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Abstract. We show that the number of anti-lecture hall compositions of n with the
first entry not exceeding k — 2 equals the number of overpartitions of n with non-
overlined parts not congruent to 0,41 modulo k. This identity can be considered
as a finite version of the anti-lecture hall theorem of Corteel and Savage. To prove
this result, we find two Rogers-Ramanujan type identities for overpartitions which are
analogous to the Rogers—Ramanjan type identities due to Andrews. When k is odd,
we give another proof by using the bijections of Corteel and Savage for the anti-lecture
hall theorem and the generalized Rogers—Ramanujan identity also due to Andrews.
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1 Introduction

The objective of this paper is to establish a connection between anti-lecture hall com-
positions with an upper bound on the first entry and overpartitions under a congruence
condition on non-overlined parts.

Corteel and Savage [6] introduced the notion of anti-lecture hall compositions
and obtained a formula for the generating function by constructing a bijection. An
anti-lecture hall composition of length £ is defined to be an integer sequence A\ =
(A1, Ag, ..., Ag) such that
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The set of anti-lecture hall compositions of length k is denoted by Ag. Corteel and

Savage have shown that
k
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Let A denote the set of anti-lecture hall compositions. Since any anti-lecture hall
composition can be written as an infinite vector ending with zeros, we have A = A,

and .
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In view of the above generating function, one sees that anti-lecture hall compositions
are connected to overpartitions. An overpartition of n is defined by a non-increasing
sequence of positive integers whose sum is n in which the first occurrence of a part may
be overlined, see, Corteel and Lovejoy [7]. In the language of overpartitions, the right-
hand side of (1.2) is the generating function for overpartitions of n with non-overlined
parts greater than 1.

We use the common notation on g-series. Let
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We also write
(@) = (a;¢)n = (1 = a)(1 —ag)--- (1 —ag"™").

The main result of this paper is the following refinement of the anti-lecture hall
theorem of Corteel and Savage [6]:

Theorem 1.1 For k > 3,

> M= (a;)w(q,qk‘l,qk; ¢")oo: (1.3)
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We shall establish a connection between anti-lecture hall compositions and the
overpartitions with congruence restrictions. Let Fj(n) be the set of anti-lecture hall
compositions A = (A1, Ag,...) of n with A\; < k. Let Hg(n) be the set of overpartitions
of n for which the non-overlined parts are not congruent to 0, £1 modulo k. Therefore,
Theorem 1.1 can be stated in the following equivalent form.



Theorem 1.2 For k > 3 and any positive integer n, we have

|Fr—2(n)| = [Hk(n)]. (1.4)

To prove the above relation, we need to compute the generating functions of the anti-
lecture hall compositions A with A; < k, depending on the parity of k. Moreover, we
shall show that these two generating functions of the anti-lecture hall compositions in
For_o(n) and Fyy_3(n) are equal to the generating functions of overpartitions in Hox(n)
and Hay,_1(n) respectively. To this end, we shall establish two Rogers—Ramanujan
type identities (2.9) and (2.12) for overpartitions which are analogous to the following
Rogers—Ramanujan type identity obtained by Andrews [1, 2|:
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where 1 < a < k. For k =2and a = 1,2, (1.5) implies the classical Rogers-Ramanujan
identities [8]:
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It is worth mentioning that Andrews’ multiple series transformation [2] can be employed
to derive the overpartition analogues of (1.5).

When the upper bound k is even, the weighted counting of anti-lecture hall com-
positions leads to the left-hand side of the first Rogers—Ramanujan type identity (2.9),
whereas the generating function for the number of overpartitions equals the right-hand
side of the first Rogers—Ramanujan type identity (2.9). The case when k is odd can be
dealt with in the same way.

For the case of an odd upper bound, we provide an alternative proof based on a
refined version of a bijection of Corteel and Savage [6] for the anti-lecture hall theorem
and the generalized Rogers-Ramanujan identity (1.5) of Andrews.

This paper is organized as follows. In Section 2, we give two Rogers—Ramanujan
type identities for overpartitions. Section 3 is concerned with the case the upper bound

k is even. Two proofs for the case when the upper bound is odd will be given in Section
4.



