relation of thenumbers
of RNA secondary structures overn nucleotides,S2(n), [33]

S2(n) = S2(n− 1) +

n−3
X

j=0

S2(n− 2− j)S2(j), [1]

whereS2(n) = 1 for0 ≤ n ≤ 2. Accordingly, RNA secondary struc-
tures satisfy a constructive recursion. As mentioned above, this rela-
tion suggests the DP-recursions used for the polynomial time folding
of secondary structures [24] and has therefore profound algorithmic
implications. The uniform generation of RNA secondary structures is
wellknown [32] and can be derived in linear time, using the framework
of Flajoletet al. [4].

k-noncrossing RNA structures [15, 16], arek-noncrossing dia-
grams without arcs of the form(i, i + 1) and represent a natural gen-

eralization. The notionk-noncrossing stipulates that the complexity
of a pseudoknot is related to the maximal number of mutually cross-
ing bonds. Indeed, most natural RNA pseudoknots are3-noncrossing
[9]. Due to the cross-serial interactions, the numbers of pseudoknot
structures do not satisfy a recursion of the type of eq. (1), rendering
theab initio folding into minimum free energy configurations [10, 22]
as well as the derivation of detailed statistical properties, a nontrivial
task. Indeed, in order to derive statistical properties, the entire space of
structures has to be exhaustively generated, which is only possible for
small sequence lengths. Only a few statistical results, derived using
singularity analysis of the bivariate generating functions are known
[17].

There exists no general framework for the uniform generation of
elements of a non-inductive combinatorial class. However,in the con-
text of graphs the subject of uniform generation via Markov-processes
has been studied. Work on the uniform generation of specific graphs in
the context of parallel random access machine (PRAM) can be found
in [39] and Jerrumet al. [11, 12] studied approximation algorithms
in the context of rapidly mixing Markov-chains [1]. We also refer to
the paper of Wilf [35] as well as the book [36].

Our approach is as follows: we translatek-noncrossing diagrams
into specific lattice walks, see Fig. 4
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Fig. 4. Translating diagrams into sequences of “shapes”. We display all 3-
noncrossing diagrams over four vertices and draw their corresponding sequences
of shapes underneath.

and view the latter as sampling paths of a stochastic process, see
Fig. 5:
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Fig. 5. Uniform generation: the stochastic process over shapes (top), a sam-
pling path (middle) and its pseudoknot structure (bottom).The transition
probabilities are computed in Theorem 2 as a pre-processingstep.
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The key observation is that the generating function of thesewalks
is D-finite or equivalently,P -recursive [29]. This means, there exists
a finite recurrence relation with polynomial coefficients, see Corol-
lary 1. Consequently, thenumbersof these walks can be derived in
linear time and these allow us to compute the transition probabili-
ties of the process displayed in Fig. 5. The implication is profound:
the transition probabilities can be derived as a pre-processing step
in polynomial time after which a pseudoknot structure can begener-
ated uniformly in linear time. Indeed, each structure is generated by
the stochastic process having exactlyn steps each of which requiring
constant time.

From structures to lattice paths and back
In this section we translate RNA pseudoknot structures intolattice
paths. For this purpose we introduce shapes,∗-tableaux and the
Robinson-Shensted-Knuth (RSK) algorithm [30].

A shape is a collection of squares arranged in left-justifiedrows
with weakly decreasing numberof boxes in each row. A Young tableau
is a filling of these squares by numbers which is weakly decreasing
in each row and strictly decreasing in each column. A∗-tableaux of
shapeλn is a sequence of shapes∅ = λ0, λ1, . . . , λn such that for
1 ≤ i ≤ n, λi is obtained fromλi−1 by either adding/removing one
square or doing nothing (hesitating step), see Fig. 6.
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Fig. 6. ∗-tablaux with (top) and without (bottom) hesitating steps.The hes-
itation step in the top is at(6, 7), In Fig. 9 we show how the top∗-tableaux
induces a uniquek-noncrossing structure.

The RSK-algorithm is a procedure which row-inserts elements
into a Young tableau,T . Suppose we want to insertk into T . LetTi,j

denote the element in theith row andjth column. Letj be the largest
integer such thatT1,j−1 ≤ k. (If T1,1 > k, thenj = 1.) If T1,j does
not exist, then simply addk at the end of the first row. Otherwise, if
T1,j exists, then replaceT1,j by k. Next insertT1,j into the second
row following the above procedure and continue until an element is
inserted at the end of a row, see Fig. 7.
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Fig. 7. The RSK-algorithm and its inverse. First we extract via the inverse
RSK and then reinsert using RKS, recovering the original Young tableau. Be-
low it is the origins of arcs that are RSK inserted and extractions appear when
squares are removed.

