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Abstract. Using Schur positivity and the principal specialization of Schur functions,
we provide a proof of a recent conjecture of Liu and Wang on the q-log-convexity of the
Narayana polynomials, and a proof of the second conjecture that the Narayana trans-
formation preserves the log-convexity. Based on a formula of Brändén which expresses
the q-Narayana numbers as the specializations of Schur functions, we derive several
symmetric function identities using the Littlewood-Richardson rule for the product of
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and the strong q-log-concavity of the q-Narayana numbers.
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1 Introduction

The main objective of this paper is to provide proofs of two recent conjectures of Liu
and Wang [19] on the q-log-convexity of the Narayana polynomials by using Schur
positivity derived from the Littlewood-Richardson rule. Moreover, we prove that the
Narayana polynomials are strongly q-log-convex. We also study the q-log-concavity
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of the q-Narayana numbers, and prove that for fixed n or k the q-Narayana numbers
Nq(n, k) are strongly q-log-concave.

Unimodal and log-concave sequences and polynomials often arise in combinatorics,
algebra and geometry, see, for example, Brenti [4, 5], Stanley [28], and Stembridge [32].
A sequence (an)n≥0 of real numbers is said to be unimodal if there exists an integer
m ≥ 0 such that

a0 ≤ a1 ≤ · · · ≤ am ≥ am+1 ≥ am+2 ≥ · · · ,
and is said to be log-concave if

a2m ≥ am+1am−1

holds for all m ≥ 1.

It has been noticed that sometimes the reciprocals of a combinatorial sequence form
a log-concave sequence. For example, the sequence(

n

0

)−1
,

(
n

1

)−1
, . . . ,

(
n

n

)−1
satisfies this condition for a given positive integer n. Such sequences are called log-
convex, see [19].

For polynomials, Stanley introduced the notion of q-log-concavity, which has been
studied by Butler [6], Krattenthaler [16], Leroux [20], and Sagan [25]. A sequence
of polynomials (fn(q))n≥0 over the field of real numbers is called q-log-concave if the
difference

fm(q)2 − fm+1(q)fm−1(q)

has nonnegative coefficients as a polynomial of q for all m ≥ 1. Sagan [26] also
introduced the notion of strong q-log-concavity. We say that a sequence of polynomials
(fn(q))n≥0 is strongly q-log-concave if

fm(q)fn(q)− fm+1(q)fn−1(q)

has nonnegative coefficients for any m ≥ n ≥ 1.

Based on the q-log-concavity, it is natural to define the q-log-convexity. We say
that the polynomial sequence (fn(q))n≥0 is q-log-convex if the difference

fm+1(q)fm−1(q)− fm(q)2

has nonnegative coefficients as a polynomial of q for all m ≥ 1. The notion of strong
q-log-convexity is a natural counterpart of that of strong q-log-concavity. We say that
a sequence of polynomials (fn(q))n≥0 is strongly q-log-convex if

fm+1(q)fn−1(q)− fm(q)fn(q)
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has nonnegative coefficients for any m ≥ n ≥ 1.

As realized by Sagan [26], the strong q-log-concavity is not equivalent to the q-
log-concavity, although for a sequence of positive numbers the strong log-concavity is
equivalent to the log-concavity. Analogously, the strong q-log-convexity is not equiva-
lent to the q-log-convexity. For example, the sequence

2q + q2 + 3q3, q + 2q2 + 2q3, q + 2q2 + 2q3, 2q + q2 + 3q3

is q-log-convex, but not strongly q-log-convex.

Just recently, Liu and Wang [19] have shown that some well-known polynomials such
as the Bell polynomials and the Eulerian polynomials are q-log-convex, and proposed
some conjectures on the Narayana polynomials based on numerical evidence.

To describe the conjectures of Liu and Wang [19], we begin with the classical Cata-
lan numbers, as given by

Cn =
1

n+ 1

(
2n

n

)
,

which count the number of Dyck paths from (0, 0) to (2n, 0) with up steps (1, 1) and
down steps (1,−1) but never going below the x-axis, see, Stanley [29]. It is known that
the Catalan numbers Cn form a log-convex sequence. Recall that a peak of a Dyck
path is defined as a point where an up step is immediately followed by a down step.
Then the Narayana number

N(n, k) =
1

n

(
n

k

)(
n

k + 1

)
equals the number of Dyck paths of length 2n with exactly k+1 peaks, see [3, 10, 33, 34].
The Narayana polynomials are given by

Nn(q) =
n∑
k=0

N(n, k)qk.

Liu and Wang [19] have shown that for a given positive real number q the sequence
(Nn(q))n≥0 is log-convex. Note that the sequence of the Catalan numbers becomes a
special case for q = 1. The first conjecture of Liu and Wang is as follows.

Conjecture 1.1 The Narayana polynomials Nn(q) form a q-log-convex sequence.

We will prove the above conjecture by studying the Schur positivity of certain sums
of symmetric functions. Our proof heavily relies on the Littlewood-Richardson rule
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for the product of Schur functions of certain shapes with only two columns. It is the
formula of Brändén [3] that enables us to represent the Narayana polynomials in terms
of Schur functions.

To prove the desired Schur positivity, we need to verify several identities on Schur
functions, and we would acknowledge the powerful role of the Maple packages for
symmetric functions, ACE [35] and SF [30].

The second conjecture of Liu and Wang [19] is concerned with the Narayana trans-
formation on sequences of positive real numbers. The Davenport-Pólya theorem [9]
states that if (an)n≥0 and (bn)n≥0 are log-convex then their binomial convolution

cn =
n∑
k=0

(
n

k

)
akbn−k, n ≥ 0

is also log-convex. It is known that the binomial convolution also preserves the log-
concavity [36]. However, it is not generally true that a log-convexity preserving trans-
formation also preserves the log-concavity. The componentwise sum is a simple exam-
ple. On the other hand, Liu and Wang [19] have realized that the componentwise sum
preserves log-convexity. Moreover, it is not true that a transformation which preserves
log-concavity necessarily preserves log-convexity. The ordinary convolution is such an
example [19, 36].

Given combinatorial numbers (t(n, k))0≤k≤n such as the binomial coefficients, one
can define a linear operator which transforms a sequence (an)n≥0 into another sequence
(bn)n≥0 as given by

bn =
n∑
k=0

t(n, k)ak, n ≥ 0.

Liu and Wang [19] have shown that the log-convexity is preserved by linear transfor-
mations associated with the binomial coefficients, the Stirling numbers of the first kind
and the second kind. The following conjecture is due to Liu and Wang [19].

Conjecture 1.2 The Narayana transformation bn =
∑n

k=0N(n, k)ak preserves log-
convexity.

We will give a proof of this conjecture based on the monotone property of certain
quartic polynomials and the q-log-convexity of Narayana polynomials.

In addition, we further prove the strong q-log-concavity of the q-Narayana numbers.
The q-Narayana numbers, as a natural q-analogue of the Narayana numbers N(n, k),
arise from the study of q-Catalan numbers [13]. The q-Narayana number Nq(n, k) is
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given by

Nq(n, k) =
1

[n]

[n
k

] [ n

k + 1

]
qk

2+k, (1.1)

where we use the standard notation

[k] := (1− qk)/(1− q), [k]! = [1][2] · · · [k],

[
n

j

]
:=

[n]!

[j]![n− j]!

for the q-analogues of the integer k, the q-factorial, and the q-binomial coefficient.

It is known that the q-Narayana number Nq(n, k) is the natural refinement of the q-
Catalan number cn(1) = 1

[n+1]

[
2n
n

]
defined in [13]. Brändén [3] studied several Narayana

statistics and bi-statistics on Dyck paths, and noticed that the q-Narayana number
Nq(n, k) has a Schur function expression by specializing the variables.

Theorem 1.3 ([3, Theorem 6]) For all n, k ∈ N we have

Nq(n, k) = s(2k)(q, q
2, . . . , qn−1). (1.2)

It was known that the q-analogues of many well-known combinatorial numbers are
strongly q-log-concave. Bulter [6] and Krattenthaler [16] proved the q-log-concavity of
the q-binomial coefficients, and Leroux [20] and Sagan [25] studied the q-log-concavity
of the q-Stirling numbers of the first kind and the second kind. It was also known
that the Narayana numbers N(n, k) are log-concave for given n or k. Based on some
symmetric function identities, we will show that Nq(n, k) are strongly q-log-concave for
given n or k.

This paper is organized as follows. In Section 2, we give a brief review of relevant
background on symmetric functions. In Section 3, we give several symmetric function
identities involving Schur functions indexed by two-column shapes, and derive the
Schur positivity needed to prove the two conjectures of Liu and Wang. Section 4 deals
with the strong q-log-convexity of Narayana polynomials. The notion of strong q-log-
convexity is analogous to that of strong q-log-concavity as given by Sagan [26]. In
Section 5, we show that the Narayana transformation preserves log-convexity. Finally,
in Section 6 we derive the strong q-log-concavity of the q-Narayana numbers.

2 Background on Symmetric Functions

In this section we review some relevant background on symmetric functions and present
several recurrence formulas for computing the principal specializations of Schur func-
tions indexed by certain two-column shapes, which will be used later in the proofs of
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the main theorems. More specifically, the hook-content formula plays an important
role in reducing the log-convexity preserving property of the Narayana transformation
to the monotone property of certain polynomials, and the recurrence formulas enable
us to reduce the q-log-convexity for Narayana polynomials to the Schur positivity for
certain sums of symmetric functions.

Throughout this paper we will adopt the notation and terminology on partitions
and symmetric functions in Stanley [29]. Given a nonnegative integer n, a partition λ
of n is a weakly decreasing nonnegative integer sequence (λ1, λ2, . . . , λk) ∈ Nk such that∑k

i=1 λi = n. The number of nonzero components λi is called the length of λ, denoted
`(λ). We also denote the partition λ by (. . . , 2m2 , 1m1) if i appears mi times in λ. For
example, λ = (4, 2, 2, 1, 1, 1) = (41, 22, 13), where we omit imi if mi = 0. Let Par(n)
denote the set of all partitions of n. The Young diagram of λ is an array of squares in
the plane justified from the top and left corner with `(λ) rows and λi squares in row
i. By transposing the diagram of λ, we get the conjugate partition of λ, denoted λ′.
A square (i, j) in the diagram of λ is the square in row i from the top and column j
from the left. The hook length of (i, j), denoted h(i, j), is given by λi + λ′j − i− j + 1.
The content of (i, j), denoted c(i, j), is given by j − i. Given two partitions λ and µ,
we say that λ contains µ, denoted µ ⊆ λ, if λi ≥ µi holds for each i. When µ ⊆ λ,
we can define a skew partition λ/µ as the diagram obtained from the diagram of λ by
removing the diagram of µ at the top-left corner.