2 Rogers—Ramanujan type identities for overparti-
tions

In this section, we give two Rogers—Ramanujan type identities (2.9) and (2.12) for
overpartitions. It can be seen that the right-hand side of (2.9) is the generating function
for overpartitions in Hog(n). In the next section, we shall show that the left-hand side
of (2.9) equals the generating function for anti-lecture hall compositions in Fyy_o(n).
Similarly, the right-hand side of (2.12) equals the generating function for overpartitions
in Hok—1(n). In Section 4, we shall show that the left-hand side of (2.12) equals the
generating function for anti-lecture hall compositions in Fy,_3(n).

Let us recall Andrews’ multiple series transformation [2]:
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The following summation formula is a consequence of the above transformation
formula. It can be considered as a Rogers—Ramanujan type identity for overpartitions.

Theorem 2.1 For k > 2, we have
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Proof. Applying the above transformation formula by setting all variables to infinity



except for ¢, a and ¢, we get
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Setting a = ¢ and ¢, = —¢q, we find that
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Using Jacobi’s triple product identity, we get
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In view of (2.10) and (2.11), we obtain (2.9). This completes the proof. ]

The second Rogers—Ramanujan type identity for overpartitions can be stated as
follows.

Theorem 2.2 For k > 2, we have
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Proof. Applying Andrews’ transformation formula by setting all variables except for
a, c1, ¢, and ¢ to infinity, we find
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Moreover, setting a = ¢, ¢, = —q and ¢; = —q yields
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Using Jacobi’s triple product identity, we have
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Combining (2.13) and (2.14), we deduce (2.12). This completes the proof. |

3 The case of an even upper bound

In this section, we shall give a proof of Theorem 1.2 for an even upper bound 2k — 2.
More precisely, we have the following relation.

Theorem 3.1 For k> 2 andn > 1, we have

|Fara(n)] = [ Har(n)]. (3.15)
Recall that the generating function for overpartitions in Hok(n) equals
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Because of (2.9), Theorem 3.1 can be deduced from the following generating function
for anti-lecture hall compositions in Fo,_o(n).

Theorem 3.2 The generating function of anti-lecture hall compositions in Fo_o(n) is
given by
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In order to prove Theorem 3.2, we introduce a triangular representation 7'(\) =
(tij)1<i<; of an anti-lecture hall composition A which is similar to the T-triangles intro-
duced by Bousquet-Mélou and Eriksson[5].

It should be noted that Corteel and Savage [6] used a representation of a composition
A as a pair of vectors (I,7) = ((Iy,1s,...), (11,72, ...)), where \; = il;+r;, with 0 < r; <
i—1. Then I = |A] = (|[\/1], [X\2/2],...). Tt can be checked that a composition A is
an anti-lecture hall composition if and only if

(1) ll Zlgz ZO, and
(2) r; > rip1 whenever [; = l;41.
Definition 3.3 The A-triangular representation T'(\) = (t;;)1<i<j of an anti-lecture

hall composition A = (A1, Ag,...) is defined to be a triangular array (t;;)1<i<j of non-
negative integers satisfying the following conditions:

(1) A diagonal entry t;; in T(X\) equals l; = [N;/7].

(2) The first rj entries of the j-th column are equal to t;;+ 1, while the other entries
in the j-th column are equal to t; ;.

It is easily seen that the sum of all entries of T'(\) is equal to |[A] = Ay + Ao+ ---. It
is also easy to check that the A-triangular representation 7'(\) of an anti-lecture hall
composition possesses the following properties:

(1) The diagonal entries of T" are weakly decreasing, that is, 11 > to9 > -+ > 0.

2) The entries in the j-th column are non-increasing, and they are equal to t;,; or
h i g y q 3,
ti; + 1.

(3) If th‘ = tj—l—l,j—l—l; then ti,j Z ti,j+1 for 1 S 1 S j

Conversely, a triangular array satisfying the above conditions must be the A-
triangular representation of an anti-lecture hall composition.

For example, let A = (4,8,11,14,16,15,11,10,5,2). The A-triangular representa-
tion T'(\) of A is given below:
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We are now ready to give a proof of Theorem 3.2 by using the A-triangular repre-
sentation.

