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1 Introduction

The objective of this paper is to give an extension of the q-WZ method to nontermi-
nating basic hypergeometric series identities. We will follow the standard notation on
q-series [9] and always assume |q| < 1. The q-shifted factorials (a; q)n and (a; q)∞ are
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defined by

(a; q)n =

{
1, if n = 0,

(1− a)(1− aq) · · · (1− aqn−1), if n ≥ 1,

(a; q)−n =
1

(aq−n; q)n
,

(a; q)∞ = (1− a)(1− aq)(1− aq2) · · · ,

(a1, a2, . . . , ak; q)n = (a1; q)n(a2; q)n · · · (ak; q)n.

An rφs basic hypergeometric series is defined by

rφs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z

]
:=

∞∑
n=0

(a1, a2, . . . , ar; q)n
(q, b1, . . . , bs; q)n

[
(−1)nq(

n
2)
]1+s−r

zn, (1.1)

where q 6= 0 when r > s + 1. Further, an rψs bilateral basic hypergeometric series is
defined by

rψs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z

]
:=

∞∑
n=−∞

(a1, a2, . . . , ar; q)n
(b1, b2, . . . , bs; q)n

[
(−1)nq(

n
2)
]s−r

zn. (1.2)

It is assumed that q, z and the parameters are such that each term of the series is
well-defined. We say that an rφs series terminates if only a finite number of terms
contribute. Otherwise, we say that the series rφs is nonterminating.

For the ordinary nonterminating hypergeometric identities, Gessel [10] and Koorn-
winder [14] provided computer proofs of Gauss’ summation formula and Saalschütz’
summation formula by means of a combination of Zeilberger’s algorithm and asymp-
totic estimates. Vidunas [19] (see also Koepf [12] and Koornwinder [15]) presented a
method to evaluate 2F1

(
a,b
c

∣∣−1
)

when c−a+ b is an integer. Recently, Chen, Hou and
Mu [8] developed an approach to proving nonterminating basic hypergeometric identi-
ties based on the q-Zeilberger algorithm [13]. In this paper we will show how to apply
the q-WZ method to prove nonterminating basic hypergeometric summation formulas
by finding the q-WZ pairs. We will give some examples including the q-Gauss sum,
the very-well-poised 6φ5 sum, the Ramanujan’s 1ψ1 sum and Bailey’s very-well-poised
series 6ψ6 sum [9].
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2 The Andrews-Warnaar Identities

In this paper, we give telescoping proofs of the following two identities on partial theta
functions:( ∞∑

n=0

(−1)nanq(
n
2)
)( ∞∑

n=0

(−1)nbnq(
n
2)
)

= (q, a, b; q)∞

∞∑
n=0

(abqn−1; q)n
(q, a, b; q)n

qn, (2.1)

1 +
∞∑
n=1

(−1)nq(
n
2)(an + bn) = (a, b, q; q)∞

∞∑
n=0

(ab/q; q)2n
(q, a, b, ab; q)n

qn. (2.2)

The identity (2.2) was first proved by Warnaar in [20]. Andrews and Warnaar [6]
derived the identity (2.1) and used it to prove (2.2).

As will be seen, the telescoping proofs suggest that the approach developed Chen,
Hou and Mu [8] for proving nonterminating basic hypergeometric identities can be
extended so that infinite q-shifted factorials can be allowed in a q-hypergeometric term.
This idea immediately leads to an extension of the q-WZ method to identities on infinite
series.

Note that the formula (2.2) is a generalization of the well-known Jacobi’s triple
product identity. When b = q/a, we get the Jacobi’s triple product identity

∞∑
n=−∞

(−1)nanq(
n
2) = (a, q/a, q; q)∞, (2.3)

where |q| < 1 and a 6= 0.

We now describe how to prove the identities (2.1) and (2.2) by the telescoping
method. Let us consider (2.1) first. Put

f(a) =

(
∞∑
n=0

(−1)nq(
n
2)an

)(
∞∑
n=0

(−1)nq(
n
2)bn

)
.