A semistandard Young tableau of shape λ/µ is an array T = (Tij) of positive
integers of shape λ/µ that is weakly increasing in every row and strictly increasing in
every column. The type of T is defined as the composition α = (α1, α2, . . .), where αi
is the number of i’s in T . Let x denote the set of variables {x1, x2, . . .}. If T has type
type(T ) = α, then we write

xT = xα1
1 x

α2
2 · · · .

The skew Schur function sλ/µ(x) of shape λ/µ is defined as the generating function

sλ/µ(x) =
∑
T

xT ,

summed over all semistandard Young tableaux T of shape λ/µ filled with positive
integers. When µ is the empty partition ∅, we call sλ(x) the Schur function of shape
λ. In particular, we set s∅(x) = 1. It is well known that the Schur functions sλ form a
basis for the ring of symmetric functions.

Let y = {y1, y2, . . .} be another set of variables, and let sλ/µ(x, y) denote the Schur
function in x ∪ y. Note that

sλ/µ(x, y) =
∑
ν

sλ/ν(x)sν/µ(y), (2.3)
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where the sum ranges over all partitions ν satisfying µ ⊆ ν ⊆ λ, see [21, 29].

For a symmetric function f(x), its principle specialization psn(f) and specialization
ps1n(f) of order n are defined by

psn(f) = f(1, q, . . . , qn−1),
ps1n(f) = psn(f)|q=1 = f(1n).

For notational convenience, we often omit the variable set x and simply write sλ for
the Schur function sλ(x) if no confusion arises in the context. The following formula
is called the hook-content formula due to Stanley [27].

Lemma 2.1 ([29, Corollary 7.21.4]) For any partition λ and n ≥ 1, we have

psn(sλ) = q
∑

k≥1(k−1)λk
∏

(i,j)∈λ

[n+ c(i, j)]

[h(i, j)]
(2.4)

and

ps1n(sλ) =
∏

(i,j)∈λ

n+ c(i, j)

h(i, j)
. (2.5)

On the other hand, in view of (2.3), we deduce the following formulas for the
principle specializations of the Schur functions sλ indexed by two-column shapes.

Lemma 2.2 Let k be a positive integer and n > 1. For any a < 0 or b < 0, set
s(2a,1b) = 0 by convention. Then we have

psn
(
s(2k)

)
= psn−1

(
s(2k)

)
+ qn−1psn−1

(
s(2k−1,1)

)
+ q2(n−1)psn−1

(
s(2k−1)

)
(2.6)

and

psn
(
s(2k,1)

)
= psn−1

(
s(2k,1)

)
+ qn−1psn−1

(
s(2k) + s(2k−1,12)

)
+ q2(n−1)psn−1

(
s(2k−1,1)

)
. (2.7)

Furthermore,

ps1n
(
s(2k)

)
= ps1n−1

(
s(2k) + s(2k−1,1) + s(2k−1)

)
, (2.8)

ps1n
(
s(2k,1)

)
= ps1n−1

(
s(2k,1) + s(2k) + s(2k−1,12) + s(2k−1,1)

)
. (2.9)
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Lemma 2.3 For any m ≥ n ≥ 1 and k ≥ 0, we have

ps1m
(
s(2k)

)
=

∑
0≤a≤b≤m−n

ps1n(s(2k−b,1b−a))ps1m−n(s(2a,1b−a)). (2.10)

The Littlewood-Richardson rule enables us to expand a product of Schur functions
in terms of Schur functions. There are several versions of the Littlewood-Richardson
rule; see [29, Chapter 7, Appendix A1.3] and [12, Part I, Chapter 5]. These settings have
their own advantages when applied to various problems. For example, Knutson and
Tao [15] used the honeycomb model to prove the saturation conjecture. A well-known
version is the combinatorial interpretation of the Littlewood-Richardson coefficients in
terms of lattice permutations, which we will adopt for our purpose.

Recall that a lattice permutation of length n is a sequence w1w2 · · ·wn such that for
any i and j in the subsequence w1w2 · · ·wj the number of i’s is greater than or equal
to the number of i+ 1’s. Let T be a semistandard Young tableau. The reverse reading
word T rev is a sequence of entries of T obtained by first reading each row from right
to left and then concatenating the rows from top to bottom. If the reverse reading
word T rev is a lattice permutation, we call T a Littlewood-Richardson tableau. Given
two Schur functions sµ and sν , Littlewood-Richardson coefficients cλµν can be defined
by the following relation

sµsν =
∑
λ

cλµνsλ. (2.11)

Theorem 2.4 ([29, Theorem A1.3.3]) The Littlewood-Richardson coefficient cλµν is
equal to the number of Littlewood-Richardson tableaux of shape λ/µ and type ν.

Take λ = (9, 5, 3, 3, 1), µ = (4, 2, 1), ν = (7, 4, 3). By using the Maple package
for symmetric functions we find that cλµν = 3. Indeed, there are three Littlewood-
Richardson tableaux of shape λ/µ and type ν as shown in Figure 2.1.

∗ ∗ ∗ ∗ 1 1 1 1 1
∗ ∗ 1 1 2
∗ 2 2
2 3 3
3

∗ ∗ ∗ ∗ 1 1 1 1 1
∗ ∗ 1 2 2
∗ 2 2
1 3 3
3

∗ ∗ ∗ ∗ 1 1 1 1 1
∗ ∗ 1 2 2
∗ 1 2
2 3 3
3

Figure 2.1: Skew Littlewood-Richardson tableaux

When taking ν = (n) or ν = (1n) in (2.11), the Littlewood-Richardson rule has
a simpler description, known as Pieri’s rule. We need the notion of horizontal and
vertical strips. A skew partition λ/µ is called a horizontal (or vertical) strip if there
are no two squares in the same column (resp. in the same row).
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Theorem 2.5 ([29, Theorem 7.15.7, Corollary 7.15.9]) We have

sµs(n) =
∑
λ

sλ

summed over all partitions λ such that λ/µ is a horizontal strip of size n, and

sµs(1n) =
∑
λ

sλ

summed over all partitions λ such that λ/µ is a vertical strip of size n.

3 Schur positivity

The main goal of this section is to prove the Schur positivity of certain sums of symmet-
ric functions, which will be needed in the proof of the q-log-convexity of the Narayana
polynomials in Section 4. Given a symmetric function f , recall that f is called s-
positive (or s-negative) if the coefficients aλ in the expansion f =

∑
λ aλsλ of f in

terms of Schur functions are all nonnegative (resp. nonpositive).

The Schur positivity we establish is deduced from several symmetric function i-
dentities which will be proved by induction based on the Littlewood-Richardson rule.
More specifically, the identities we consider will involve the products of Schur functions
indexed by partitions with only two-columns. These Schur functions are of particular
interest for their own sake, see, for example, Rosas [24], and Remmel and Whitehead
[23].

It is time to mention that throughout this paper, the Littlewood-Richardson coef-
ficients are either one or two, and we will consider those shapes that will occur in the
expansion of the product of Schur functions. It is worth mentioning that the Schur
expansion of the product of two Schur functions would be multiplicity free when one
factor is indexed by a rectangular shape, see Stembridge [31].

Let us first introduce certain classes of products of Schur functions that will be the
ingredients to establish the desired Schur positivity. Given m ∈ N and 0 ≤ i ≤ m, let

D
(1)
m,i = s(2i)s(2m−i−1),

D
(2)
m,i = s(2i−1,12)s(2m−i−1),

D
(3)
m,i = s(2i−1,1)s(2m−i−1,1),

and let
Dm,i = D

(1)
m,i +D

(2)
m,i −D

(3)
m,i, (3.12)
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where s(2i,1) = s(2i,12) = 0 for i < 0 by convention. It is clear that Dm,m ≡ 0.

For two partitions λ and µ, let λ∪ µ be the partition obtained by taking the union
of all parts of λ and µ and then rearranging them in the weakly decreasing order. For
k ∈ N we use λk to represent the union of k λ’s, and in particular put λk = ∅ if k = 0. In
this notation, we introduce an operator ∆µ on the ring of symmetric functions defined
by a partition µ. For a symmetric function f , suppose that f has the expansion

f =
∑
λ

aλsλ,

and then the action of ∆µ on f is given by

∆µ(f) =
∑
λ

aλsλ∪µ.

For example, if
f = s(4,3,2) + 3s(2,2,1) + 2s(5),

then
∆(3,1)f = s(4,3,3,2,1) + 3s(3,2,2,1,1) + 2s(5,3,1).

Lemma 3.1 For any n ≥ k ≥ 1, we have

s(2k)s(2n+1) = ∆(2)(s(2k)s(2n)), (3.13)

s(2k−1,12)s(2n+1) = ∆(2)(s(2k−1,12)s(2n)), (3.14)

s(2k)s(2n+1,12) = ∆(2)(s(2k)s(2n,12)), (3.15)

s(2k−1,1)s(2n+1,1) = ∆(2)(s(2k−1,1)s(2n,1)). (3.16)

Proof. Define aλ by

s(2k)s(2n) =
∑
λ

aλsλ.

By Theorem 2.4, the coefficient aλ is equal to the number of Littlewood-Richardson
tableaux of shape λ/(2n) and type (2k). We claim that aλ = 0 if the diagram of λ
contains the square (n + 1, 3); Otherwise, we get a contradiction to the assumption
n ≥ k since the column strictness of Young tableaux requires that there should be at
least n + 1 distinct numbers in the tableau. Therefore, for a Littlewood-Richardson
tableau T of shape λ/(2n) and type (2k) we can construct a Littlewood-Richardson
tableau T ′ of shape λ∪ (2)/(2n+1) and of the same type by moving all rows of T to the
next row except for the first n rows and inserting two empty squares at the (n+ 1)-th
row. Clearly, the construction of T ′ is reversible, as illustrated in Figure 3.2. Hence the
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∗ ∗ 1 1
∗ ∗ 2
∗ ∗ 3
∗ ∗
∗ ∗
2
3

⇔

∗ ∗ 1 1
∗ ∗ 2
∗ ∗ 3
∗ ∗
∗ ∗

2
3

T T ′

Figure 3.2: Bijection between Littlewood-Richardson tableaux

first formula is verified. The other identities can be proved based on similar arguments.