The RSK-algorithm has also an inverse. Suppose we are given
two shapesλi ( λi−1, which differ by exactly one square. LetTi−1

andTi be Young tableaux of shapeλi−1 andλi, respectively. Then
there exists a uniquej contained inTi−1 and a unique tableauTi such
thatTi−1 is obtained fromTi by insertingj using the RSK-algorithm,
see Fig. 7.

We are now ready to describe the correspondence between dia-
grams and∗-tableaux due to [3].

From k-noncrossing structures to ∗-tableaux: starting with the
empty shape, consider the sequence(n, n− 1, . . . , 1) and do the fol-
lowing:
• if j is the endpoint of an arc(i, j), then RSK-inserti
• if j is the startpoint of an arc(j, s), then remove the square contain-
ing j.
• if j is an isolated point, then do nothing, see Fig. 8.
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Fig. 8. From k-noncrosssing diagrams to ∗-tableaux using RSK insertion of the
origins of arcs and removal of squares at the termini. Here we generate the
∗-tableaux in the top of Fig. 6.

From ∗-tableaux to k-noncrossing structures: Given a ∗-
tableaux of empty shape,(∅, λ1, . . . , λn−1, ∅), readingλi \ λi−1

from left to right, at stepi, we do the following:
• for a+�-step we inserti into the new square
• for a ∅-step we do nothing
• fora−�-step we extract the unique entry,j(i), of the tableauxT i−1,
which via RSK-insertion intoT i recovers it (Fig. 7). The latter ex-
tractions, see Fig. 7, generate the arc-set{(i, j(i)) | i is a−�-step}
of ak-noncrossing diagram, see Fig. 9.
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Fig. 9. From ∗-tableaux to partial matchings. If λi \ λi−1 = −�, then the
unique number is extracted, which, if RSK-inserted into λi, recovers λi−1. This
yields the arc-set of a k-noncrossing, partial matching.

Therefore, each∗-tableaux of lengthn, containing shapes with at
most(k − 1)-rows, corresponds uniquely to ak-noncrossing partial
matching on[n] [3]. We denote the numbers of∗-tableaux and those
without hesitating steps (oscillating tableaux) of shapeλi and length
(n− i), by O

∗
k(λi, n− i) andO

0
k(λi, n− i), respectively.
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Reflection and D-finiteness
The reflection principle [25, 5, 19] is a powerful technique in combi-
natorial enumeration. However, it is not directly applicable to RNA
pseudoknot structures. Additional arguments [15] are needed for
dealing with the non-reflectable, minimum arc-length condition, see
Lemma 1.

Given a∗-tableaux of shapeλ, (λi)n
i=0, we consider the number

of squares in thesth row of shapeλi, denoted byxs(i). It is evident
that a∗-tableaux of shapeλ with at most(k−1) rows uniquely corre-
sponds to a walk of lengthn which starts ata = (k−1, k−2, . . . , 1)
and ends atb = (k − 1 + x1(n), . . . , 1 + xk−1(n)) having steps
0,±ei, 1 ≤ i ≤ k − 1 such that0 < xk−1 < . . . < x1 at any step,
see Fig. 10. That is, a∗-tableaux of shapeλ with at most(k − 1)

rows corresponds to a lattice path inZk−1 that remains in the interior
of the dominant Weyl chamber [5].
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2 3 410

2

3

1

Fig. 10. From diagrams to lattice paths. A 3-noncrossing diagram is translated
into a sequence of shapes (∗-tableaux) which in turn induces a walk that stays in
the dominant Weyl-chamber of Z

2 starting and ending at (2, 1).

For a, b ∈ Zk−1, let Γ(a, b) denote the set of walks without0-
steps of lengthn. Clearly,Γ0

n(a, b) = O
0
k(λ, n), whereλ represents

the unique shape with at most(k − 1) rows that corresponds to the
lattice pointb ∈ Zk−1. Let Ir(2x) denote the hyperbolic Bessel
function of the first kind of orderr.

Using the reflection principle, Grabiner [8] derived the following
relation between the generating function and a determinantof Bessel
functions
X

n≥0

Γ0
n(a, b)

xn

n!
= det[Iai−bj

(2x)− Iai+bj
(2x)]|k−1

i,j=1. [2 ]

In [15] it is shown, using eq. (2), that fork ≥ 2, the numbers of
k-noncrossing RNA pseudoknot structures with minimum arc-length
2, Sk(n), areP -recursive and given by

Sk(n) =
X

b≤⌊ n
2
⌋

(−1)b

 

n− b

b

!