Note that the second factor does not contain the parameter a. It is easily verified that

f(a) = (1− a)f(aq) + aqf(aq2). (2.4)

We proceed to show that the right hand side of (2.1) satisfies the same recurrence
relation. Of course, we still need to verify the boundary conditions. Let

g(a) =
∞∑
n=0

Dn(a), where Dn(a) = (q, a, b; q)∞
(abqn−1; q)nq

n

(q, a, b; q)n
.
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Then it is necessary to show that

g(a)− (1− a)g(aq)− aqg(aq2) = 0. (2.5)

Here comes the key step of finding a telescoping relation for Dn(a). Note that, for any
n ≥ 0, we have

Dn(a)− (1− a)Dn(aq)− aqDn(aq2)

=
(abqn; q)n(q, a, b; q)∞q

n

(q, a, b; q)n

(
1− abqn−1

1− abq2n−1
− 1− a

1− aqn
− aq(1− abq2n)

(1− aqn+1)(1− aqn)(1− abqn)

)

=
(abqn; q)n(q, a, b; q)∞q

n

(q, a, b; q)n

(
a(1− qn)(1− bqn−1)

(1− aqn)(1− abq2n−1)
− aq(1− abq2n)

(1− aqn+1)(1− aqn)(1− abqn)

)
=zn+1 − zn, (2.6)

where

zn = −(1− qn)(1− bqn−1)(abqn; q)n(q, a, b; q)∞aq
n

(1− aqn)(1− abq2n−1)(q, a, b; q)n
.

The above relation reveals that the infinite q-shifted factorial (q, a, b; q)∞ can be incor-
porated into the telescoping relation and this step can be automated by the q-Gosper
algorithm. Moreover, one sees that infinite q-shifted factorials can be incorporated
into the q-Zeilberger algorithm so that the approach of Chen, Hou and Mu [8] can be
extended to terms containing infinite q-shifted factorials. In particular, one can make
the q-WZ method work for nonterminating hypergeometric series.

Now, let us return our attention to the proof of (2.1). Clearly, z0 = 0. It is also
easily seen that limn→+∞ zn = 0. Summing (2.6) over the non-negative integers, we
obtain the recurrence relation (2.5). In order to show that f(a) = g(a), we will use the
recurrence relation of f(a)− g(a) to reach this goal.

Let H(a) = f(a)− g(a). From the recurrence relations for f(a) and g(a), it follows
that H(a) satisfies the recurrence relation

H(a) = (1− a)H(aq) + aqH(aq2). (2.7)

Iterating the above relation yields that

H(a) = AnH(aqn+1) +BnH(aqn+2), (2.8)

where An and Bn are given by

A0 = (1− a), B0 = aq, A1 = (1− a)(1− aq) + aq, B1 = (1− a)aq2,
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and
An+1 = (1− aqn+1)An + aqn+1An−1, Bn+1 = aqn+2An, n ≥ 1.

Hence we have
An+1 − An = −aqn+1(An − An−1),

which implies that

|An+1 − An| = |(−1)nanq(
n+2
2 )−1||(A1 − A0)|

≤ |anq(
n+2
2 )−1| (|A1|+ |A0|) .

So, for fixed a and |q| < 1, the limit lim
n→+∞

An exists. Since Bn+1 = aqn+2An, the limit

lim
n→+∞

Bn also exists. Again, by the relation (2.8), we find

H(a) = H(0)

(
lim

n→+∞
An + lim

n→+∞
Bn

)
.

It remains to show that H(0) = 0, that is,

∞∑
n=0

(−1)nbnq(
n
2) = (q, b; q)∞

∞∑
n=0

qn

(q, b; q)n
. (2.9)

We can use the telescoping method to prove (2.9). Let

G(b) =
∞∑
n=0

(−1)nbnq(
n
2) − (q, b; q)∞

∞∑
n=0

qn

(q, b; q)n
.

It is easy to check that

G(b) = (1− b)G(bq) + bqG(bq2).

We aim to show that G(b) = 0. Since G(b) satisfies the same recurrence relation as
H(a), it is suffices to confirm G(0) = 0, that is,

(q; q)∞

∞∑
n=0

qn

(q; q)n
= 1,

which is special case of Euler’s identity [9, P. 354]

∞∑
n=0

zn

(q; q)n
=

1

(z; q)∞
, |z| < 1.
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Indeed, the relation (2.9) is a limiting case of Heine’s transformation of 2φ1. For
completeness, we give a proof based on Euler’s identities:

(q, b; q)∞

∞∑
n=0

qn

(q, b; q)n
= (q; q)∞

∞∑
m=0

qm

(q; q)m

∞∑
n=0

q(
n
2)(−bqm)n

(q; q)n

= (q; q)∞

∞∑
n=0

(−1)nbnq(
n
2)

(q; q)n

∞∑
m=0

(qn+1)m

(q; q)m

=
∞∑
n=0

(−1)nbnq(
n
2). (2.10)

Thus, we have verified that H(a) = 0. This completes the proof.