Proof of Theorem 3.2. Let X be an anti-lecture hall composition with \; < 2k — 2, let
T()\) be the A-triangular representation of A, and let N; denote the number of diagonal
entries ¢; ; in 7'(\) which are greater than or equal to 2 — 1 for 1 <i < k—1. Then we
have Ny > Ny > --- > N1 > 0. Now we use Fy_o(Ny,..., Nx_1;n) to denote the set
of anti-lecture hall compositions A such that there are INV; diagonal entries in 7'(\) that
are greater than or equal to 2¢ — 1 and A\; < 2k —2. We aim to compute the generating
function of the anti-lecture hall compositions in Fo_o(Ny, ..., Ny_1;n), which can be
summed up to derive the generating function for Foy_o(n).

Let A be an anti-lecture hall composition in Fh,_o(Ny, ..., Ny_1;n), and let A\ =
()\17 R )\N1)7 )\(2) = (AN1+17 R >‘l) Since |_)\N1+1/(N1 + 1)J == I_)‘Z/ZJ = Oa we
see that \; < -+ < Ayy41 < Ny Evidently, 2@ s a partition whose first part is less
than N; + 1, and the generating function for possible choices of A\ equals 1/(q) ;-

Examining the A-triangular representation of the composition AV, we find that the
triangular array T(A") can be split into k triangular arrays so that we can compute
the generating function for possible choices of A,

Step 1. Let TW = T(AM). Extract 1 from each entry in the first N; columns of 7"
to form a triangular array of size Ny with all entries equal to 1, denoted by R(Ny,1).

Step 2. For 2 < i < k — 1, extract 2 from each entry in the first N; columns of the
remaining triangular array T() to generate a triangular array of size N; with all entries
equal to 2, denoted by R(Nj,2).

Step 3. Let S denote the remaining triangular array 7).

After the above operations, T'(A(V)) is decomposed into k triangular arrays, including
an A-triangle R(Ny, 1) of size Ny with entries equal to 1, k — 2 A-triangular arrays
R(N;,2) of sizes Ns, ..., Ny_; respectively with entries equal to 2 where i = 2,... k—1,
and a triangular array S = (s;)1<i<j<n, of size Ny. It is easy to see that the generating



N1+1)N1/2

function for triangular arrays in R(Ny, 1) is g and the generating function of

triangular arrays in R(N;,2) is ¢Vt

We give an example to illustrate the above decomposition. Let A = (4, 8,11, 14,16, 15,11, 10, 5, 2)
as given before, let k = 3. Then A® = (5,2), N; = 8, Ny = 5. The decomposition of
T()) is given below:

4444432211 11111111 22222
444332211 1111111 2 2 2 2
33332110 111111 2 2 2

33221 10 11111 9 9
321110 I 9
2 110 0 111

1100 11
100 1
00
0

T(\) R(8,1) R(5,2)

11111211 0000000011
1110211 00000001 1
000210 00000010
00110 0000010
0100 000010
+ 100 © 00000
0 0 000 0
0 00 0
0 0
0

S T(\?)

It can be checked that S possesses the following properties by the definition of the
A-triangular representation:

(1) The entries on the diagonal of S are equal to 1 or 0. Notice that S has N;
diagonal elements s;1,522,...,5n,,n,- These diagonal elements can be divided
into £ — 1 segments such that the first segment contains ny = N; — Ny ele-
ments sy,+1,Ny+1, - - -, SNy, N, the second segment contains ny = Ny — N3 elements
SNy+1,Ns+1s - - - » SNy, No» anld so on, whereas the last segment contains n,_; = Njp_;
elements sy1,...,8n,_,.~,_,- Moreover, the i-th segment contains some 1’s fol-
lowed by some 0’s. We define m; to be the number of 1’s contained in the i-th
segment.



(2) The entries in the j-th column are non-increasing, and they are equal to s;; or
Sj.4 + 1.

(3) If Sji = Sj+1,j+1, then Si,j Z Sij+1 for 1 S 1 S ]

We denote the set of triangular arrays possessing the above three properties by
S(N1, Na, ..., Ny_1). Now we proceed to compute the generating function of triangular
arrays in S(Ny, Ny, ..., Ny_1). As the first step, we may partition a triangular array
S € S(Ny, Ny, ..., Np_1) into k — 1 blocks of columns, where the i-th block consists of
the (N1 + 1)-th column to the N;-th column of S. We denote the i-th block by S;.
According to the above three properties, we deduce that the first m; diagonal entries
of S; must be 1 and the entries in the first m; columns of S; are either 1 or 2.