Sometimes it is convenient to regard a tableau T of type (2k, 1l) as a semistandard
tableau T̃ filled with distinct numbers in the ordered set

{1 < 1′ < 2 < 2′ < · · · < n < n′ < · · · }.

For this purpose, let T̃ be the tableau such that T̃ rev is the word obtained from T rev

by replacing the first occurrence of i in T rev by i′ for each i and keeping rest elements
unchanged, as shown in Figure 3.3.

∗ ∗ ∗ 1 1
∗ ∗ 2 2
∗ ∗ 3
∗ ∗ 4
∗ 3 5
∗ 4
5 6
7

⇒

∗ ∗ ∗ 1 1′
∗ ∗ 2 2′
∗ ∗ 3′
∗ ∗ 4′
∗ 3 5′
∗ 4
5 6′
7′

T T̃

Figure 3.3: Construct T̃ from T

We also need the following notation to represent a set of partitions associated with
a specified partition. Given a partition µ, let

Qµ(n) = {λ ∈ Par(n) : λ = µ ∪ (4)a ∪ (3, 1)b ∪ (2, 2)c for a, b, c ∈ N}.

Lemma 3.2 Let m = 2k + 1 for some k ∈ N. The following statements hold.

(i)

D
(1)
m,k = D

(1)
2k+1,k = s(2k)s(2k) =

∑
λ∈Q∅(4k)

sλ.
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(ii)

D
(1)
m,k+1 = D

(1)
2k+1,k+1 = s(2k+1)s(2k−1) =

∑
λ∈Q(2,2)(4k)

sλ.

(iii) Let Q1(n) = Q(3,1)(n) ∪Q(2,1,1)(n) ∪Q(3,3,2)(n). Then

D
(2)
m,k = D

(2)
2k+1,k = s(2k−1,12)s(2k) =

∑
λ∈Q1(4k)

sλ.

(iv) Let Q2(n) = Q(2,1,1)(n) ∪Q(3,2,2,1)(n) ∪Q(3,3,2,2,2)(n). Then

D
(2)
m,k+1 = D

(2)
2k+1,k+1 = s(2k,12)s(2k−1) =

∑
λ∈Q2(4k)

sλ.

(v) Let Q3(n) = Q(3,1)(n) ∪Q(2,2)(n) ∪Q(2,1,1)(n) ∪Q(3,3,2)(n). Then

D
(3)
m,k = D

(3)
2k+1,k = s(2k−1,1)s(2k,1) =

∑
λ∈Q3(4k)

aλsλ,

where aλ = 2 if λ ∈ Q(3,2,2,1)(4k), otherwise aλ = 1.

(vi) We have

D
(3)
m,k+1 = D

(3)
2k+1,k+1 = s(2k,1)s(2k−1,1) =

∑
λ∈Q3(4k)

aλsλ,

where aλ = 2 if λ ∈ Q(3,2,2,1)(4k), otherwise aλ = 1.

Proof.

(i) Use induction on k. Clearly, the assertion holds for k = 0 since s∅ = 1, and it also
holds for k = 1 by applying Pieri’s rule; see Theorem 2.5. From the Littlewood-
Richardson rule it follows that if sλ appears in the Schur expansion of s(2k)s(2k),
then λ does not contain any part greater than 4. So we need to show that for
each Littlewood-Richardson tableau T of shape µ/(2k) and type (2k), subject
to the conditions on the shapes and types, there are uniquely three Littlewood-
Richardson tableaux of type (2k+1), which are T1 of shape µ ∪ (4)/(2k+1), T2 of
shape µ ∪ (3, 1)/(2k+1) and T3 of shape µ ∪ (2, 2)/(2k+1).

Let T1 be the tableau obtained from T by increasing all numbers by 1 and then
inserting a four-square row on top of T such that the rightmost two squares are
filled with 1’s.

Suppose that T has r rows of length greater than 2, and that the largest number
in the first r rows is j and we set j = 0 if r = 0. Consider the relabeled tableau
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T̃ corresponding to T . Let T̃ ′ be the tableau obtained from T̃ by increasing all
numbers below the r-th row by 1 (i.e., changing i to i′ and i′ to i+ 1), inserting
a three-square row at the (r + 1)-th row such that the rightmost square is filled
with (j + 1)′, and appending a single square row at the bottom filled with k+ 1.
Let T2 be the tableau obtained from T̃ ′ by replacing each i′ with i.

To construct the tableau T3, note that the tableau T does not contain the square
(k+1, 3). Consider the numbers in the first k rows. Let j1 and j2 be the smallest
and largest numbers which appear only once in the first k rows of T . Starting with
the tableau T̃ , let T̃ ′ be the tableau obtained from T̃ by increasing all numbers
below the k-th row by 2 (i.e., changing i to i + 1 and i′ to (i + 1)′), inserting a
row of two empty squares below the k-th row, and then inserting a two-square
row filled with (j1, (j2 + 1)′) immediately below the row that has been inserted.
If no number appears only once in the first k rows, consider the largest number j
which appears twice in these rows (taking j = 0 if no such number exists). Then
let T̃ ′ be the tableau obtained from T̃ by increasing all numbers below the k-th
row by 2, inserting a row of two empty squares below the k-th row, and then
inserting a two-square row filled with (j + 1, (j + 1)′) immediately below the row
just inserted. Let T3 be the tableau obtained from T̃ ′ by replacing each i′ with i.

Note that if T is a Littlewood-Richardson tableau of shape µ/(2k) and type (2k),
then there exist some nonnegative integers r, s, t such that the reverse reading
word T̃ rev is of the form (wa, wb, wc, wd), where

wa = 1′, 1, . . . , r′, r

wb = (r + 1)′, . . . , (r + s)′

wc = (r + s+ 1)′, (r + 1), . . . , (r + s+ t)′, (r + s)

wd = (r + s+ 1), . . . , (r + s+ t)

and r + s + t = k. From T̃ rev we can write out T1
rev, T2

rev, T3
rev explicitly ac-

cording to the above constructions. Now it is easy to verify that they are lattice
permutations. Figure 3.4 is an illustration of the constructions of T1, T2, T3.

On the other hand, it is also necessary to show that for each Littlewood-Richardson
tableau T ′ of shape λ/(2k+1) and type (2k+1), we can find a Littlewood-Richardson
tableau T of shape µ/(2k) and of type 2k such that λ = µ ∪ (4), λ = µ ∪ (3, 1)
or λ = µ ∪ (2, 2). It is easy to see that if λ contains at least one row of length 4,
then T can be obtained from T ′ by reversing the construction of T1. If T ′ has a
two-square row fully filled with numbers and all rows of T ′ contain at most three
squares, then T can be obtained by reversing the construction of T3. Otherwise,
T ′ contains at least one row of length 1 and one row of length 3 in view of the
type of T ′. In this case, we reverse the construction of T2 to obtain T . Note
that T is not uniquely determined by T ′. Nevertheless, there exists a unique

13



∗ ∗ 1 1
∗ ∗ 2 2
∗ ∗ 3
∗ ∗
3 4
4

⇒
1 1

∗ ∗ 2 2
∗ ∗ 3 3
∗ ∗ 4
∗ ∗
4 5
5

T T1

∗ ∗ 1 1
∗ ∗ 2 2
∗ ∗ 3
∗ ∗
3 4
4

⇒ ∗ ∗ 1 1′
∗ ∗ 2 2′
∗ ∗ 3′
∗ ∗
3 4′
4

⇒

∗ ∗ 1 1′
∗ ∗ 2 2′
∗ ∗ 3′

4′
∗ ∗
3′ 5
4′
5

⇒

∗ ∗ 1 1
∗ ∗ 2 2
∗ ∗ 3

4
∗ ∗
3 5
4
5

T T̃ T̃ ′ T2

∗ ∗ 1 1
∗ ∗ 2 2
∗ ∗ 3
∗ ∗
3 4
4

⇒ ∗ ∗ 1 1′
∗ ∗ 2 2′
∗ ∗ 3′
∗ ∗
3 4′
4

⇒

∗ ∗ 1 1′
∗ ∗ 2 2′
∗ ∗ 3′
∗ ∗

3 4′
4 5′
5

⇒

∗ ∗ 1 1
∗ ∗ 2 2
∗ ∗ 3
∗ ∗

3 4
4 5
5

T T̃ T̃ ′ T3

Figure 3.4: Construction of T1, T2, T3 from T of shape (42, 3, 22, 1)/(24)

Littlewood-Richardson tableau of shape λ/(2k) and type (2k) if sλ appears in the
expansion of s(2k)s(2k). Thus, s(2k)s(2k) is multiplicity free. The proof is completed
by induction.

(ii) Clearly, the assertion holds for k = 0, 1, and D1
3,2 = s(2,2). The proof is similar to

that of (i). Here we consider the Littlewood-Richardson tableau of shape λ/(2k)
and type (2k−1) if sλ appears in s(2k+1)s(2k−1).

(iii) Notice that D
(2)
2k+1,k = 0 for k = 0, and D

(2)
2k+1,k = s(3,1) + s(2,1,1) for k = 1. For

k = 2, we have

D
(2)
2k+1,k = s(4,3,1) + s(4,2,12) + s(32,2) + s(32,12)

+s(3,22,1) + s(3,2,13) + s(23,12).

We now use induction on k. If sλ appears in the expansion of D
(2)
2k+1,k, then λ does

14



not contain the square (k + 1, 3), because there exists no Littlewood-Richardson
tableau of shape λ/(2k) and type (2k−1, 1, 1), or equivalently, there is no filling
of the (k + 1)-th row satisfying the lattice permutation condition. Then we can
proceed as in the proof of (i).

(iv) For k = 0, it is clear that D
(2)
2k+1,k+1 = 0. For k = 1, we have D

(2)
2k+1,k+1 = s2,1,1.

For k = 2, we find

D
(2)
2k+1,k+1 = s(4,2,12) + s(3,22,1) + s(3,2,13) + s(23,12).

For k = 3, we find

D
(2)
2k+1,k+1 = s(42,2,12) + s(4,3,22,1) + s(4,3,2,13) + s(4,23,12) + s(32,23)

+s(32,22,12) + s(3,24,1) + s(32,2,14) + s(3,23,13) + s(25,12).

Then we use induction on k ≥ 4 and consider Littlewood-Richardson tableaux of
shape λ/(2k, 12) and type (2k−1).