We remark that once the recurrence relation (2.7) is derived, one can also use the
theorem of Chen, Hou and Mu [8, Theorem 3.1] to prove the existence of the limits of
An and Bn.

We next present a telescoping proof of (2.2). Let

f(a) = 1 +
∞∑
n=1

(−1)nq(
n
2)(an + bn).

It is easily seen that

(1 + aq)f(a)− (1− a2q)f(aq)− (aq + a2q)f(aq2) = (q − 1)a. (2.11)

Let

g(a) =
∞∑
n=0

Dn(a), where Dn(a) = (q, a, b; q)∞
(ab/q; q)2nq

n

(q, a, b, ab; q)n
.

It will be shown that

(1 + aq)g(a)− (1− a2q)g(aq)− (aq + a2q)g(aq2) = (q − 1)a. (2.12)

Since

qn − abqn−1

1− abq2n−1
− (1− a2q)(1− ab)qn

(1 + aq)(1− aqn)(1− abqn)

− (a2q + aq)(1− abq2n)(1− abq)qn

(1 + aq)(1− aqn)(1− aqn+1)(1− abqn)(1− abqn+1)

=
(1− abq2n)(−1 + q + abqn+1 + a2bqn+2 − aqn+2 − qn+1 − a2bq2n+2 + a2bq2n+3)a

(1− aqn+1)(1− aqn)(1− abqn)(1 + aq)(1− abqn+1)
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− (−1 + q + abqn + a2bqn+1 − aqn+1 − qn − a2bq2n + a2bq2n+1)a(1− bqn−1)(1− qn)

(1− aqn)(1− abq2n−1)(1 + aq)(1− abqn)
,

multiplying both sides by
(ab; q)2n(a, b, q; q)∞

(q, a, b, ab; q)n
,

we deduce that

Dn(a)− (1− a2q)
1 + aq

Dn(aq)− (a2q + aq)

1 + aq
Dn(aq2) = zn+1 − zn, (2.13)

where

zn =
(−1 + q − aqn+1 − qn + a2bqn+1 + abqn − a2bq2n + a2bq2n+1)a

(1− aqn)(1− abq2n−1)

× (1− bqn−1)(1− qn)(ab; q)2n(q, a, b; q)∞
(1 + aq)(1− abqn)(ab; q)n(q, a, b; q)n

.

Clearly, z0 = 0 and limn→+∞ zn = (q−1)a
1+aq

. Summing (2.13) over nonnegative integers,

we obtain the recurrence relation (2.12).

Let H(a) = f(a)− g(a). Then H(a) satisfies the following recurrence relation

H(a) =
1− a2q
1 + aq

H(aq) +
aq + a2q

1 + aq
H(aq2). (2.14)

By iteration, we obtain

H(a) = AnH(aqn+1) +BnH(aqn+2), (2.15)

where An and Bn are given by

A0 =
1− a2q
1 + aq

, A1 =
1 + a3q3

1 + aq2
,

B0 =
aq + a2q

1 + aq
, B1 =

aq2(1− a2q)
(1 + aq2)

,

and for n ≥ 1,

An+1 =
1− a2q2n+3

1 + aqn+2
An +

aqn+1 + a2q2n+1

1 + aqn+1
An−1, (2.16)

Bn+1 =
aqn+2 + a2q2n+3

1 + aqn+2
An. (2.17)

7



Based on the above recurrence relations, one can deduce that both limn→+∞An and
limn→+∞Bn exist. We note that Zeilberger [26] has shown that

An =
1 + (−1)n+1an+2q(

n+2
2 )

1 + aqn+1

and

Bn =
aqn+1

(
1 + (−1)nan+1q(

n+1
2 )
)

1 + aqn+1
.

Now we see that the limits lim
n→+∞

An and lim
n→+∞

Bn exist. By the relation (2.15), we

deduce that
H(a) = H(0)( lim

n→+∞
An + lim

n→+∞
Bn).