To compute the generating function for S;, we shall split S; into three trapezoidal
arrays Si(l), SZ-@) and SZ-(B). First, we may form a trapezoidal array SZ-(l) of the same size
as 9; and with the entries in the first m; columns equal to 1 and the other entries equal
to 0. Let S; denote the trapezoidal array obtained from S; by subtracting 1 from every
entry in the first m; columns. Observe that every entry in Si/ is either 1 or 0, and Si(l)
can be regarded as the Ferrers diagram of the conjugate of the partition

alt) = (Nig1 +mi, Njgy +m; — 1,00 Ny + 1),

Furthermore, S, satisfies the following conditions:

(1) All entries in S; are equal to 0 or 1, but the diagonal entries must be 0.
(2) The entries in the same column must be non-increasing.

(3) The first m; entries in the j-th row must be non-increasing, and the remaining
entries in the j-th row are also non-increasing.

We continue to consider the trapezoidal array formed by the first m; columns of
SZ-/, and denote it by SZ-(Q). Similarly, we see that Si(z) can be regarded as the Ferrers
diagram of the conjugate of a partition a(?, where

af) < Niy1 and (a®) <m,.

Define ng) to be the trapezoidal array obtained from S, by extracting from the
(m; + 1)-th column to the (N; — Nij1)-th column. Again, S® can be regarded as the
Ferrers diagram of the conjugate of a partition a®, where

Oé§3) S Nz‘+1 + m; and l(Oé(g)) S Nz — Ni+1 — m;.

10



So the generating function for possible choices of the i-th block S; is given by

N;—N;11

ST N 519
my=0 (Q)Mi(Q)Ni+1 <Q)Ni+1+mi(q)Ni_Ni+l_mi
which equals
N,;,—N;
(q)Ni " qmi(2N¢+1+1+mi)/2 (q)Ni_Ni+l . (3_19)
(q)Ni+1 (Q)Ni—Ni+1 mi=0 (q)mi(q)Ni—Ni+1—mi

Observe that the sum

N;—N;11
E qmi(QNiJrl"Fl“l‘mi)/Q <q)Ni_Ni+1

(q)mi (q)NﬁNiH*mz'

m;=0

is the generating function for partitions with distinct parts between N;,; + 1 and N;.
Therefore,

N;i—=Niy1 (Q)
(2N . Ni—N; :
E q i(2Niyp1+1+m;)/2 +1 — (_qNH_l_'_l)Ni—NHI' (320)
m;=0

(Q)mi (q)Ni_Ni-H_mi

By (3.20), the generating function (3.18) can be simplified to

(@), Nipat1
, NN 3.21
(Q>Ni+1(q)Ni_Ni+1( q )N- Ny (3.21)

Thus the generating function for triangular arrays in .S can be written as
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Recall that the generating function for possible choices of T(A?)) equals 1/(q)n, and
the generating functions for R(Ny, 1), R(Ns,2),..., R(Ny_1,2) are equal to gV +1N1/2,

gNitNa N kot Nk respectively. We also note that the generating function for anti-
lecture hall compositions in Fb,_o(Ny,..., Ny_1,n) is the product of the generating

functions for T(A®), R(Ny, 1), R(Ny,2),..., R(Ny_1,2) and S, and hence it equals

(N1+1)Ny /2+NZ+-4NZ_ +No+-+Nj_q (@3, (—@)n
1 1

(Q)Nl (Q)N1*N2 T (q)Nk—2*Nk—1<q)Nk—1
(N1+1)N1 /24 N2+-+N2_ +No+-+Ngp_q (_q)N
1

q

q

(q)Nl_N2 e (q)Nk—Q_Nkfl (q)Nkﬂ
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Summing up the generating functions of anti-lecture hall compositions in Fo,_o( Ny, .
we get the generating function for Fyy_o(n),