(v) For k = 0, D
(3)
2k+1,k = 0. For k = 1, we get

D
(3)
2k+1,k = s(3,1) + s(22) + s(2,12).

For k = 2, we have

D
(3)
2k+1,k = s(4,3,1) + s(4,22) + s(4,2,12) + s(32,2)

+2s(3,22,1) + s(32,12) + s(3,2,13) + s(24) + s(23,12)

To use induction on k, we consider Littlewood-Richardson tableaux of shape
λ/(2k, 1) and type (2k−1, 1). If λ ∈ Q(3,2,2,1)(4k) there are exactly two such
Littlewood-Richardson tableaux, see Figure 3.5 for the case of λ = (4, 33, 22, 13).
The rest of the proof is similar to that of (i).

∗ ∗ 1 1
∗ ∗ 2
∗ ∗ 3
∗ ∗ 4
∗ ∗
∗ 2
3
4
5

∗ ∗ 1 1
∗ ∗ 2
∗ ∗ 3
∗ ∗ 4
∗ ∗
∗ 5
2
3
4

Figure 3.5: Littlewood-Richardson tableaux of shape (4, 33, 22, 13)/(25, 1) and type
(24, 1)
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(vi) It is immediate from (v).

This completes the proof of the lemma.

Theorem 3.3 Let m = 2k + 1 for some k ∈ N.

(i) We have

Dm,k = s(3k)s(1k), (3.17)

Dm,k+1 = s(4k) − s(3k)s(1k) −∆(2)(s(3k)s1(k−2)). (3.18)

(ii) For any 0 ≤ i ≤ k − 1, we have

Dm,i = ∆(2)(Dm−1,i), (3.19)

Dm,m−i = ∆(2)(Dm−1,m−1−i). (3.20)

Proof. (i) To prove (3.17), we need (i), (iii) and (v) of Lemma 3.2. If λ ∈ Q(3,2,2,1)(4k),

then sλ appears in the expansion of both D
(1)
m,k and D

(2)
m,k, and therefore vanishes in

Dm,k. If λ ∈ Q(3,3,2)(4k)∪Q(2,1,1)(4k), then sλ appears in both D
(2)
m,k and D

(3)
m,k, and also

vanishes in Dm,k. If λ ∈ Q(2,2)(4k) but λ 6∈ Q(3,1)(4k), then sλ appears in both D
(1)
m,k

and D
(3)
m,k, and also vanishes in Dm,k. Therefore, for a term sλ which does not vanish

in Dm,k, the index partition λ belongs to the set Q∅(4k) but 2 does not appear as a
part. By virtue of Pieri’s rule, the Schur functions not vanishing in Dm,k coincide with
the terms in the Schur expansion of s(3k)s(1k). Similarly, we can prove (3.18) using (ii),
(iv) and (vi) of Lemma 3.2.

(ii) These are direct consequences of Lemma 3.1.

This completes the proof of the theorem.

Using the same argument in the proof of Lemma 3.2, we can deduce the following
expansion formulas when m is even.

Lemma 3.4 Let m = 2k for k ∈ N. The following statements hold.

(i)

D
(1)
m,k = D

(1)
2k,k = s(2k)s(2k−1) =

∑
λ∈Q(2)(4k−2)

sλ.
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(ii)

D
(1)
m,k−1 = D

(1)
2k,k−1 = s(2k−1)s(2k) =

∑
λ∈Q(2)(4k−2)

sλ.

(iii) Let R1(n) = Q(1,1)(n) ∪Q(3,3,2,2)(n) ∪Q(3,2,1)(n). Then

D
(2)
m,k = D

(2)
2k,k = s(2k−1,12)s(2k−1) =

∑
λ∈R1(4k−2)

sλ.

(iv) Let R2(n) = Q(3,3)(n) ∪Q(3,2,1)(n) ∪Q(2,2,1,1)(n). Then

D
(2)
m,k−1 = D

(2)
2k,k−1 = s(2k−2,12)s(2k) =

∑
λ∈R2(4k−2)

sλ.

(v) Let R3(n) = Q(3,3)(n) ∪Q(2)(n) ∪Q(1,1)(n). Then

D
(3)
m,k = D

(3)
2k,k = s(2k−1,1)s(2k−1,1) =

∑
λ∈R3(4k−2)

aλsλ,

where aλ = 2 if λ ∈ Q(3,2,1)(4k − 2), otherwise aλ = 1.

(vi) Let R4(n) = Q(3,3,2,2)(n) ∪Q(3,2,1)(n) ∪Q(2,2,2)(n) ∪Q(2,2,1,1)(n). Then

D
(3)
m,k−1 = s(2k−2,1)s(2k,1) =

∑
λ∈R4(4k−2)

aλsλ,

where aλ = 2 if λ ∈ Q(3,2,2,2,1)(4k), otherwise aλ = 1.

In view of Lemmas 3.1 and 3.4, we deduce the following theorem for even m. The
proof is similar to that of Theorem 3.3 and is omitted.

Theorem 3.5 Let m = 2k for some k ∈ N.

(i) We have

Dm,k−1 = s(3k)s(1k−2) + ∆(2)(s(3k−1)s(1k−1)), (3.21)

Dm,k = −s(3k)s(1k−2). (3.22)

(ii) For any 0 ≤ i ≤ k − 2, we have

Dm,i = ∆(2)(Dm−1,i), (3.23)

Dm,m−i = ∆(2)(Dm−1,m−1−i), (3.24)

Dm,m−k+1 = ∆(2)(Dm−1,m−k). (3.25)
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Corollary 3.6 Assume k ≥ 1.

(i) If m = 2k + 1, then Dm,i is s-positive for 0 ≤ i ≤ k, and Dm,i is s-negative for
k + 1 ≤ i ≤ m− 1.

(ii) If m = 2k, then Dm,i is s-positive for 0 ≤ i ≤ k − 1, and Dm,i is s-negative for
k ≤ i ≤ m− 1.

Proof. Use induction on m. It is easy to verify that the result holds for k = 1.
For m = 2k + 1, we see that Dm,k is s-positive and Dm,k+1 is s-negative in view
of (i) of Theorem 3.3. For 0 ≤ i ≤ k − 1, using (ii) of Theorem 3.3 we see that
Dm,i = ∆(2)D2k,i is s-positive by induction. Similarly, for k + 2 ≤ i ≤ 2k we find that
Dm,i = ∆(2)D2k,i−1 is s-negative by induction. For m = 2k, from (i) of Theorem 3.5 it
follows that Dm,k−1 is s-positive and Dm,k is s-negative. For 0 ≤ i ≤ k−2, using (ii) of
Theorem 3.5, by induction we obtain that Dm,i = ∆(2)D2k−1,i is s-positive. Similarly,
for k+ 1 ≤ i ≤ 2k− 1, by induction we deduce that Dm,i = ∆(2)D2k−1,i−1 is s-negative.

Theorems 3.3 and 3.5 lead to a construction for the underlying partitions of the
Schur expansion. Table 3.1 is an illustration.

Given a set S of positive integers, let ParS(n) denote the set of partitions of n
whose parts belong to S. We are now ready to present the following theorem on Schur
positivity.

Theorem 3.7 For any m ≥ 0, we have∑m
i=0

(
s(2i−1)s(2m−i) + s(2i−2,12)s(2m−i) − s(2i−1,1)s(2m−i−1,1)

)
=
∑

λ∈Par{2,4}(2m−2) sλ. (3.26)

Consequently, the summation on the left-hand side of the above identity is s-positive.

Before proving the above theorem, let us give some examples. Taking m = 3, 4, 5
and using the Maple package, we observe that∑3

k=0

(
s(2k−1)s(23−k) + s(2k−2,12)s(23−k) − s(2k−1,1)s(23−k−1,1)

)
= s(4) + s(2,2).∑4

k=0

(
s(2k−1)s(24−k) + s(2k−2,12)s(24−k) − s(2k−1,1)s(24−k−1,1)

)
= s(4,2) + s(2,2,2).∑5

k=0

(
s(2k−1)s(25−k) + s(2k−2,12)s(25−k) − s(2k−1,1)s(25−k−1,1)

)
= s(4,4) + s(4,2,2) + s(2,2,2,2).

18



m = 7
D7,0 s(26)
D7,1 s(4,24) + s(32,23) + s(3,24,1)
D7,2 s(32,22,12) + s(4,32,2) + s(42,22) + s(33,2,1) + s(4,3,22,1)
D7,3 s(4,32,12) + s(33,13) + s(42,3,1) + s(43)
D7,4 −s(4,32,2) − s(4,32,12) − s(33,2,1) − s(33,13) − s(42,3,1)
D7,5 −s(32,23) − s(32,22,12) − s(4,3,22,1)
D7,6 −s(3,24,1)
D7,7 0

m = 8
D8,0 s(27)
D8,1 s(4,25) + s(32,24) + s(3,25,1)
D8,2 s(32,23,12) + s(4,32,22) + s(42,23) + s(33,22,1) + s(4,3,23,1)
D8,3 s(4,32,2,12) + s(33,2,13) + s(42,3,2,1) + s(43,2)

+s(34,12) + s(42,32) + s(4,33,1)
D8,4 −s(34,12) − s(42,32) − s(4,33,1)
D8,5 −s(42,3,2,1) − s(33,22,1) − s(33,2,13) − s(4,32,2,12) − s(4,32,22)
D8,6 −s(32,24) − s(32,23,12) − s(4,3,23,1)
D8,7 −s(3,25,1)
D8,8 0

m = 9
D9,0 s(28)
D9,1 s(4,26) + s(32,25) + s(3,26,1)
D9,2 s(32,24,12) + s(4,32,23) + s(42,24) + s(33,23,1) + s(4,3,24,1)
D9,3 s(4,32,22,12) + s(33,22,13) + s(42,3,22,1) + s(43,22)

+s(34,2,12) + s(42,32,2) + s(4,33,2,1)
D9,4 s(4,33,13) + s(42,32,12) + s(44) + s(43,3,1) + s(34,14)
D9,5 −s(4,33,13) − s(42,32,12) − s(44) − s(43,3,1) − s(34,14)

−s(34,2,12) − s(42,32,2) − s(4,33,2,1)
D9,6 −s(42,3,22,1) − s(33,23,1) − s(33,22,13) − s(4,32,22,12) − s(4,32,23)
D9,7 −s(32,25) − s(32,24,12) − s(4,3,24,1)
D9,8 −s(3,26,1)
D9,9 0

Table 3.1: Schur function expansions of Dm,k for m = 7, 8, 9
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Proof of Theorem 3.7. By convention, for i = 0 or i = m+ 1, it is natural to set

s(2i−1)s(2m−i) + s(2i−2,12)s(2m−i) = 0.