The identity (2.10) implies that f(0) = g(0). So we have H(a) = 0. This completes
the proof.

We also note that once the recurrence relation (2.14) is established, one may assume
that |a| < 1 and may use the the theorem in Chen, Hou and Mu [8, Theorem 3.1])
to the existence of the limits of An and Bn. Moreover, we may drop the assumption
|a| < 1 by analytic continuation.

3 The q-WZ Pairs for Infinite Series

Our approach to the q-WZ method for infinite series can be described as follows. The
key step is to construct q-WZ pairs for infinite sums. Suppose that we aim to prove an
identity of the form:

∞∑
k=N0

Fk(a1, a2, . . . , at) = R(a1, a2, . . . , at), (3.1)

where t is a positive integer, and the sum is either a unilateral or bilateral basic
hypergeometric series, namely, N0 = 0 or N0 = −∞, R(a1, a2, . . . , at) is either zero or
a quotient of two products of infinite q-shifted factorials.

First, we set some parameters, say, a1, . . . , ap, (1 ≤ p ≤ t) to a1q
n, . . . , apq

n, so that
we get

∞∑
k=N0

Fk(a1q
n, . . . , apq

n, ap+1, . . . , at) = R(a1q
n, . . . , apq

n, ap+1, . . . , at). (3.2)
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If R(a1q
n, . . . , apq

n, ap+1, . . . , at) 6= 0, set

F (n, k) =
Fk(a1q

n, . . . , apq
n, ap+1, . . . , at)

R(a1qn, . . . , apqn, ap+1, . . . , at)
.

Otherwise, set
F (n, k) = Fk(a1q

n, . . . , apq
n, ap+1, . . . , at).

Our goal is to show that

∞∑
k=N0

F (n, k) = constant, n = 0, 1, 2, . . . . (3.3)

The constant can be determined by setting n = 0 and setting a1, a2, . . . , at to special
values. We claim that the above goal can be achieved by adopting the q-WZ method
for finite sums.

Let us recall the boundary and limit conditions for the q-WZ-method. Let f(n)
denote the left hand side of (3.3), i.e.,

f(n) =
∞∑

k=N0

F (n, k)

and we aim to show that
f(n) = constant

for every nonnegative integer n. To this end, it suffices to show that f(n+1)−f(n) = 0
for every nonnegative integer n. This can be done by finding G(n, k) such that

F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k). (3.4)

A pair of functions (F (n, k), G(n, k)) that satisfy (3.4) is called a q-WZ pair. Once a
q-WZ pair is found, one can check the boundary and limit conditions to ensure that
f(n) equals the claimed constant. Here are the conditions:

(C1) For each integer n ≥ 0, lim
k→±∞

G(n, k) = 0.

(C2) For each integer k, the limit

fk = lim
n→∞

F (n, k) (3.5)

exists and is finite.

(C3) We have lim
L→∞

∑
n≥0

G(n,−L) = 0.
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The WZ method can be formally stated as follows.

Theorem 3.1 (Wilf and Zeilberger [22]). Assume that (F (n, k), G(n, k)) is a WZ pair
(3.4). If (C1) holds, then we have∑

k

F (n, k) = constant, n = 0, 1, 2, . . . . (3.6)

If (C2) and (C3) hold, then we have the companion identity

∞∑
n=0

G(n, k) =
∑

j≤k−1

(fj − F (0, j)), (3.7)

where fj is defined by (3.5).

We now explain how to compute the desired q-WZ pair for the identity (3.1). In
fact, it can be produced by applying the q-Gasper algorithm to F (n+ 1, k)− F (n, k).
It should be noted that F (n+ 1, k)− F (n, k) is a q-hypergeometric term with respect
to qk, even if F (n, k) contains infinite q-shifted factorials such as (aqn; q)∞. Obviously,
F (n+ 1, k)−F (n, k) is a q-hypergeometric term when R(a1, . . . , at) = 0. Assume that
R(a1, . . . , at) 6= 0. Let

M1 =
R(a1q

n+1, . . . , apq
n+1, ap+1, . . . , al)

R(a1qn, . . . , apqn, ap+1, . . . , at)
,

M2 =
Fk+1(a1q

n+1, . . . , apq
n+1, ap+1, . . . , at)

Fk(a1qn+1, . . . , apqn+1, ap+1, . . . , at)
,

M3 =
Fk+1(a1q

n, . . . , apq
n, ap+1, . . . , at)

Fk(a1qn+1, . . . , apqn+1, ap+1, . . . , at)
,

M4 =
Fk(a1q

n, . . . , apq
n, ap+1, . . . , at)

Fk(a1qn+1, . . . , apqn+1, ap+1, . . . , at)
.