O
∗
k(∅0

, n− 2b), [3]

whereO
∗
k(λi, n− i) satisfies

O
∗
k(λi

, n− i) =

8

>

>

>

<

>

>

>

:

P

n
2

l=0

`

n−i

2l

´

O
0
k(λi, n− i− 2l),

for (n− i) even
P

n
2

l=0

`

n−i

2l+1

´

O
0
k(λi, n− i− 2l − 1),

for (n− i) odd.

[4 ]

As a result, the number ofk-noncrossing RNA pseudoknot structures
can be derived from the quantitiesO

0
k(λi, n), given by eq. (2).

Uniform generation
Eq. (2), combined with the fact thatD-finite functions form an algebra
[29] implies, that the ordinary generating function

P

n≥0 Γ0
n(a, b)xn

is D-finite. SinceD-finiteness is equivalent to theP -recursiveness
[30] of its coefficients, we derive

Corollary 1. For fixed shapeλ with at most(k− 1) rows andn ∈ N,
there exists somem ∈ N and polynomialsp0(n), . . . , pm(n) such
that

pm(n)O0
k(λ, n + m) + · · ·+ p0(n)O0

k(λ, n) = 0. [5]

In particular, the numbersO0
k(λ,n) can be computed inO(n) time.

We remark, that for fixedn andλ, the derivation of eq. (5) is
a pre-processing step. It has to be derived only once, for instance
employing Zeilberger’s algorithm [38, 27]. The recursionsof Corol-
lary 1 can be found empirically with the MAPLE packagegfun using
the commandlisttorec.
Theorem 2. A randomk-noncrossing structure can be generated, af-
ter polynomial pre-processing time, with uniform probability in lin-
ear time. The algorithmic implementation, see Algorithm 1,has
O(nk+1) pre-processing time andO(nk) space complexity. Each
k-noncrossing structure is generated withO(n) space and time com-
plexity.

Let W∗
k(λi, n− i) denote the number of∗-tableaux of shapeλi with

at most(k − 1) rows of length(n − i) that do not contain any
(+�1,−�1)-steps, then we have
Algorithm 1.

1 : PShape ← ArrayP(n,k) (computation ofO∗
k(λi, n− i), i =

0, 1, . . . , n− 1, λi)
2 : SShape ←ArrayS(n,k) (computation ofW∗

k(λi
j , n− i), j =

0, 1+, 1−, . . . , (k − 1)+, (k − 1)−; i = 0, 1, . . . , n−
1, stored in thek × n array SShape)

3 : while i < n do
4 : flag← 1
5 : X[0] ←W∗

k(λi+1
0 , n− (i + 1))

6 : X[1]←W∗
k(λi+1

1+ , n− (i + 1))−W∗
k(λi+2

1−
, n− (i + 2))

7 : if flag=0 and j=2then
8 : X[2]← 0
9 : else
10 : X[2]←W∗

k(λi+1
1−

, n− (i + 1))
11 : end if
12 : sum← X[0]+X[1]+X[2]
13 : forj from2 to k − 1 do
14 : X[2j-1] ←W∗

k(λi+1
j+

, n− (i + 1))

15 : X[2j] ←W
∗
k(λi+1

j−
, n− (i + 1))

16 : sum←sum+X[2j-1]+X[2j]
17 : end for
18 : Shape← Random(sum) (Random generates the random

shapeλi+1
j with probability X[j]/sum)

19 : i← i + 1
20 : if Shape =λi

1+ then
21 : flag← 0
22 : end if
23 : Insertλi+1

j into Tableaux
24 : end while
25 : Map(Tableaux)

We remark that fork = 3, explicit formulas based on the work
of [19, 6, 7] allow us to derive the transition probabilitiesdirectly.

Conclusion
This paper provides an interpretation of RNA pseudoknot structures
as sampling paths of a Markov process. This point of view has the
potential to offer radically new ways of dealing with the complex
cross-serial interactions in RNA molecules.

It is not obvious that cross-serial interactions can be expressed in
terms of a Markov process, since the latter are by construction local,
having no memory of the sampling path, except of the last step. Our
construction showswhy this is the case:(k − 1)-crossings in RNA
molecules can be expressedlocally by a(k−1)-row of squares in the
associated shape-sequence. This locality holds for arbitrary k. The
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conclusion that cross serial interactions are indeed localis good news
for designingab initio folding algorithms.