Therefore,

m∑
i=0

(
s(2i−1)s(2m−i) + s(2i−2,12)s(2m−i) − s(2i−1,1)s(2m−i−1,1)

)
=

m∑
i=0

Dm,i.

It suffices to prove that

m+1∑
i=0

Dm+1,i =

{
∆(2) (

∑m
i=0Dm,i) , if m = 2k − 1

s(4k) + ∆(2) (
∑m

i=0Dm,i) , if m = 2k
(3.27)

for m ≥ 0. The case for m = 0 is obvious. We now assume m ≥ 1.

If m = 2k − 1 for some k ≥ 1, then∑m+1
i=0 Dm+1,i =

∑2k
i=0D2k,i

=
∑k−2

i=0 D2k,i +D2k,k−1 +D2k,k +D2k,k+1 +
∑k−2

i=0 D2k,2k−i

=
∑k−2

i=0 ∆(2)(D2k−1,i) +
(
s(3k)s(1k−2) + ∆(2)(s(3k−1)s(1k−1))

)
+
(
−s(3k)s(1k−2)

)
+ ∆(2)(D2k−1,k)

+
∑k−2

i=0 ∆(2)(D2k−1,2k−1−i) (by Theorem 3.5)

=
∑k−2

i=0 ∆(2)(D2k−1,i) + ∆(2)(D2k−1,k−1) + ∆(2)(D2k−1,k)

+
∑k−2

i=0 ∆(2)(D2k−1,2k−1−i) (by (3.17))

=
∑2k−1

i=0 ∆(2)(D2k−1,i) = ∆(2) (
∑m

i=0Dm,i) .

If m = 2k for some k ≥ 1, then∑m+1
i=0 Dm+1,i =

∑2k+1
i=0 D2k+1,i

=
∑k−1

i=0 D2k+1,i +D2k+1,k +D2k+1,k+1 +
∑k−1

i=0 D2k+1,2k+1−i

=
∑k−1

i=0 ∆(2)(D2k,i) + s(3k)s(1k)

+
(
s(4k) − s(3k)s(1k) −∆(2)(s(3k)s1(k−2))

)
+
∑k−1

i=0 ∆(2)(D2k,2k−i) (by Theorem 3.3)

= s(4k) +
∑2k

i=0 ∆(2)(D2k,i) (by (3.22))

= s(4k) + ∆(2) (
∑m

i=0Dm,i) .
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Based on (3.27), we obtain the desired assertion by induction on m.

Now we consider other products of Schur functions, which are necessary to prove
the strong q-log-convexity of the Narayana polynomials.

Given a, b, r ∈ N and 0 ≤ k ≤ r, let

D1(a, b, k, r) = s(2k−b−1,1b+2−a)s(2r−k−1),

D2(a, b, k, r) = s(2k−b,1b−a)s(2r−k−1),

D3(a, b, k, r) = s(2k−b−1,1b+1−a)s(2r−k−1,1).

and let
D(a, b, k, r) = D1(a, b, k, r) +D2(a, b, k, r)−D3(a, b, k, r), (3.28)

where s(2i,1j) = 0 for i < 0 or j < 0. It is easy to see that D(a, b, r, r) ≡ 0. For
i = 1, 2, 3, it is also clear that

Di(a, b, k, r) = Di(a− 1, b− 1, k − 1, r − 1),

hence
D(a, b, k, r) = D(a− 1, b− 1, k − 1, r − 1). (3.29)

Some values of D(a, b, k, r) are given in Table 3.2.

Given a pair (λ, µ) of partitions and a pair (f1, f2) of symmetric functions, we define
the product ∆̃λ,µ(f1, f2) of f1 and f2 as follows. Suppose that

∆λ(f1) =
∑
ν

aνsν , (3.30)

∆µ(f2) =
∑
ν

bνsν . (3.31)

Define
∆̃λ,µ(f1, f2) =

∑
ν

max(aν , bν)sν . (3.32)

Lemma 3.8 For any r ≥ k ≥ b ≥ a ≥ 0 and i = 1, 2, 3, we have the following
recurrence relations

Di(a, b, k, r) = ∆̃(1),(3)(Di(a, b− 1, k − 1, r − 1), Di(a, b− 1, k − 1, r − 2)). (3.33)

Proof. We first prove that

s(2k−b−1,1b+2−a)s(2r−k−1) =

∆̃(1),(3)(s(2k−b−1,1b+1−a)s(2r−k−1), s(2k−b−1,1b+1−a)s(2r−k−2)).

21



a = 0, b = 1, r = 8
D(a, b, 0, r) 0
D(a, b, 1, r) s(3,25) + s(26,1)
D(a, b, 2, r) s(33,22) + s(32,23,1) + s(3,24,12) + s(4,3,23) + s(4,24,1)
D(a, b, 3, r) s(4,32,2,1) + s(4,3,22,12) + s(33,2,12) + s(32,22,13)

+s(42,3,2) + s(42,22,1) + s(4,33) + s(34,1)
D(a, b, 4, r) s(42,3,12) − s(4,33) + s(4,32,13) − s(34,1) + s(33,14) + s43,1
D(a, b, 5, r) −s(4,32,2,1) − s(33,22) − s(33,2,12) − s(42,3,12) − s(4,32,13) − s(33,14)
D(a, b, 6, r) −s(4,3,22,12) − s(32,23,1) − s(32,22,13)
D(a, b, 7, r) −s(3,24,12)
D(a, b, 8, r) 0

a = 0, b = 1, r = 9
D(a, b, 0, r) 0
D(a, b, 1, r) s(3,26) + s(27,1)
D(a, b, 2, r) s(33,23) + s(32,24,1) + s(3,25,12) + s(4,3,24) + s(4,25,1)
D(a, b, 3, r) s(4,33,2) + s(34,2,1) + s42,23,1) + s(4,3,23,12)

+s(32,23,13) + s(42,3,22) + s(4,32,22,1) + s(33,22,12)
D(a, b, 4, r) s(43,3) + s(42,32,1) + s(4,33,12) + s(34,13) + s(43,2,1)

+s(42,3,2,12) + s(4,32,2,13) + s(33,2,14)
D(a, b, 5, r) −s(42,32,1) − s(4,33,12) − s(34,13) − s(4,33,2) − s(34,2,1)
D(a, b, 6, r) −s(4,32,22,1) − s(33,23) − s(33,22,12) − s(42,3,2,12)

−s(4,32,2,13) − s(33,2,14)
D(a, b, 7, r) −s(4,3,23,12) − s(32,24,1) − s(32,23,13)
D(a, b, 8, r) −s(3,25,12)

a = 0, b = 2, r = 10
D(a, b, 1, r) 0
D(a, b, 2, r) s(32,25) + s(3,26,1) + s(27,12)
D(a, b, 3, r) s(34,22) + s(4,32,23) + s(4,25,12)

+s(33,23,1) + s(32,24,12) + s(3,25,13) + s(4,3,24,1)
D(a, b, 4, r) s(35,1) + s(4,34) + s(42,32,2) + s(4,33,2,1) + s(34,2,12) + s(42,23,12)

+s(4,3,23,13) + s(32,23,14) + s(42,3,22,1) + s(4,32,22,12) + s(33,22,13)
D(a, b, 5, r) −s(35,1) − s(4,34) + s(43,3,1) + s(42,32,12) + s(4,33,13) + s(34,14)

+s(43,2,12) + s(42,3,2,13) + s(4,32,2,14) + s(33,2,15)
D(a, b, 6, r) −s(42,32,12) − s(4,33,13) − s(34,14) − s(4,33,2,1) − s(34,2,12) − s(34,22)
D(a, b, 7, r) −s(4,32,22,12) − s(33,22,13) − s(33,23,1) − s(33,2,15)

−s(4,32,2,14) − s(42,3,2,13)
D(a, b, 8, r) −s(4,3,23,13) − s(32,24,12) − s(32,23,14)
D(a, b, 9, r) −s(3,25,13)

Table 3.2: Schur function expansion of D(a, b, k, r) for r = 8, 9, 1022



We claim that there exists an injective map between the set of Littlewood-Richardson
tableaux of shape µ/(2r−k−1) and type (2k−b−1, 1b+1−a) and the set of Littlewood-
Richardson tableaux of shape µ ∪ (1)/(2r−k−1) and type (2k−b−1, 1b+2−a). This means
that if sλ appears in the Schur expansion of s(2k−b−1,1b+1−a)s(2r−k−1), then sλ∪(1) appears
in s(2k−b−1,1b+2−a)s(2r−k−1). This injective map can be constructed as follows. Given a
Littlewood-Richardson tableau T of shape µ/(2r−k−1) and type (2k−b−1, 1b+1−a), let T ′

be the tableau obtained from T by appending one row composed of a single square
filled with k+ 1−a. Clearly, T ′ is a Littlewood-Richardson tableau of λ∪ (1)/(2r−k−1)
and type (2k−b−1, 1b+2−a). See the first two tableaux in Figure 3.6.

It will be shown that there exists an injective map between the set of Littlewood-
Richardson tableaux of shape µ/(2r−k−2) and type (2k−b−1, 1b+1−a) and the set of
Littlewood-Richardson tableaux of shape µ ∪ (3)/(2r−k−1) and type (2k−b−1, 1b+2−a).
This means that if sµ appears in the expansion of s(2k−b−1,1b+1−a)s(2r−k−2), then sµ∪(3)
appears in s(2k−b−1,1b+2−a)s(2r−k−1). Given a Littlewood-Richardson tableau T of shape

µ/(2r−k−2) and type (2k−b−1, 1b+1−a), we consider the corresponding tableau T̃ . Sup-
pose that T has m rows of length 4 (taking m = 0 if no such row exists). Let T̃ ′ be the
tableau obtained from T̃ by inserting one row of three squares at the (m + 1)-th row
in which the rightmost square is filled with (m + 1)′, and then increasing all numbers
below the (m + 1)-th row by 1 (i.e., changing i to i′ and i′ to i + 1). Let T ′ be the
tableau obtained from T̃ ′ by replacing i′ with i for each i. It is routine to verify that T ′

is a Littlewood-Richardson tableau of shape µ∪ (3)/(2r−k−1) and type (2k−b−1, 1b+2−a),
as desired. See the last four tableaux in Figure 3.6.