Since M1 is a rational function in qn and is independent of k, M2,M3,M4 are all rational
functions in qk. Observe that

F (n+ 1, k + 1)− F (n, k + 1)

F (n+ 1, k)− F (n, k)
=
M2 −M1M3

1−M1M4

(3.8)

is a rational function in qk, i.e., F (n+ 1, k)− F (n, k) is a q-hypergeometric term with
respect to qk. It is necessary to mention that even if F (n, k) contains infinite q-shifted
factorials of the form (aqn; q)∞, the quotient (3.8) no longer contains the q-shifted
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factorial (aqn; q)∞ and it is still a rational function in qk. Consequently, we can employ
the q-Gosper algorithm to determine whether G(n, k) exists. Nevertheless, it is also
necessary to note that G(n, k) contains infinite q-shifted factorials if F (n, k) does.

There is another way to look at the above procedure. Suppose that F (n, k) contains
an infinite q-shifted factorial (a; q)∞, where a is a chosen parameter for the substitution
a→ aqn. If we set G′(n, k) = R(aqn)G(n, k). Then the equation (3.4) becomes

F (n+ 1, k)R(aqn)− F (n, k)R(aqn) = G′(n, k + 1)−G′(n, k).

It is evident that the infinite q-shifted factorial (aqn; q)∞ will disappear in the above
equation, and one can use the q-Gosper algorithm to find a q-WZ pair if it exists.

We now take the q-binomial theorem [9, P. 354] as an example to explain the above
steps:

∞∑
k=0

(a; q)k
(q; q)k

zk =
(az; q)∞
(z; q)∞

, |z| < 1. (3.9)

In this case, we have

Fk(a) =
(a; q)k
(q; q)k

zk, R(a) =
(az; q)∞
(z; q)∞

.

We choose the parameter a, and substitute a with aqn. Then we set

F (n, k) =
Fk(aqn)

R(aqn)
=

(aqn; q)k(z; q)∞
(q; q)k(azqn; q)∞

zk.

In order to find G(n, k) such that (3.4) holds, it is easily checked that F (n + 1, k) −
F (n, k) is a q-hypergeometric term. By examining the q-Gosper algorithm, one sees
that it is capable to deal with the input F (n+ 1, k)− F (n, k), or we can set

G′(n, k) = R(aqn)G(n, k)

and find a solution of the equation

(1− azqn)
(aqn+1; q)k

(q; q)k
zk − (aqn; q)k

(q; q)k
zk = G′(n, k + 1)−G′(n, k). (3.10)

Finally, we obtain the q-WZ pair

F (n, k) =
(aqn; q)k(z; q)∞
(q; q)k(azqn; q)∞

zk,

G(n, k) = − (aqn; q)k(z; q)∞(a− aqk)

(q; q)k(azqn; q)∞(1− aqn)
qnzk.
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If |z| < 1, it is easy to see that F (n, k) and G(n, k) satisfy the conditions (C1), (C2)
and (C3). By (3.6),

∞∑
k=−∞

F (n, k) =
∞∑
k=0

F (n, k) = constant, n = 0, 1, 2, . . . .

Setting z = 0 yields that the constant equals 1. Setting n = 0, we have

∞∑
k=0

F (0, k) = constant = 1.

By (3.7), we get the companion identity of (3.9)

k∑
j=0

(a; q)j
(q; q)j

zj = (az; q)∞

k∑
j=0

zj

(q; q)j
+
azk+1(a; q)k+1

(q; q)k

∞∑
n=0

(az; q)n(aqk+1; q)n
(a; q)n+1

qn.

We remark that our algorithm depends on the choice of parameters ai1 , . . . , aik .
For a given choice of parameters, it is not guaranteed that one can find a q-WZ pair.
Nevertheless, this approach applies to many classical identities.

We now give a few more examples.