(N1+1)Ny /24 N2+ 4+N?_ +No+-+N_1(_
n q q
Y s = ) Cam (399
n>0 N1>->Ngp_1>0 (q)leNz e (q)Nk—Z*Nk—l(q)Nkfl
This completes the proof. |

4 The case of an odd upper bound

In this section, we provide two proofs of Theorem 1.2 for the case when the upper
bound on the first component of the compositions is an odd number 2k — 3. The first
proof is analogous to the proof of the even case, whereas the second proof requires
a Rogers—Ramanujan type identity of Andrews, a bijection of Corteel and Savage, as
well as a refined version of a bijection also due to Corteel and Savage. However, the
approach of the second proof does not seem to apply to the case when on the upper
bound is an even number.

Theorem 4.1 For k > 2 and a positive integer n, we have

| Fop—3(n)| = [Hak-1(n)]. (4.23)

The first proof relies on the following formula for anti-lecture hall compositions in
FQk_g (n)

Theorem 4.2 For k > 2,

Z |F2k,3(n)]q" _ Z Q)J\h

Ni>No>>Np_ ;>0 (q)Nl—N2 T (q)Nk—Q_Nk—l(q>Nk71<_q)Nk71

q(N1+1)N1/2+N22+--~+N,3,1+N2+~--+Nk_1 (_

(4.24)

Proof of Theorem 4.2. Let A be an anti-lecture hall composition with A\; < 2k —3. We
consider the A-Triangular representation T'(A) of A. For 1 < ¢ < k — 1, let N; be the
number of diagonal entries ¢;; in 7'(\) which are greater than or equal to 2i — 1. Thus
we have Ny > Ny > -+- > N1 > 0. We now use Fy_3(Ny,..., Ny_1;n) to denote the
set of anti-lecture hall compositions A with A; < 2k — 3 such that there are NN; diagonal
entries in T'(\) that are greater than or equal to 27 — 1.

In order to compute the generating function for Fo,_3(Ny,..., Nx_1;n), we split A
into two parts depending on whether ¢, ; = 0. To this end, we set A = (Ay,..., An,),

12
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A2 = (Any41,...,A). It is easily checked that A is a partition whose first part
does not exceed N;. Hence the generating function for possible choices of A equals

1/(@)w;-

We now consider A and its A-Triangular representation 7°(A(V). In this case,
we can split T(A(Y)) into k triangular arrays so that we can compute the generating
function for possible choices of A(V).

Step 1. Let TW = T(AW). Extract 1 from each entry in the first N; columns of 7™
to form a triangular array of size N7 with all entries equal to 1, denoted by R(Ny,1).

Step 2. For ¢ =2,...,k — 1, extract 2 from each entry in the first N; columns of the
remaining array 7() to form a triangular array of size N; with all entries equal to 2,
denoted by R(NV;,?2).

Step 3. Let S be the remaining triangular array 7).

After the above procedures, T'(A")) is decomposed into k triangular arrays, includ-
ing an A-Triangle R(Ny,1) of size N; with all entries being 1, (k — 2) A-Triangles
R(N;,2) of sizes N, ..., Ny_1 respectively with all entries being 2 and a triangular
array S = (s; ;) of size N; possessing the following properties:

(1) All the entries on the diagonal of S are equal to 1 or 0. Note that S has N;
diagonal elements s;1,522,...,5n,,n,- These diagonal elements can be divided
into £ — 1 segments such that the first segment contains ny = N; — Ny ele-
ments Sy,41,N,+1; - - - » SNy, N, » the second segment contains ng = Ny — N3 elements
SNg+1,Ns+1, - - - » SNy, Ny, and so on, while the last segment contains ny_; = Nj_; el-
ements S11,...,5n,_,.N,_,- Moreover, the i-th segment contains some 1’s followed
by some 0’s. We denote m; to be the number of 1’s in the i-th segment.

(2) The entries in the j-th column are non-increasing, and they are equal to either
de‘ or SjJ‘ + 1.