Moreover, it remains to prove that any Littlewood-Richardson tableau T ′ of shape
λ/(2r−k−1) and type (2k−b−1, 1b+2−a) can be constructed from a Littlewood-Richardson
tableau T , which is either of shape µ/(2r−k−2) and type (2k−b−1, 1b+1−a) with λ = µ∪(3),
or of shape µ/(2r−k−1) and type (2k−b−1, 1b+1−a) with λ = µ ∪ (1). If 3 is a part of
λ, then we can reverse the map in the pervious paragraph to obtain T . If 3 does not
appear as a part of λ, then the lattice permutation property requires that λ should
contain a part of size 1 and the bottom square should be filled with k + 1− a. In this
case, let T be the tableau obtained from T ′ by removing the bottom row.

Thus we complete the proof of the recurrence of D1(a, b, k, r), and the rest can be
proved in the same manner.

Theorem 3.9 For any b ≥ a ≥ 0 and r ≥ 0, the symmetric function
∑r

k=0D(a, b, k, r)
is s-positive.

Proof. We use induction on the difference b− a. When a = b, note that
r∑

k=0

D(a, b, k, r) =
r∑

k=a

D(0, 0, k − a, r − a) =
r−a∑
i=0

Dr−a,i.
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∗ ∗ 1 1
∗ ∗ 2 2
∗ ∗ 3
∗ ∗ 4
∗ ∗ 5
∗ ∗ 6
∗ ∗
3 7
4 8

⇒

∗ ∗ 1 1
∗ ∗ 2 2
∗ ∗ 3
∗ ∗ 4
∗ ∗ 5
∗ ∗ 6
∗ ∗
3 7
4 8
9

T T ′

∗ ∗ 1 1
∗ ∗ 2 2
∗ ∗ 3
∗ ∗ 4
∗ ∗ 5
∗ ∗
3 6
4 7
8

⇒

∗ ∗ 1 1′
∗ ∗ 2 2′
∗ ∗ 3′
∗ ∗ 4′
∗ ∗ 5′
∗ ∗
3 6′
4 7′
8′

⇒

∗ ∗ 1 1′
∗ ∗ 2 2′

3′
∗ ∗ 4
∗ ∗ 5
∗ ∗ 6
∗ ∗
3′ 7
4′ 8
9

⇒

∗ ∗ 1 1
∗ ∗ 2 2
∗ ∗ 3
∗ ∗ 4
∗ ∗ 5
∗ ∗ 6
∗ ∗
3 7
4 8
9

T T̃ T̃ ′ T ′

Figure 3.6: Two ways to construct T ′

According to Theorem 3.7, it is s-positive. Now suppose b − a ≥ 1. The negative
terms of D(a, b, k, r) come from either ∆(1)(D(a, b − 1, k − 1, r − 1)) or ∆(3)(D(a, b −
1, k − 1, r − 2)) by Lemma 3.8. They always vanish in

∑r
k=0D(a, b, k, r) since both∑r

k=0D(a, b−1, k−1, r−1) and
∑r

k=0D(a, b−1, k−1, r−2) are s-positive by induction.
This completes the proof.

4 The q-Log-convexity

The main objective of this section is to show that the Narayana polynomials form a
strongly q-log-convex sequence. This is a stronger version of the conjecture of Liu and
Wang.

Theorem 4.1 The Narayana polynomials Nn(q) form a strongly q-log-convex sequence.

Proof. Note that, for 0 ≤ k ≤ n, we have

N(n, k) = Nq(n, k)|q=1 = s(2k)(1
n−1) = ps1n−1

(
s(2k)

)
. (4.34)
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For k > n, we see that N(n, k) = 0 = ps1n−1
(
s(2k)

)
.

For any m ≥ n ≥ 1 and r ≥ 0, the coefficient of qr in Nm+1(q)Nn−1(q) equals

C1 =
r∑

k=0

ps1m
(
s(2k)

)
ps1n−2

(
s(2r−k)

)
, (4.35)

and the coefficient of qr in Nm(q)Nn(q) equals

C2 =
r∑

k=0

ps1m−1
(
s(2k)

)
ps1n−1

(
s(2r−k)

)
. (4.36)

According to Lemma 2.3, we have

ps1m
(
s(2k)

)
=

∑
0≤a≤b≤m−n+2

ps1n−2(s(2k−b,1b−a))ps1m−n+2(s(2a,1b−a)),

ps1m−1
(
s(2k)

)
=

∑
0≤a≤b≤m−n+1

ps1n−2(s(2k−b,1b−a))ps1m−n+1(s(2a,1b−a)),

ps1n−1
(
s(2r−k)

)
= ps1n−2

(
s(2r−k) + s(2r−k−1,1) + s(2r−k−1)

)
.

By expansion we obtain that

C1 − C2 =∑r
k=0

∑
0≤a≤b≤m−n+2 ps1m−n+2(s(2a,1b−a))ps1n−2(s(2k−b,1b−a)s(2r−k))

−
∑r

k=0

∑
0≤a≤b≤m−n+1 ps1m−n+1(s(2a,1b−a))ps1n−2(s(2k−b,1b−a)s(2r−k))

−
∑r

k=0

∑
0≤a≤b≤m−n+1 ps1m−n+1(s(2a,1b−a))ps1n−2(s(2k−b,1b−a)s(2r−k−1,1))

−
∑r

k=0

∑
0≤a≤b≤m−n+1 ps1m−n+1(s(2a,1b−a))ps1n−2(s(2k−b,1b−a)s(2r−k−1)).

To simplify the notation, let d = m− n+ 1. Note that

ps1d+1(s(2a,1b−a)) = ps1d(s(2a,1b−a)) + ps1d(s(2a,1b−a−1))

+ps1d(s(2a−1,1b−a)) + ps1d(s(2a−1,1b−a+1)).

Therefore, the double summation

r∑
k=0

∑
0≤a≤b≤d+1

ps1d+1(s(2a,1b−a))s(2k−b,1b−a)s(2r−k)
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can be divided into four parts

A1 =
∑r

k=0

∑
0≤a≤b≤d+1 ps1d(s(2a,1b−a))s(2k−b,1b−a)s(2r−k)

A2 =
∑r

k=0

∑
0≤a≤b≤d+1 ps1d(s(2a,1b−a−1))s(2k−b,1b−a)s(2r−k)

A3 =
∑r

k=0

∑
0≤a≤b≤d+1 ps1d(s(2a−1,1b−a))s(2k−b,1b−a)s(2r−k)

A4 =
∑r

k=0

∑
0≤a≤b≤d+1 ps1d(s(2a−1,1b−a+1))s(2k−b,1b−a)s(2r−k).

Let
B1 =

∑r
k=0

∑
0≤a≤b≤d ps1d(s(2a,1b−a))s(2k−b,1b−a)s(2r−k),

B2 =
∑r

k=0

∑
0≤a≤b≤d ps1d(s(2a,1b−a))s(2k−b,1b−a)s(2r−k−1,1),

B3 =
∑r

k=0

∑
0≤a≤b≤d ps1d(s(2a,1b−a))s(2k−b,1b−a)s(2r−k−1).

The equality A1 = B1 holds because

A1 = B1 +
r∑

k=0

∑
0≤a≤d+1

ps1d(s(2a,1d+1−a))s(2k−d−1,1d+1−a)s(2r−k),

but ps1d(s(2a,1d+1−a)) ≡ 0.

We also have the equality A3 = B3 since

A3 =
∑r

k=0

∑
0≤a≤b≤d+1 ps1d(s(2a−1,1b−a))s(2k−b,1b−a)s(2r−k)

=
∑r

k=0

∑
1≤a≤b≤d+1 ps1d(s(2a−1,1b−a))s(2k−b,1b−a)s(2r−k)

=
∑r

k=0

∑
0≤a≤b≤d ps1d(s(2a,1b−a))s(2k−b−1,1b−a)s(2r−k)

=
∑r

k=1

∑
0≤a≤b≤d ps1d(s(2a,1b−a))s(2k−b−1,1b−a)s(2r−k)

=
∑r−1

k=0

∑
0≤a≤b≤d ps1d(s(2a,1b−a))s(2k−b,1b−a)s(2r−k−1)

=
∑r

k=0

∑
0≤a≤b≤d ps1d(s(2a,1b−a))s(2k−b,1b−a)s(2r−k−1)

= B3.
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Moreover, we have

A2 =
∑r

k=0

∑
0≤a≤b≤d+1 ps1d(s(2a,1b−a−1))s(2k−b,1b−a)s(2r−k)

=
∑r

k=0

∑
0≤a<b≤d+1 ps1d(s(2a,1b−a−1))s(2k−b,1b−a)s(2r−k)

=
∑r

k=0

∑
0≤a≤b≤d ps1d(s(2a,1b−a))s(2k−b−1,1b+1−a)s(2r−k)

=
∑r

k=0

∑
0≤a<b≤d ps1d(s(2a,1b−a))s(2k−b−1,1b+1−a)s(2r−k)

+
∑r

k=0

∑
0≤a≤d ps1d(s(2a))s(2k−a−1,1)s(2r−k)

=
∑r

k=1

∑
0≤a<b≤d ps1d(s(2a,1b−a))s(2k−b−1,1b+1−a)s(2r−k)

+
∑r

k=0

∑
0≤a≤d ps1d(s(2a))s(2k−a−1,1)s(2r−k)

=
∑r

k=1

∑
0≤a≤b≤d−1 ps1d(s(2a,1b+1−a))s(2k−b−2,1b+2−a)s(2r−k)

+
∑r

k=0

∑
0≤a≤d ps1d(s(2a))s(2k−a−1,1)s(2r−k)

=
∑r−1

k=0

∑
0≤a≤b≤d−1 ps1d(s(2a,1b+1−a))s(2k−b−1,1b+2−a)s(2r−k−1)

+
∑r

k=0

∑
0≤a≤d ps1d(s(2a))s(2k−a−1,1)s(2r−k)

and
A4 =

∑r
k=0

∑
0≤a≤b≤d+1 ps1d(s(2a−1,1b−a+1))s(2k−b,1b−a)s(2r−k)

=
∑r

k=0

∑
1≤a≤b≤d ps1d(s(2a−1,1b−a+1))s(2k−b,1b−a)s(2r−k)

=
∑r

k=1

∑
1≤a≤b≤d ps1d(s(2a−1,1b−a+1))s(2k−b,1b−a)s(2r−k)