The framework presented here is a stepping stone towards the
sampling with non-uniform transition probabilities. The uniform sam-
pling of pseudoknot structures, compatible to a given sequence, is
displayed in Fig. 11. Here we insert the nucleotides into thesquares
and in analogy to Theorem 2 consider compatible paths, thereby sam-
pling uniformly. For instance, Theorem 2 immediately allows to sam-
ple sequence-specificlocally uniformly in linear time, by setting all
incompatible uniform transition probabilities to zero andrescale.
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Fig. 11. Sequence specific, uniform and locally uniform sampling of RNA
pseudoknot structures. Here we display the two sampling variants for the
sequenceAGUCC.

It is also possible to assign transitions that induce base pairs
(i.e. extractions) particular weights. This leads to the energy based
sampling of pseudoknot structures, which can be made context de-
pendent along the lines of [37]. Stacking bonds could be included
as well in our framework. Higher-order Markov processes naturally
model the dependencies of adjacent arcs.

Since our approach is path-based, it offers the possibilityto for-
malize the kinetics of the folding. In addition, we can generalize a
class of stochastic CFG-foldings for RNA secondary structures [14].
Examining a set of known molecular foldings, it is now possible to
derive the maximum likelihood estimators of the model parameters
[23] and to fold pseudoknot structures using hidden Markov models
[21]. One important advantage of this approach is to avoid explicit
knowledge of the energy parameters of pseudoknot-loops.

Our algorithm is available1 in C and in MAPLE.

Proof of the main result
A 1-arc corresponds to a subsequence of shapes(λi, λi+1, λi+2 =
λi), obtained by first adding and then removing a square in the first
row. This sequence corresponds to a pair of steps(+�1 ,−�1), where
+�1 and−�1 indicate that a square is added and subtracted in the
first row, respectively. In terms of∗-tableaux having at most(k − 1)
rows, eq. (3) can be rewritten as follows

W
∗
k(∅0

, n) =

n
2
X

b=0

(−1)b

 

n− b

b

!

O
∗
k(∅0

, n− 2b).

In order to prove our main result we have to generalize this relation
from the empty shape,∅ to arbitrary shapes,λ.

Lemma 1. Let λi be an arbitrary shape with at most(k − 1) rows,
then

W
∗
k(λi

, n−i) =

n−i
2
X

b=0

(−1)b

 

(n− i)− b

b

!

O
∗
k(λi

, n−i−2b). [6 ]

LetQ∗
k(λi, n − i, j) denote the set of∗-tableaux of shapeλi of

length(n− i) having at most(k− 1) rows containing exactlyj pairs
(+�1,−�1) and setQ∗

k(λi, n− i, j) = |Q∗
k(λi, n− i, j)|.

Proof: Let (λs)
(n−2b)−i

s=0 be a∗-tableaux of shapeλi. We select
from the set{0, . . . , (n − 2b) − i − 1} an increasing sequence of
labels(r1, . . . , rb). For eachrs we insert a pair(+�1,−�1) after
the corresponding shapeλrs , see Fig. 12. This insertion generates a
∗-tableaux of length(n− i) of shapeλi.
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Fig. 12. Illustration of the proof idea: pairs (+�1,−�1) are inserted at posi-
tions 3, 5 and 8, respectively.

Considering the above insertion for all sequences(r1 , . . . , rb), we
arrive at a familyFb of ∗-tableaux of length(n− i) containing at least
b pairs,(+�1,−�1). Since we can insert at any position0 ≤ h ≤

((n− i)− 2b− 1),Fb has cardinality
`

(n−i)−b

b

´

O
∗
k(λi, n− i− 2b).

By construction, each∗-tableaux(λs)n−i
s=0 ∈ Fb, that exhibits exactly

j pairs(+�1,−�1) appears with multiplicity
`

j

b

´

, whence

X

j≥b

 

j

b

!

Q
∗
k(λi

, n−i, j) =

 

(n− i)− b

b

!

O
∗
k(λi

, n−i−2b). [7 ]

We considerFk(x) =
P

j≥0 Q
∗
k(λi, n − i, j)xj . Taking the

bth derivative and settingx = 1 we obtain 1
b!

