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Abstract. The Springer numbers are defined in connection with the irreducible root
system of type Bn and also arise as the generalized Euler and class numbers introduced
by Shanks. Combinatorial interpretations of the Springer numbers have been found
by Purtill in terms of André signed permutations, and by Arnol’d in terms of snakes
of type Bn. We introduce the inversion code of a snake of type Bn and establish a
bijection between labeled ballot paths of length n and snakes of type Bn. Moreover,
we obtain the bivariate generating function for the number B(n, k) of labeled ballot
paths starting at (0, 0) and ending at (n, k). Using our bijection, we find a statistic α
such that the number of snakes π of type Bn with α(π) = k equals B(n, k). We also
show that our bijection specializes to a bijection between labeled Dyck paths of length
2n and alternating permutations on [2n].
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1 Introduction

The Springer numbers are introduced by Springer [16] in the study of irreducible root
system of type Bn. Let Sn denote the n-th Springer number. The sequence {Sn}n≥0 is
listed as entry A001586 in OEIS [11]. The first few values of Sn are

1, 1, 3, 11, 57, 361, 2763, 24611, . . . .
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To be more specific, Sn can be defined as follows. Let V be a real vector space, R
be a root system of type Bn in V , and W be the Weyl group of R. It is known that
for a fixed simple root set S of R, any α ∈ R is either a positive or a negative linear
combination of elements of S, denoted by α > 0 or α < 0. For a subset I ⊂ S, let
σ(I, S) denote the number of elements w ∈ W such that wα > 0 for any α ∈ I and
wα < 0 for any α ∈ S − I. Then the Springer number Sn can be defined as the
maximum value of σ(I, S) among I ⊂ S. Springer derived the following generating
function, ∑

n≥0

Sn
xn

n!
=

1

cosx− sinx
. (1.1)

On the other hand, Hoffman [10] pointed out that the Springer numbers also arise
as the generalized Euler and class numbers sm,n (n ≥ 0) for m = 2, where the numbers
sm,n are introduced by Shanks [15] based on the Dirichlet series

Lm(s) =
∞∑
k=0

(
−m

2k + 1

)
1

(2k + 1)s
.

Note that the above notation (−m/(2k + 1)) is the Jacobi symbol. To be precise, the
generalized Euler and class numbers s2,n are defined by

s2,n =

{
c2,n

2
, if n is even;

d2,n+1
2
, if n is odd,

where the numbers c2,n and d2,n are given by

c2,n =
(2n)!√

2

(π
4

)−2n−1

L2(2n+ 1),

d2,n =
(2n− 1)!√

2

(π
4

)−2n

L−2(2n).

According to the following recurrence relations for c2,n and d2,n derived by Shanks
[15],

n∑
i=0

(−4)i
(

2n

2i

)
c2,n−i = (−1)n,

n−1∑
i=0

(−4)i
(

2n− 1

2i

)
d2,n−i = (−1)n−1,
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one sees that the numbers s2,n are integers. In fact, the above recurrence relations lead
to the following formulas ∑

n≥0

c2,n
x2n

(2n)!
= sec 2x cosx,

∑
n≥1

d2,n
x2n−1

(2n− 1)!
= sec 2x sinx.

Shanks raised the question of finding combinatorial interpretations for the Euler
and class numbers sm,n. For m = 2, s2,n is the n-th Springer number. Purtill [12] gave
an interpretation of the Springer numbers in terms of the André signed permutations
on [n] = {1, 2, . . . , n}. Arnol’d [1] found another interpretation of the Springer numbers
in terms of snakes of type Bn. Recall that, intuitively, a signed permutation on [n] can
be viewed as an ordinary permutation on [n] with some elements associated with minus
signs. An element i with a minus sign is often written as ī. A snake of type Bn is an
alternating signed permutation π = π1π2 · · · πn on [n] such that

0 < π1 > π2 < π3 > π4 < · · · πn. (1.2)

The above alternating or up-down condition (1.2) is based on the following order:

n̄ < · · · < 1̄ < 1 < · · · < n.