=
∑r

k=1

∑
0≤a≤b≤d−1 ps1d(s(2a,1b+1−a))s(2k−b−1,1b−a)s(2r−k)

=
∑r−1

k=0

∑
0≤a≤b≤d−1 ps1d(s(2a,1b+1−a))s(2k−b,1b−a)s(2r−k−1)

and
B2 =

∑r
k=0

∑
0≤a≤b≤d ps1d(s(2a,1b−a))s(2k−b,1b−a)s(2r−k−1,1)

=
∑r

k=0

∑
0≤a<b≤d ps1d(s(2a,1b−a))s(2k−b,1b−a)s(2r−k−1,1)

+
∑r

k=0

∑
0≤a≤d ps1d(s(2a))s(2k−a)s(2r−k−1,1)

=
∑r

k=0

∑
0≤a<b≤d ps1d(s(2a,1b−a))s(2k−b,1b−a)s(2r−k−1,1)

+
∑r

k=0

∑
0≤a≤d ps1d(s(2a))s(2k−a−1,1)s(2r−k)

=
∑r−1

k=0

∑
0≤a≤b≤d−1 ps1d(s(2a,1b+1−a))s(2k−b−1,1b+1−a)s(2r−k−1,1)

+
∑r

k=0

∑
0≤a≤d ps1d(s(2a))s(2k−a−1,1)s(2r−k).
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Therefore,

C1 − C2 = ps1n−2((A1 + A2 + A3 + A4)− (B1 +B2 +B3))

= ps1n−2(A2 + A4 −B2)

= ps1n−2
(∑

0≤a≤b≤d−1 ps1d(s(2a,1b+1−a))
∑r

k=0D(a, b, k, r)
)

From Theorem 3.9 we deduce that∑
0≤a≤b≤d−1

ps1d(s(2a,1b+1−a))
r∑

k=0

D(a, b, k, r)

is s-positive, hence C1 − C2 is nonnegative, as desired.

As a corollary, we are led to an affirmative answer to Conjecture 1.1.

Corollary 4.2 The Narayana polynomials Nn(q) form a q-log-convex sequence.

Remark. Butler and Flanigan [7] defined a different q-analogue of log-convexity.
In their definition, a sequence of polynomials (fk(q))k≥0 is called q-log-convex if

fm−1(q)fn+1(q)− qn−m+1fm(q)fn(q)

has nonnegative coefficients for n ≥ m ≥ 1. They proved that the q-Catalan num-
bers of Carlitz and Riordan [8] form a q-log-convex sequence. However, the Narayana
polynomial sequence (Nn(q))n≥0 is not q-log-convex by the definition of Butler and
Flanigan.

5 The Narayana transformation

In [19] Liu and Wang studied several log-convexity preserving transformations, and they
also realized the connection between the q-log-convexity and the linear transformations
preserving the log-convexity. They conjectured that if the sequence (ak)k≥0 of positive
real numbers is log-convex then the sequence

bn =
n∑
k=0

N(n, k)ak, n ≥ 0

is also log-convex. In this section we will provide a proof of this conjecture. We first
give two lemmas.
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For any n ≥ 1 and 0 ≤ r ≤ 2n, we define the following polynomials in x with
integer coefficients:

f1(x) = (n+ 1)(n− x+ 1)(n− x)2(n− x− 1),

f2(x) = (n+ 1)(n− (r − x) + 1)(n− (r − x))2(n− (r − x)− 1),

f3(x) = (n− 1)(n− x)(n− x+ 1)(n− (r − x))(n− (r − x) + 1).

Let
f(x) = f1(x) + f2(x)− 2f3(x).

Lemma 5.1 For fixed integers n ≥ 1 and 0 ≤ r < 2n, the polynomial f(x) is monotone
decreasing in x on the interval (−∞, r

2
].

Proof. Taking the derivative f ′(x) of f(x) with respect to x, we obtain that

f ′(x) = 2(2x− r)g(x),

where

g(x) = 4x2 − 4xr − 2n+ r + 2r2 − 5nr − 8n2r − 2 + 2nr2 + 6n2 + 8n3.

Note that the discriminant of the quadratic polynomial g(x) equals

(−4r)2 − 16(−2n+ r + 2r2 − 5nr − 8n2r − 2 + 2nr2 + 6n2 + 8n3)

= 16(−r2 + 2n− r + 5nr + 8n2r + 2− 2nr2 − 6n2 − 8n3). (5.37)

Let us consider the following polynomial

g1(y) = −y2 + 2n− y + 5ny + 8n2y + 2− 2ny2 − 6n2 − 8n3

in y on the interval (−∞, 2n). The derivative of g1(y) with respect to y is

g′1(y) = −2y − 1 + 5n+ 8n2 − 4ny = (4n+ 2)(2n− y) + n− 1.

Therefore, g′1(y) > 0 for y ∈ (−∞, 2n). Then for any 0 ≤ r < 2n and n ≥ 1 we have

g1(r) ≤ g1(2n− 1) = −3n+ 2 < 0.

This implies that g(x) > 0 and f ′(x) = 2(2x− r)g(x) < 0 for x ∈ (−∞, r
2
). Therefore,

f(x) is monotone decreasing on the interval (−∞, r
2
].
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Lemma 5.2 For any n ≥ 1, 0 ≤ r ≤ 2n and 0 ≤ k ≤ b r
2
c, let

α(n, r, k) = N(n+ 1, k)N(n− 1, r − k) +N(n+ 1, r − k)N(n− 1, k)

−2N(n, r − k)N(n, k).

Then, for given n and r, there always exists an integer k′ = k′(n, r) such that α(n, r, k) ≥
0 for k ≤ k′ and α(n, r, k) ≤ 0 for k > k′.

Proof. Assume that n and r are given. Clearly, if k ≤ r−n−1, then n ≤ (r−k)−1 and
α(n, r, k) = 0. We only need to determine the sign of α(n, r, k) for r−n−1 < k ≤ b r

2
c.

Note that N(m, k) = ps1m−1(s(2k)) for any m ∈ N. By Lemma 2.1 we find that

N(m, k) =
((n− 1)(n− 2) · · · (n− r + k)) · (n(n− 1) · · · (n− r + k + 1))

k!(k + 1)!
.

Let

C = (n− 1)(n− 2)2(n− 3)2 · · · (n− k + 2)2(n− k + 1),

C ′ = (n− 1)(n− 2)2(n− 3)2 · · · (n− (r − k) + 2)2(n− (r − k) + 1).

Then we have

α(n, r, k) =
C

k!(k + 1)!
· C ′

(r − k)!(r − k + 1)!
· f(k).

Now let us consider the value of f(k) for fixed r. We have the following three cases.

(i) When r = 2m+ 1 for some 0 ≤ m < n, by Lemma 5.1 we have

f(0) ≥ f(1) ≥ · · · ≥ f(m),

where

f(0) = 2(2m+ 1)(n+ 1)((4m+ 1)(n−m)(n−m− 1) +m(m+ 1)) ≥ 0.

(ii) When r = 2m for some 0 ≤ m < n, by Lemma 5.1 we have

f(0) ≥ f(1) ≥ · · · ≥ f(m),

where
f(0) = 4m(n+ 1)((4m− 1)(n−m)2 +m(m− 1) ≥ 0.
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(iii) When r = 2n, we have

f(k) = 4(n− k + 1)(n− k − 1)(n− k)2.

Therefore, f(k) > 0 for any k < n and f(n) = 0.

Notice that there always exists an integer k′ such that f(k) ≥ 0 for k ≤ k′ and
f(k) ≤ 0 for k > k′. Because both C and C ′ are nonnegative, we reach the desired
conclusion.

Theorem 5.3 If the sequence (ak)k≥0 of positive real numbers is log-convex, then the
sequence

bn =
n∑
k=0

N(n, k)ak, n ≥ 0

is log-convex.

In general, the Narayana transformation does not preserve the log-convexity, and
the condition that (ak)k≥0 is a positive sequence is necessary for the above theorem.
For example, if we take ak = (−1)k for k ≥ 0, then it is easy to see that (ak)k≥0 is
log-convex, but (bn)n≥0 is not log-convex.

Proof of Theorem 5.3. For any n, r, k ≥ 0, let

α′(n, r, k) =

{
α(n, r, k)/2, if r is even and k = r/2,

α(n, r, k), otherwise.

Note that for n ≥ 1

bn−1bn+1 − b2n =
2n∑
r=0

 b r2 c∑
k=0

α′(n, r, k)akar−k


and

Nn−1(q)Nn+1(q)−Nn(q)2 =
2n∑
r=0

 b r2 c∑
k=0

α′(n, r, k)

 qr.

By Corollary 4.2, we see that
b r
2
c∑

k=0

α′(n, r, k) ≥ 0
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for any r ≥ 0. Since the sequence (ak)k≥0 is a log-convex sequence of positive real
numbers, we obtain that

a0ar ≥ a1ar−1 ≥ a2ar−2 ≥ · · · .

Lemma 5.2 implies that there exists an integer k′ = k′(n, r) such that

b r
2
c∑

k=0

α′(n, r, k)akar−k ≥
b r
2
c∑

k=0

α′(n, r, k)ak′ar−k′ ≥ 0.

Therefore, (bn)n≥0 is log-convex.

6 The q-log-concavity

This section is devoted to the q-log-concavity of the q-Narayana numbers Nq(n, k)
for given n or k. First we apply Brändén’s formula (1.2) to express the q-Narayana
numbers in terms of specializations of Schur functions. This formulation enables us to
reduce the q-log-concavity of the q-Narayana numbers to the Schur positivity of some
differences between the products of Schur functions indexed by two-column shapes.
Notice that much work has been done on the Schur positivity of the differences of
products of Schur functions, see, for example, Bergeron, Biagioli and Rosas [2], Fomin,
Fulton, Li and Poon [11] and Okounkov [22].

We now proceed to prove the q-log-concavity of q-Narayana numbers Nq(n, k) for
fixed n.

Theorem 6.1 Given a positive integer n, the sequence (Nq(n, k))k≥0 is strongly q-log-
concave.