(3) If Sjj = Sj+1,j+1, then Si,j > Sij+1 for 1 <1< j

(4) The entries in the first Ny_; columns of S are equal to 0, that is, m;_; = 0, since
tzjz2k—3fOI1§Z§j§Nk_1

For example, let p = (5,10, 14,17,18,20,18,15,12,3) and k = 4. We can decom-
pose T'(u) into the following triangular arrays
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5555443221 111111111 222222 2 2
5H 4443221 11111111 222 22 2
44433221 1111111 22 2 2

4333210 111111 2 2 2
332210_} 11111Jr 22+
32210 1111 2

2210 111
110 11
10 1
0
T(u) R(9,1) R(6,2) R(2,2)
002211211 0000O0OO0OO0OOGTO0OTI1
000O0O0OO0OO0DTO?1
02111211
000O0O0O0OGO0T1
1110211
0000O0O0O
100210
000O0O0®O
+ 00110 +
00000
0110
0000
110
00 000
0 00
0
S w?

Let us write S(Ni, Ny, ..., Nj_;) for the set of triangular arrays possessing the
above four properties. We proceed to compute the generating function for the tri-
angular arrays in S(Ny, No,...,Ny_1). We may partition a triangular array S €
S(N1, Ny, ..., Ni_1) into k — 1 blocks of columns, where the i-th block starting from
the (N;41 + 1)-th column and ending with the /V;-th column of S. We denote the i-th
block by S;. According to the above four properties, we infer that the first m; diagonal
entries of S; must be 1, and for ¢ = 1,...,k — 2, the entries in the first m; columns of
S; are either 1 or 2. Moreover, S,_; is a triangular array of size N,_; with all entries
equal to 0.

We continue to split S; into three trapezoidal arrays SZ»(U, S@ and SZ-(?’) for 1 =

(2
1,...,k — 2. First, we may form a trapezoidal array Si(l) of the same size as S; and
with the entries in the first m; columns equal to 1 and the other entries equal to 0. Let
Si/ denote the trapezoidal array obtained from S; by subtracting 1 from every entry in
the first m; columns. It is easily seen that every entry in SZ-/ is either 1 or 0, and that

14



Si(l) can be regarded as the Ferrers diagram of the conjugate of the partition

a = (Nip1 +mi, Nigr +mi; — 1, Niyy + 1).

Furthermore, we see that for i = 1,...,k — 2, the trapezoidal array SZ-/ possesses
the following properties:

(1) All the entries in S, equal 0 or 1, but the diagonal entries must be 0.
(2) The entries in the j-th column must be non-increasing.

(3) The first m; entries in the j-th row are non-increasing, and the remaining entries
in the j-th row are also non-increasing.

We now consider the trapezoidal array formed by the first m; columns of S;, and

denote it by Si(z). Again, we see that SZ»(Q) can be regarded as the Ferrers diagram of
the conjugate of a partition a®, where

a§2) < Niy1 and  (a®) <m,.

Notice that there are still some columns left. Define Sl-(g) to be the trapezoidal array

as a block of S; starting with the (m;+1)-th column and ending with the (N; — Nj41)-th

3
column. Once more, Si( )

partition a®, where

can be regarded as the Ferrers diagram of the conjugate of a

af’) S Ni-{—l -+ m; and l(O[(g)) S Nz — Ni+1 — m,;.

Based on the above analysis, for 7 = 1, ..., k—2, the generating function for possible
choices of the i-th block S; equals
N;—N;11
Z mi(2Ni+1+1+mi)/2 (q)Ni+1+mi (Q)NZ
q
(q)mi<q)Ni+1 (q)Ni+1+mi<q)Ni_Ni+l_mi

m;=0

which can be rewritten as
N;—N; 1

qmi(QNi+1+l+mi)/2 (q)Ni_Ni+l

(q)mi (q)Nz'*NiH*mi ‘

(q)Ni
(q)Ni+1 (q)Ni*Nz‘H

m;=0

Evidently, the sum in the above expression is the generating function for partitions
with distinct parts between N;1; + 1 and N;. So we deduce that
N;—N;1
Z qmi(QN,L-H—i-l-i-mi)/Z (q)Ni—Ni+1
(q)mi(q)Ni*NiJrl*mi

Ni+1+1)