Example 3.1. The q-Gauss sum [9, P. 354]:

∞∑
k=0

(a, b; q)k
(q, c; q)k

( c
ab

)k
=

(c/a, c/b; q)∞
(c, c/ab; q)∞

, |c/ab| < 1. (3.11)

By computation we get the q-WZ pair

F (n, k) =
(b, aqn; q)k(c/ab, cqn; q)∞
(q, cqn; q)k(c/a, cqn/b; q)∞

( c
ab

)k
,

G(n, k) = − (a− aqk)(b, aqn; q)k(c/ab, cqn; q)∞
(1− aqn)(q, cqn; q)k(c/a, cqn/b; q)∞

( c
ab

)k
qn.

If |c/ab| < 1, it is easy to verify that the two functions (F (n, k), G(n, k)) satisfy the
relation (3.4) and conditions (C1), (C2) and (C3). By (3.6), we have

∞∑
k=−∞

F (n, k) =
∞∑
k=0

F (n, k) = constant, n = 0, 1, 2, . . . .

12



Setting c = 0 and n = 0, we find that the constant equals 1, and we have

∞∑
k=0

F (0, k) = constant = 1.

After simplification, we obtain the identity (3.11).

By (3.7), we obtain the companion identity of (3.11)

−
∞∑
n=0

(a− aqk)(b, aqn; q)k(c/ab, cqn; q)∞
(1− aqn)(q, cqn; q)k(c/a, cqn/b; q)∞

( c
ab

)k
qn =

∑
j≤k−1

(fj − F (0, j)), (3.12)

where

fj = lim
n→∞

F (n, j) =
(b; q)j(c/ab; q)∞
(q; q)j(c/a; q)∞

( c
ab

)j
,

which can be restated as

k∑
j=0

(a, b; q)j
(q, c; q)j

( c
ab

)j
=

(c/b; q)∞
(c; q)∞

k∑
j=0

(b; q)j
(q; q)j

( c
ab

)j

+
(a, b; q)k+1c

k+1

(q; q)k(c; q)k+1akbk+1

∞∑
n=0

(aqk+1, c/b; q)n
(a; q)n+1(cqk+1; q)n

qn.

Example 3.2. The sum of a very-well-poised 6φ5 series [9, P. 356]:

∞∑
k=0

(1− aq2k)(a, b, c, d; q)k
(1− a)(q, aq/b, aq/c, aq/d; q)k

( aq
bcd

)k
=

(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

, |aq/bcd| < 1. (3.13)

By computation we get the following q-WZ pair:

F (n, k) =
(1− aqn+2k)(c, d, aqn, bqn; q)k

(1− aqn)(q, aq/b, aqn+1/c, aqn+1/d; q)k

× (aq/b, aq/bcd, aqn+1/c, aqn+1/d; q)∞
(aq/bc, aq/bd, aqn+1, aqn+1/cd; q)∞

( aq
bcd

)k
,

G(n, k) =
(c, d; q)k(a/b, a/bcd; q)∞

(q, a/b; q)k(aqn, aqn/cd; q)∞

13



× (aqn, bqn; q)k(aqn/c, aqn/d; q)∞
(aqn/c, aqn/d; q)k(a/bd, a/bc; q)∞

× (a− bc)(a− bd)(aqn − cd)(1− qk)

(a− bcd)(bqn − 1)(aqn+k − c)(aqn+k − d)

( aq
bcd

)k
qn.

It is easily seen that F (n, k) and G(n, k) satisfy the conditions (C1), (C2) and (C3).

Therefore, by (3.6), we have
∞∑
k=0

F (n, k) is a constant. Setting n = 0 and a = 0, we

find that the constant equals 1. Thus we have

∞∑
k=0

F (0, k) = constant = 1,

which is nothing but (3.13). Since

fk =
(c, d; q)k

(q, aq/b; q)k

(aq/b, aq/bcd; q)∞
(aq/bc, aq/bd; q)∞

( aq
bcd

)k
and

F (0, j) =
(1− aq2j)(a, b, c, d; q)j(aq/b, aq/c, aq/d, aq/bcd; q)∞

(1− a)(q, aq/b, aq/c, aq/d; q)j(aq, aq/bc, aq/bd, aq/cd; q)∞

( aq
bcd

)j
,

by (3.7), we obtain the companion identity

k∑
j=0

(1− aq2j)(a, b, c, d; q)j
(1− a)(q, aq/b, aq/c, aq/d; q)j

( aq
bcd

)k

=
(aq, aq/cd; q)∞
(aq/c, aq/d; q)∞

k∑
j=0

(c, d; q)j
(q, aq/b; q)j

( aq
bcd

)j

+
b(aq; q)k(b, c, d; q)k+1

(q, aq/b; q)k(aq/c, aq/d; q)k+1

( aq
bcd

)k+1

×
∞∑
n=0

(aq/cd; q)n(aqk+1, bqk+1; q)n
(b; q)n+1(aqk+2/c, aqk+2/d; q)n

qn.