Proof. Using (1.2), for any k ≥ l ≥ 1, we get

Nq(n, k)Nq(n, l)−Nq(n, k + 1)Nq(n, l − 1) = s(2k)s(2l) − s(2k+1)s(2l−1),

where each Schur function on the righthand side is over the variable set {q, q2, . . . , qn−1}.
Using induction on k−l, we can show that the symmetric function s(2k)s(2l)−s(2k+1)s(2l−1)

is s-positive. Clearly, this statement is true for k = l, because by (i) and (ii) of Lemma
3.2, we have

s(2k)s(2k) − s(2k+1)s(2k−1) =
∑

λ∈Q∅(4k)

sλ −
∑

λ∈Q(2,2)(4k)

sλ =
k∑
a=0

s(4a,3k−a,1k−a).
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For k > l, by (3.13) we have

s(2k)s(2l) = ∆(2)(s(2k−1)s(2l)),

s(2k+1)s(2l−1) = ∆(2)(s(2k)s(2l−1)).

It follows that

s(2k)s(2l) − s(2k+1)s(2l−1) = ∆(2)(s(2k−1)s(2l) − s(2k)s(2l−1)).

By induction, s(2k−1)s(2l) − s(2k)s(2l−1) is s-positive, so is s(2k)s(2l) − s(2k+1)s(2l−1). The
Schur positivity of the above difference was also shown by Bergeron and McNamara [1,
Remark 7.2], and Kleber [14] gave a proof for the case of k = l. In view of the variable
set for symmetric functions, we see that the difference Nq(n, k)Nq(n, l) − Nq(n, k +
1)Nq(n, l − 1) has nonnegative coefficients as a polynomial of q. This completes the
proof.

Next we will consider the q-log-concavity of the q-Narayana numbers Nq(n, k) for
fixed k. We will use a result due to Lam, Postnikov and Pylyavaskyy [18]. Given two
partitions λ = (λ1, λ2, . . .) and µ = (µ1, µ2, . . .), let

λ ∨ µ = (max(λ1, µ1),max(λ2, µ2), . . .),

λ ∧ µ = (min(λ1, µ1),min(λ2, µ2), . . .).

For two skew partitions λ/µ and ν/ρ, we define

(λ/µ) ∨ (ν/ρ) = (λ ∨ ν)/(µ ∨ ρ),

(λ/µ) ∧ (ν/ρ) = (λ ∧ ν)/(µ ∧ ρ).

The following assertion was conjectured by Lam and Pylyavaskyy [17] and proved
by Lam, Postnikov and Pylyavaskyy [18]. We will be interested in two special cases of
this fact.

Theorem 6.2 ([18, Theorem 5]) For any two skew partitions λ/µ and ν/ρ, the d-
ifference

s(λ/µ)∨(ν/ρ)s(λ/µ)∧(ν/ρ) − sλ/µsν/ρ
is s-positive.

In particular, we will need the following special cases.
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Corollary 6.3 Let k be a positive integer. If I, J are partitions with I ⊆ (2k−1) and
J ⊆ (2k−1, 1), then both

s(2k−1)s(2k)/I − s(2k−1)/Is(2k) (6.38)

and
s(2k−1,1)s(2k)/J − s(2k−1,1)/Js(2k) (6.39)

are s-positive.

Proof. For (6.38), take λ = (2k−1), µ = I, ν = (2k) and ρ = ∅ in Theorem 6.2. For
(6.39), take λ = (2k−1, 1), µ = J, ν = (2k) and ρ = ∅.

For any r ≥ 1, let

Xr = {q, q2, . . . , qr−1}, X−1r = {q−1, q−2, . . . , q−(r−1)}.

The following relations are crucial for the proof of the q-log-concavity of the q-Narayana
numbers Nq(n, k) for given k.

Lemma 6.4 For any m ≥ n ≥ 1 and k ≥ 1, we have

qn−1s(2k−1,1)(Xn−1)s(2k)(Xm)− qms(2k−1,1)(Xm)s(2k)(Xn−1)

= qk−1
(
s(2k−1,1)(Xn−1)s(2k)(Xm)− s(2k−1,1)(Xm)s(2k)(Xn−1)

)
(6.40)

and

q2(n−1)s(2k−1)(Xn−1)s(2k)(Xm)− q2ms(2k−1)(Xm)s(2k)(Xn−1)

= q2k(m+n−1) (s(2k−1)(X
−1
n−1)s(2k)(X

−1
m )− s(2k−1)(X

−1
m )s(2k)(X

−1
n−1)

)
. (6.41)

Proof. We will adopt the following notation for q-series in the proof. For indeterminates
a, a1, · · · , as and integer r ≥ 0, let

(a; q)r = (1− a)(1− aq) · · · (1− aqr−1),
(a1, a2, · · · , as; q)r = (a1; q)r(a2; q)r · · · (as; q)r.

By Lemma 2.1, we have

s(2k−1,1)(Xn−1) = s(2k−1,1)(q, q
2, · · · , qn−2)

=
qk

2
(qn−k−1; q)k(q

n−k+1; q)k−1
(1− q)(q; q)k−1(q3; q)k−1
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and

s(2k)(Xn) = s(2k)(q, q
2, · · · , qn−1)

=
qk(k+1)(qn−k; q)k(q

n−k+1; q)k
(q; q)k(q2; q)k

.

Therefore, the left hand side of (6.40) equals

q2k
2+k+n−1(qn−k+1; q)k−1(q

n−k−1, qm−k, qm−k+1; q)k
(1− q)(q, q3; q)k−1(q, q2; q)k

− q2k
2+k+m(qm−k+2; q)k−1(q

m−k, qn−k−1, qn−k; q)k
(1− q)(q, q3; q)k−1(q, q2; q)k

=
q2k

2+k+n−1(1− qm−n+1)(qm−k+2, qn−k+1; q)k−1(q
m−k, qn−k−1; q)k

(1− q)(q, q3; q)k−1(q, q2; q)k

and the difference s(2k−1,1)(Xn−1)s(2k)(Xm)− s(2k−1,1)(Xm)s(2k)(Xn−1) equals

q2k
2+k(qn−k+1; q)k−1(q

n−k−1, qm−k, qm−k+1; q)k
(1− q)(q, q3; q)k−1(q, q2; q)k

− q2k
2+k(qm−k+2; q)k−1(q

m−k, qn−k−1, qn−k; q)k
(1− q)(q, q3; q)k−1(q, q2; q)k

=
q2k

2+n(1− qm−n+1)(qm−k+2, qn−k+1; q)k−1(q
m−k, qn−k−1; q)k

(1− q)(q, q3; q)k−1(q, q2; q)k
.

Comparing the above two identities, we arrive at (6.40).

Next we prove the second identity. The left hand side of (6.41) equals

q2(n+k
2−1)(qn−k, qn−k+1; q)k−1(q

m−k, qm−k+1; q)k
(q, q2; q)k−1(q, q2; q)k

− q2(m+k2)(qm−k+1, qm−k+2; q)k−1(q
n−k−1, qn−k; q)k

(q, q2; q)k−1(q, q2; q)k

=
f(q)(qn−k, qn−k+1, qm−k+1, qm−k+2; q)k−1

(q, q2; q)k−1(q, q2; q)k
,

where
f(q) = q2k

2−k−2(qm+1 − qn)(qm+n+1 + qm+n − qm+k+1 − qn+k).
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The difference s(2k−1)(Xn−1)s(2k)(Xm)− s(2k−1)(Xm)s(2k)(Xn−1) equals

q2k
2
(qn−k, qn−k+1; q)k−1(q

m−k, qm−k+1; q)k
(q, q2; q)k−1(q, q2; q)k

− q2k
2
(qm−k+1, qm−k+2; q)k−1(q

n−k−1, qn−k; q)k
(q, q2; q)k−1(q, q2; q)k

=
g(q)(qn−k, qn−k+1, qm−k+1, qm−k+2; q)k−1

(q, q2; q)k−1(q, q2; q)k
,

where
g(q) = q2k

2−2k−1(qm+1 − qn)(qm+1 + qn − qk+1 − qk).

It is routine to verify that g(q−1) = q2k+1−4k2−2m−2nf(q). Then (6.41) follows from
the fact that (1− q−r) = −q−r(1− qr) for any r.

Now we are ready to prove the q-log-concavity of the q-Narayana numbers (Nq(n, k))n≥0
for given k.

Theorem 6.5 Given a positive integer k, the sequence (Nq(n, k))n≥0 is strongly q-log-
concave.

Proof. For any m ≥ n ≥ 1, let

Am,n(q) = Nq(m, k)Nq(n, k)−Nq(m+ 1, k)Nq(n− 1, k).

By (1.2), we have

Am,n(q) = s(2k)(Xm)s(2k)(Xn)− s(2k)(Xm+1)s(2k)(Xn−1).

Applying (2.3) to s(2k)(Xn) and s(2k)(Xm+1), the above Am,n(q) equals

s(2k)(Xm)
(
s(2k)(Xn−1) + qn−1s(2k−1,1)(Xn−1) + q2(n−1)s(2k−1)(Xn−1)

)
−
(
s(2k)(Xm) + qms(2k−1,1)(Xm) + q2ms(2k−1)(Xm)

)
s(2k)(Xn−1)

=
(
qn−1s(2k−1,1)(Xn−1)s(2k)(Xm)− qms(2k−1,1)(Xm)s(2k)(Xn−1)

)
+
(
q2(n−1)s(2k−1)(Xn−1)s(2k)(Xm)− q2ms(2k−1)(Xm)s(2k)(Xn−1)

)
.
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By Lemma 6.4, we obtain that Am,n(q) equals

qk−1
(
s(2k−1,1)(Xn−1)s(2k)(Xm)− s(2k−1,1)(Xm)s(2k)(Xn−1)

)
+q2k(m+n−1) (s(2k−1)(X

−1
n−1)s(2k)(X

−1
m )− s(2k−1)(X

−1
m )s(2k)(X

−1
n−1)

)
= qk−1s(2k−1,1)(Xn−1)s(2k)(Z)

+qk−1
∑

J⊆(2k−1,1) sJ(Z)
(
s(2k−1,1)s(2k)/J − s(2k−1,1)/Js(2k)

)
(Xn−1)

+q2k(m+n−1)s(2k−1)(X
−1
n−1)s(2k)(Z

−1)

+q2k(m+n−1)s(2k−1)(X
−1
n−1)s(2k−1,1)(Z

−1)s(1)(X
−1
n−1)

+q2k(m+n−1)∑
I⊆(2k−1) sI(Z)

(
s(2k−1)s(2k)/I − s(2k−1)/Is(2k)

)
(X−1n−1),

where Z = {qn−1, . . . , qm−1} and Z−1 = {q1−n, . . . , q1−m}. Applying Corollary 6.3, we
complete the proof.
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