= (_q N;—Njy1-

m;=0

15



Since the generating function for S;_; equals 1, the generating function for possible
choices of S is the product of the generating functions for S; for i =1,..., k — 2, that
is,

k—2

H <Q)Ni

Nivi+1y _ (@) (—9)n,
i=1 (DN (D V=N

NifNi - .
o (q)leNz T (q)Nk—2*Nk—1<q>Nk71 <_q)Nk71

(—q

Recall that the generating function for possible choices of T(A®) equals 1/(q; q)n,
and the generating functions for R(Ny, 1), R(Ny,2),. .., R(Nk_1,2) are equal to ¢!N+1)N/2]
gVt gNiat Ve pegpectively. We also observe that the generating function for

anti-lecture hall compositions in Fo_o(Ny, ..., Nx_1,n) is the product of the generating
functions for T(A®), R(Ny, 1), R(Ny,2),..., R(Ny_1,2) and S. Hence it equals

q(Nl+1)N1/2+N22+"'+N1371+N2+"'+Nk—1 <Q)N1 (_q)N1

<Q)N1 <q>N1*N2 U (q>Nk727N’°*1 <Q)Nk71 (_q>Nk71
g N DN 2ENG N4 NN (g

(Q)N1—N2 T (q)Nk—Z_Nk—l(q)Nk—l(_q)Nk—l '

Summing up the generating functions for anti-lecture hall compositions in Fo,_3(Ny, ..., Nx_1,n)
yields the generating function for Fy_3(n),

(N1+1)N1 /24 N2+-+N2_ +No+-+Np_q(_
n q q)N
> |Fos(n)lg" = > Ca)m (4.25)
n>0 Ni>>Np_ 1 >0 (q)N1—N2 T (q)Nk—Q_Nk—l(q>Nk71<_q)Nk71
This completes the proof. 1

In virtue of (2.12), Theorem 4.1 immediately follows from Theorem 4.2, since the
generating function for overpartitions in Ho,_1(n) is given by

(—@)oo(q, 2,1 ¢ e

(@)oo

(4.26)

We now turn to the second proof of Theorem 4.1. In their proof of the anti-lecture
hall theorem, Corteel and Savage [6] established two bijections. The first is a bijection
between the set E(n) of anti-lecture hall compositions p of n such that |u;/i] is even
and the set P(n) of partitions of n with each part greater than one. The second
bijection is between the set A(n) of anti-lecture hall compositions of n and the set
D x E(n) of pairs (A, ) such that |A| + |u| =n and A € D, p € I/, where D is the set
of partitions into distinct parts. Then the anti-lecture hall theorem is a consequence
of the correspondence between A(n) and D x P(n).
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To give a proof of Theorem 4.1, we shall present a bijection between a subset of
P(n) and a subset of F(n). To be more specific, let Qx(n) be the subset of E(n)
consisting of anti-lecture hall compositions A such that A; < k and let Rg(n) be the
subset of P(n) consisting of partitions having at most & — 1 successive N x (N + 1)
Durfee rectangles such that there is no part below the last Durfee rectangle. Then we
have the following correspondence, which can be considered as a refined version of the
first bijection of Corteel and Savage.

Theorem 4.3 There is a bijection between the set Ri(n) and the set Qaop—2(n).

Proof. We proceed to give a bijection 6 from Rg(n) to Qor—2(n). Consider the A-
triangular representation 7'(y) of an anti-lecture hall composition u of n such that |2 |
are even for all ¢ and p; < 2k — 2. By definition, we have ¢;; < 2k — 2 and all the
diagonal entries of T'(11) are even.

Now we define the map 6 from a partition A in P with exactly & — 1 successive
Durfee rectangles to an anti-lecture hall composition p of n.

Step 1. We break the Ferrers diagram of A into £ — 1 blocks such that the i-th block
contains the i-th Durfee rectangle and the dots on the right of the ¢-th Durfee rectangle.

Step 2. Change the i-th Durfee rectangle in the i-th block into a triangular array with
all entries equal to 2, and the rest of the dots in the i-th block into entries equal to 1.
So these k — 1 blocks become k£ — 1 A-triangles with all the diagonal entries equal to 0
or 2.

Step 3. Put the k — 1 A-triangles obtained in Step 2 together to form an A-triangle 7.