Example 3.3. The Ramanujan’s 1ψ1 sum [9, P. 357]

1ψ1(a; b; q, z) =
(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

, |b/a| < |z| < 1. (3.14)
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In this case, we find that

F (n, k) =
(aqn; q)k(z, b/az, bqn, q1−n/a; q)∞
(bqn; q)k(q, b/a, azqn, q1−n/az; q)∞

zk,

G(n, k) =
(z, b/az, bqn, q−n/a; q)∞(aqn; q)k(1− azqn)

(q, b/a, azqn, q−n/az; q)∞(bqn; q)k(z − azqn)
zk.

If |b/a| < |z| < 1, utilizing the following identity

(a; q)−n =
(−q/a)nq(

n
2)

(q/a; q)n
, n = 0, 1, 2, . . . , (3.15)

we can verify that G(n, k) satisfies the condition (C1). It follows that (3.6),

∞∑
k=−∞

F (n, k) = constant, n = 0, 1, 2, . . . . (3.16)

Setting n = 0, b = q and utilizing q-binomial theorem (3.9), we see that the constant
equals 1. Setting n = 0, we obtain the identity (3.14). However, we note that the
conditions for the companion identity do not hold in this case.

Example 3.4. The sum of a very-well-poised 6ψ6 series [9, P. 357]:

∞∑
k=−∞

(1− aq2k)(b, c, d, e; q)k
(1− a)(aq/b, aq/c, aq/d, aq/e; q)k

(
a2q

bcde

)k

=
(aq, aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de, q, q/a; q)∞
(aq/b, aq/c, aq/d, aq/e, q/b, q/c, q/d, q/e, a2q/bcde; q)∞

. (3.17)

We obtain the following q-WZ pair:

F (n, k) =
(1− aqn+2k)(d, e, bqn, cqn; q)k(aq/b, aq/c; q)∞

(1− aqn)(aq/b, aq/c, aqn+1/d, aqn+1/e; q)k(aq/bd, aq/be; q)∞

× (q/d, q/e, a2q/bcde, aqn+1/d, aqn+1/e, q1−n/b, q1−n/c; q)∞
(q, aq/cd, aq/ce, aqn+1, aqn+1/de, q1−n/a, aq1−n/bc; q)∞

(
a2q

bcde

)k

,

G(n, k) =
(d, e, bqn, cqn; q)k(a/b, a/c, 1/e, a2/bcde, 1/d; q)∞

(a/b, a/c, aqn/d, aqn/e; q)k(q, a/bd, a/be, a/cd, a/ce; q)∞

× (aqn/d, aqn/e, q−n/b, q−n/c; q)∞(−1 + aqn)

(aqn, aqn/de, aq−n/bc, q−n/a; q)∞(1− bqn)(1− cqn)
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× (a− bd)(a− be)(a− cd)(a− ce)(aqn − de)qn

(aqn+k − d)(aqn+k − e)(a− ad)(1− e)(a2 − bcde)

(
a2q

bcde

)k

.

Since |a2q/bcde| < 1, from the identity (3.15) it follows that G(n, k) satisfies the
condition (C1). By (3.6), we find

∞∑
k=−∞

F (n, k) = constant, n = 0, 1, 2, . . . . (3.18)

In order to determine the constant, we set n = 0 and b = a. From the 6φ5 summation
formula (3.13), we see that the constant equals

∞∑
k=−∞

F (0, k) =
∞∑
k=0

(1− aq2k)(a, c, d, e; q)k
(1− a)(aq/c, aq/d, aq/e; q)k

× (aq, aq/cd, aq/ce, aq/de; q)∞
(aq/c, aq/d, aq/e, aq/cde; q)∞

( aq
cde

)k
= 1,

which can be restated as (3.17). Nevertheless, we note that the conditions for the
companion identity do not hold in this case.
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