For example, 13̄2 is a snake of type B3. Arnol’d [1] proved that the Springer number
Sn equals the number of snakes of type Bn. Hoffman [10] showed that the exponential
generating function for the number of snakes of type Bn also equals the right hand
side of (1.1), that is, the generating function of the Springer numbers. Recently, Chen,
Fan and Jia [4] obtained a formula for the generating function of sm,n for arbitrary
m. When m is square-free, this leads to a combinatorial interpretation of the numbers
sm,n in terms of Λ-alternating augmented m-signed permutations. Note that for m = 2,
Λ-alternating augmented 2-signed permutations are exactly snakes of type Bn.

The objective of this paper is to give a combinatorial interpretation for the Springer
numbers in terms of labeled ballot paths. In fact, we shall introduce the inversion code
of a snake of type Bn. By using the inversion code, we construct a bijection between
the set of snakes of type Bn and the set of labeled ballot paths of length n. Let B(n, k)
denote the number of labeled ballot paths starting at (0, 0) and ending at (n, k). Then
the numbers B(n, k) can be viewed as a refinement of the Springer numbers. Using
the recurrence relation of B(n, k), we obtain the generating function for B(n, k).

Using our bijection, we find a statistic α on snakes of type Bn such that the number
of snakes π of type Bn with α(π) = k equals B(n, k). A labeled ballot path that
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eventually returns to the x-axis is called a labeled Dyck path. When k = 0, B(2n, 0)
is the number of labeled Dyck paths of length 2n. We find that B(2n, 0) and the
number E2n of alternating permutations on [2n] have the same generating function,
and we show that our bijection for labeled ballot paths of length n and snakes of type
Bn reduces to a bijection between labeled Dyck paths of length 2n and alternating
permutations on [2n].

The paper is organized as follows. In Section 2, we give descriptions of the map Φ
from the set of snakes of type Bn to the set of labeled ballot paths of length n, and
the map Ψ from labeled ballot paths of length n to snakes of type Bn. In Section
3, we show that the maps Φ and Ψ are well-defined, and they are inverses of each
other. The last section is devoted to the bivariate generating function for the numbers
B(n, k) and the classification of snakes of type Bn in accordance with the numbers
B(n, k). We also show that the map Ψ restricted to labeled Dyck paths serves as a
combinatorial interpretation of the fact that B(2n, 0) equals E2n. To conclude, we
point out the connections of the restriction of our bijection to labeled Dyck paths with
the restrictions of some known bijections on weighted 2-Motzkin paths.

2 The bijection

In this section, we define a class of labeled ballot paths and establish a bijection between
such labeled ballot paths of length n and snakes of type Bn.

Recall that a ballot path of length n is a lattice path with n steps from the origin
consisting of up steps u = (1, 1) and down steps d = (1,−1) that does not go below
the x-axis. As a special case, a Dyck path is a ballot path of length 2n that ends at
the x-axis. A ballot path is also called a partial Dyck path [3]. The height of a step of
a ballot path is defined to be the smaller y-coordinate of its endpoints. By a labeled
ballot path we mean a ballot path for which each step is endowed with a nonnegative
integer that is less than or equal to its height. If the label of a step equals its height,
then we say that this step is saturated. Otherwise, we say this step is unsaturated. A
labeled ballot path P = p1p2 · · · pn for which the step pi is labeled by wi is denoted by
(P,W ), where W = w1w2 · · ·wn.