F b
k (1) =

P

j≥b

`

j

b

´

Q∗
k(λi, n− i, j)1j−b and computing the Taylor expansion

of Fk(x) atx = 1

Fk(x) =
X

b≥0

1

b!
F

b
k (1) (x− 1)b

=

n−i
2
X

b=0

 

(n− i) − b

b

!

O
∗
k(λi

, n− i− 2b) (x− 1)b
.

SinceW
∗
k(λi, n− i) = Q

∗
k(λi, n− i, 0) is the constant term of

Fk(x), the lemma follows.
Proof of Theorem 2: The idea is to interpret∗-tableaux with-

out pairs of steps,(+�1,−�1), (good ∗-tableaux) as paths of a
stochastic process. To this end, we index the shapesλi+1 ac-
cording to their predecessors: leti = 0, 1, . . . , n − 1 and j ∈
{0, 1+, 1−, . . . , (k − 1)+, (k − 1)−}. Settingλ0

j = ∅, we write
λi+1

j , if λi+1 is obtained via
• doing nothing (λi+1

0 )
• adding a square in thejth row (λi+1

j+
)

• deleting a square in thejth row (λi+1
j−

).

1http://www.combinatorics.cn/cbpc/unif.html

Footline Author PNAS Issue Date Volume Issue Number 5



With this notation, the number of good∗-tableaux of shapeλi+1
1+ of

length(n− (i + 1)) is given as follows:

V
∗
k(λi+1

1+ , n−(i+1)) = W
∗
k(λi+1

1+ , n−(i+1))−W
∗
k(λi+2

1−
, n−(i+2)).

In order to derive transition probabilities, we establish two equations:
first, for anyλi

j , wherej 6= 1+, we haveW∗
k(λi

j , n− i) =

V
∗
k(λi+1

1+ , n− (i + 1)) + W
∗
k(λi+1

1−
, n− (i + 1)) +

k−1
X

h=2

“

W
∗
k(λi+1

h+ , n− (i + 1)) + W
∗
k(λi+1

h−
, n− (i + 1))

”

+

W
∗
k(λi+1

0 , n− (i + 1))

and second, in case ofj = 1+, we haveV∗
k(λi

1+ , n− i) =

V
∗
k(λi+1

1+ , n− (i + 1)) + W
∗
k(λi+1

0 , n− (i + 1))

k−1
X

h=2

“

W
∗
k(λi+1

h+ , n− (i + 1)) + W
∗
k(λi+1

h−
, n− (i + 1))

”

.

We are now in a position to specify the process(Xi)n
i=0:

•X0 = Xn = ∅ andXi is a shape having at most(k − 1) rows
• for 0 ≤ i ≤ n− 1, Xi andXi+1 differ by at most one square
• there exists no subsequenceXi, Xi+1, Xi+2 = Xi obtained by
first adding and second removing a square in the first row
• for j 6= 1+

P(Xi+1 = λ
i+1
l | Xi = λ

i
j) =

8

>

<

>

:

W
∗

k(λi+1

l
,n−(i+1))

W∗

k
(λi

j
,n−i)

, for l 6= 1+

V
∗

k(λi+1

1+
,n−(i+1))

W∗

k
(λi

j
,n−i)

, for l = 1+

[8]

• for j = 1+

P(Xi+1 = λ
i+1
l | Xi = λ

i
1+) =

8

>

>

>

<

>

>

>

:

W
∗

k(λi+1

l
,n−(i+1))

V
∗

k
(λi

1+
,n−i)

,

for l 6= 1+, 1−

V
∗

k(λi+1

1+
,n−(i+1))

V∗

k
(λi

1+
,n−i)

, for l = 1+.

[9 ]
We observe that eq. (8) and eq. (9) imply

n−1
Y

i=0

P(Xi+1 = λ
i+1 | Xi = λ

i) =
W

∗
k(λn = ∅, 0)

W∗
k(λ0 = ∅, n)

=
1

W∗
k(∅, n)

.

[10]
Consequently, the process(Xi)n

i=0 generates randomk-noncrossing
structures with uniform probability inO(n) time and space. Accord-
ing to Corollary 1, we can for anyλi, having at most(k − 1) rows,
computeO0

k(λi, n − i) in O(n) time. Consequently, we can gener-
ate the arrays(O∗

k(λi, n − i))λi,n−i and(W∗
k(λi, n − i))λi,n−i in

O(n2) + O(n2) O(nk−1) time andO(nk) space.
A random k-noncrossing structure is then generated as a∗-

tableaux with at most(k − 1) rows using the array(W∗
k(λi, n −

i))λi,n−i with O(n) time and space complexity. �
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