The resulting A-triangle corresponds to an anti-lecture hall composition p such that
w1 = 2k—2 and | \;/i| are even for all 7. It is easy to check that the map 0 is reversible.
This completes the proof. |

For example, let
A =(10,10,9,8,7,7,7,7,5,4,3)

be a partition in R4(77). Then the corresponding anti-lecture hall composition in

Q¢(77) equals
p=(6,12,13,11,12,14,4,3,2).

The successive Durfee rectangles of A are given below, where the zeros in the arrays
are omitted.
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o o o o o o olo o o 222222111 6 6 533311
© 0o o o o o olo o o 22222111 6 433311
o o o o o o o|lo o . 222211 _ 4 32 211
0o o o o o o ofo 2 2 21 2 2 21
0o 0o o o 0o 0o o 2 2 2 2
©o o o o o 0o o 2 2
o o o olo o o 222111

o o|lo o o 22111

o 21
o 2 21

Second Proof of Theorem 4.1. Examining Corteel and Savage’s second bijection 7y from
Ato D x E, we see that it maps an anti-lecture hall composition A of n in A to a pair
(o, B) in D x E. If Ay is odd, then $; = A\; — 1; otherwise $; = A;. So it can be checked
that v maps an anti-lecture hall composition of n in A with the first part not exceeding
2k — 1 to a pair (o, ) in D x E such that 8 is an anti-lecture hall composition in F
with the first part 8; not exceeding 2k — 2 and the sum of parts of a and [ equals n.
On the other hand if A =y~ !(a, 3), then it can be checked that A; < 8; + 1. In other
words, 7 is a bijection between Fyp_1 and D X (QQ9r_o. Together with Theorem 4.3, we
are led to a bijection between Fb,_ 1 and D X Ry.

Recall that there is a combinatorial interpretation of the left-hand side of (1.5)
in terms of the Durfee dissection, or the Durfee square dissection, to be precise, of a
partition, as given by Andrews [3], see also, Andrews and Eriksson [4]. We observe that
the idea of Andrews easily extends to the Durfee rectangle dissection of a partition. In
this way, we find that the generating function of partitions in Ry (n) is given by

i Z qN12+---+N,§_1+N1+---+Nk71
| Ri(n)|q" = (4.27)
n=0 N12N222Nk_120 (q)Nl—NQ e (q)Nk_Q_Nkj—l(q)Nk»_l

Setting a = 1 in the generalization of the Rogers-Ramanujan identity (1.5) gives

NZ+-+N2_ +Ni++Np_ 2k 2k+1.
Z g k-1 kol (4,07, q

N1>No>->Ni_1>0 (q)leNQ st (q)Nk—Z*Nk—l(q>Nk—1 <Q)OO

2k+1)oo

Hence the generating function of partitions in Ry (n) can be expressed as follows

2k 2k+1.
)

- n (0,4%.q 2ht)
;;IRk(n)lq = D

q

| (4.28)
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By the bijection between Fy_1(n) and D x Ry(n) we conclude that

2k+1. 2k+1)
) oo

q

S | Fas (g = COl0:6 (4.29)

(2)o

It is easy to see that the right-hand side of the above identity is the generating function
of overpartitions in Hggy1(n). This completes the proof. |

Acknowledgments. We wish to thank the referees for valuable suggestions. This
work was supported by the 973 Project, the PCSIRT Project of the Ministry of Edu-
cation, and the National Science Foundation of China.

References

[1] G.E. Andrews, An analytic generalization of the Rogers—Ramanujan identities for
odd moduli, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4082-4085.

[2] G.E. Andrews, Problems and prospects for basic hypergeometric series, in: R.
Askey. Theory and Application of Special Functions, Academic Press, New York
1975, 191-224.

[3] G.E. Andrews, Partitions and Durfee dissection, Amer. J. Math., 101 (1979), 735
742.

[4] G.E. Andrew and K. Eriksson, Integer Partitions, Cambridge Univ. Press, Cam-
bridge, 2004.

[5] M. Bousquet-Mélou and K. Eriksson, A refinement of the lecture hall theorem, J.
Combin. Theory Ser. A, 86 (1999), 63-84.

[6] S. Corteel and C.D. Savage, Anti-lecture hall compositions, Discrete Math., 263
(2003), 275-280.

[7] S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc., 356 (2004),
1623-1635.

[8] B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identities,
Amer. J. Math., 83 (1961), 393-399.

19