It should be noted that Françon and Viennot [6] defined a class of weighted 2-
Motzkin paths. If such a weighted 2-Motzkin path of length 2n does not contain any
horizontal steps, then it becomes a labeled Dyck path of length 2n in our terminology.
In Section 4, we shall discuss the connections between the restriction of our bijection
to labeled Dyck paths and the restrictions of known bijections for weighted 2-Motzkin
paths.
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For example, for a ballot path P = uuudduu, there are 216 labelings. Figure 1
gives a labeling of the ballot path P .

s��0 s��1 s��1 s
@@
0 s
@@
1 s��1 s��2 s

Figure 1: A labeled ballot path (uuudduu, 0110112) of length 7.

For n = 3, there are 3 ballot paths P1 = uuu, P2 = uud and P3 = udu. There are 6
labelings for P1, 4 labelings for P2 and 1 labeling for P3. On the other hand, there are
11 snakes of type B3 as listed below:

12̄3, 13̄2, 13̄2̄, 213, 21̄3, 23̄1, 23̄1̄, 312, 31̄2, 32̄1, 32̄1̄.

In order to establish a bijection between the set of ballot paths of length n and the
set of snakes of type Bn, we introduce the inversion code of a snake π of type Bn. Let
π = π1 · · · πn. We define ci(π) as follows

ci(π) =

{
#{(π2k, π2k+1)|1 ≤ k ≤ (n− 1)/2, i < 2k, π2k < πi < π2k+1}, if n is odd;

#{(π2k−1, π2k)|1 ≤ k ≤ n/2, i < 2k − 1, π2k < πi < π2k−1}, if n is even.

The sequence (c1(π), c2(π), . . . , cn(π)), denoted c(π), is called the inversion code of
π. For example, let n = 7 and π = 35̄2147̄6. Then the inversion code of π is
(2, 1, 2, 1, 1, 0, 0). For n = 8 and π = 5382̄1̄4̄76, the inversion code of π is (1, 1, 0, 1, 0, 0, 0, 0).

As will be seen, we need an alternative way to compute ci(π). For 1 ≤ i ≤ n, an
element πi is called a peak of π if πi is greater than its neighbors, and πi is called a
bottom if it is smaller than its neighbors. Notice that for the first and last element of
π, there is only one neighbor. Denote the set of peaks of π by P(π), and the set of
bottoms of π by B(π). For a snake π of type Bn, each element πi is either a peak or a
bottom. For a bottom πi of π, we define

ai(π) = #{j > i|πj < πi, πj ∈ B(π)},

bi(π) = #{j > i|πj < πi, πj ∈ P(π)}.

For a peak πi of π, we define

ai(π) = #{j > i|πj > πi, πj ∈ B(π)},

bi(π) = #{j > i|πj > πi, πj ∈ P(π)}.
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Lemma 2.1 Let π = π1π2 · · · πn be a snake of type Bn. For 1 ≤ i ≤ n, if πi is a
bottom, then we have

ci(π) = ai(π)− bi(π). (2.3)

If πi is a peak, then we have

ci(π) = bi(π)− ai(π). (2.4)

Proof. We first consider the case when n is odd and πi is a bottom. Clearly, for each
pair (π2k, π2k+1), π2k is a bottom and π2k+1 is a peak and π2k < π2k+1. For a pair
(π2k, π2k+1) to the right of πi, if πi > π2k+1 or πi < π2k, then by definition, this pair
contributes 0 to ci(π). In the meantime, this pair contributes 0 to the right hand side
of (2.3). On the other hand, if π2k < πi < π2k+1, the pair (π2k, π2k+1) contributes 1
to ci(π), and contributes 1 to the right hand side of (2.3) as well. Thus (2.3) is valid
when n is odd and πi is a bottom. The case when n is odd and πi is a peak and the
case when n is even can be justified by using the same argument. Similarly, (2.4) can
be verified. This completes the proof.

We are now ready to describe the map Φ from the set of snakes of type Bn to the
set of labeled ballot paths of length n. Let π = π1π2 · · · πn and Φ(π) = (P,W ) =
(p1p2 · · · pn, w1w2 · · ·wn). The map Φ consists of n steps. Suppose that we are in step
k, that is, p1, p2, . . . , pk−1 and their labels w1, w2, . . . , wk−1 are already determined. We
proceed to demonstrate how to determine pk and its label wk. Let us look for the
element n− k + 1 or n− k + 1 in π. Assume that πi = n− k + 1 or n− k + 1. There
are two cases.

Case 1: πi = n − k + 1. If i is odd, then set pk = u; if i is even, then set pk = d.
Moreover, set wk = ci(π).

Case 2: πi = n− k + 1. If i is odd, then set pk = d; if i is even, then set pk = u.
Moreover, set wk = hk − ci(π), where hk denotes the height of the k-th step pk in the
ballot path p1p2 · · · pk.

For example, let n = 7 and π = 21̄5476̄3̄. The construction of Φ(π) is illustrated in
Figure 2.

We now give the inverse map Ψ from the set of labeled ballot paths to the set of
snakes of type Bn. By a partial signed permutation of [n], we mean a permutation on
some subset of [n] with some elements having minus signs. For example, γ = 425 is a
partial signed permutation of {1, 2, . . . , 6}.

Given a labeled ballot path (P,W ) = (p1p2 · · · pn, w1w2 · · ·wn), we shall construct
a sequence of partial signed permutations Γ0,Γ1,Γ2, . . . ,Γn, such that Γ0 = ∅ and
Γn = π = Ψ(P,W ) is the desired snake of type Bn. To reach this goal, we generate
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=⇒ s��0 s��1 s��1 s
@@
0 s
@@
1s��1 s

=⇒ s��0 s��1 s��1 s
@@
0 s
@@
1 s��1 s��2 s

s��0 s
=⇒ s��0 s��1 s

=⇒ s��0 s��1 s��1 s
=⇒ s��0 s��1 s��1 s

@@
0 s

=⇒ s��0 s��1 s��1 s
@@
0 s
@@
1 s

Figure 2: The construction of Φ(π) for π = 21̄5476̄3̄.

a sequence of labeled ballot paths (P1,W1), (P2,W2), . . . , (Pn,Wn), where (P1,W1) =
(P,W ), Pi+1 is obtained from Pi by contracting a certain step pri of Pi into a single
point, and Wi+1 is obtained from Wi by deleting the label of the step pri and updating
the labels of other steps. Below is a procedure to determine (Pi+1,Wi+1) and Γi from
(Pi,Wi) and Γi−1. There are two cases.

Case 1: Pi has an odd number of steps. If there exists a saturated down step in Pi,
namely, a down step whose label equals equals its height, then we assume that pri is
the leftmost saturated down step. Contract pri into a single point to form a ballot
path Pi+1 and add 1 to the labels of all down steps of Pi+1. Let (Pi+1,Wi+1) denote
the resulting labeled ballot path and set Γi = n− ri + 1Γi−1.

For the case when all the down steps of Pi are unsaturated, that is, the label of
each down step is less than its height, the first step is an up step labeled by 0. We
assume that pri is the rightmost up step labeled by 0. Contract pri into a single point
to form a ballot path Pi+1. Then subtract 1 from the labels of up steps of Pi+1 that
are originally to the right of pri and add 1 to the labels of down steps of Pi+1 that are
originally to the left of pri . Denote the resulting labeled ballot path by (Pi+1,Wi+1)
and set Γi = (n− ri + 1)Γi−1.

Case 2: Pi has an even number of steps. If there exists a down step of Pi labeled by 0,
we assume that pri is the leftmost down step labeled by 0. Contract pri into a single
point to form a ballot path Pi+1. Then add 1 to the labels of up steps of Pi+1 which are
originally to the right of pri and subtract 1 from the labels of down steps of Pi+1 which
are originally to the left of pri . Denote the resulting labeled ballot path by (Pi+1,Wi+1)
and set Γi = (n− ri + 1)Γi−1.

For the case when there are no down steps of Pi labeled by 0, the first step is
an up step labeled by 0. We assume that pri is the rightmost saturated up step.
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Contract pri into a single point to form a ballot path Pi+1. Then subtract 1 from the
labels of all down steps of Pi+1. Denote the resulting path by (Pi+1,Wi+1) and set
Γi = n− ri + 1Γi−1.

For example, for the labeled ballot path (P,W ) = (uuudduu, 0110112) in Figure
1, the construction of Ψ(P,W ) is illustrated in Figure 3. The order of the contracted
steps is p5, p2, p1, p4, p3, p7, p6. The labeled ballot paths (Pi,Wi) are given in Figure 3,
and the partial signed permutations Γi are given below:

Γ0 = ∅,Γ1 = 3̄,Γ2 = 6̄3̄,Γ3 = 76̄3̄,Γ4 = 476̄3̄,Γ5 = 5476̄3̄,Γ6 = 1̄5476̄3̄,Γ7 = 21̄5476̄3̄.

=⇒s��0 s��1 s��1 s
@@
1 s��1 s��2 s

P2 = p1p2p3p4p6p7

=⇒s��0 s��1 s��1 s
@@
0 s
@@
1 s��1 s��2 s

P1 = p1p2p3p4p5p6p7

=⇒s��0 s��1 s
@@
0 s��1 s��2 s

P3 = p1p3p4p6p7

=⇒s��0 s
@@
0 s��0 s��1 s

P4 = p3p4p6p7

=⇒s��0 s��1 s��2 s

P5 = p3p6p7

=⇒s��0 s��1 s

P6 = p6p7

s��0 s
P7 = p6

Figure 3: The construction of Ψ(P,W ) for the labeled ballot path in Figure 1.

3 The proof

In this section, we shall show that the maps Φ and Ψ described in the previous section
are well-defined and are inverses of each other. Thus the map Φ and the map Ψ induce
a bijection between the set of labeled ballot paths of length n and the set of snakes of
type Bn.

Proposition 3.1 The map Φ is well-defined, that is, for any snake π = π1π2 · · · πn of
type Bn, Φ(π) is a labeled ballot path.

Proof. Before we show that Φ(π) = (P,W ) is a labeled ballot path, it is necessary to
prove that P = p1p2 · · · pn is a ballot path, that is, for any 1 ≤ k ≤ n, the number of
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up steps is greater than or equal to the number of down steps among the first k steps
of P . By the definition of Φ, we have p1 = u. Assume that in step k of the construction
of Φ(π), we have already constructed a ballot path p1p2 · · · pk−1. The task of this step
is to locate n− k + 1 or n− k + 1 in π in order to obtain pk. We consider two cases.

If πi = n− k + 1 and i is odd or πi = n− k + 1 and i is even, then we set pk = u.
Clearly, p1p2 · · · pk is a ballot path. If πi = n−k+1 and i is even or πi = n− k + 1 and
i is odd, then we set pk = d and we wish to show that the height of pk is nonnegative.
In other words, the step pk does not go below the x-axis while assuming that the first
step p1 starts at the origin. Consider the case πi = n− k + 1 and i is odd. Note that
the height of pk equals the number of up steps among p1, p2, . . . , pk−1 minus the number
of down steps among p1, p2, . . . , pk. By the definition of Φ, we find

hk = #{1 ≤ j ≤ n |πj > 0, n− k + 1 < πj and j is odd}
+ #{1 ≤ j ≤ n | πj < 0, n− k + 1 < |πj| and j is even}
−#{1 ≤ j ≤ n | πj < 0, n− k + 1 ≤ |πj| and j is odd}
−#{1 ≤ j ≤ n | πj > 0, n− k + 1 < πj and j is even}. (3.5)

In view of the alternating property of π, for any negative element π2i+1 at an odd
position, we have π2i < π2i+1 and hence π2i is negative. Consequently,

#{1 ≤ j ≤ n | πj < 0, n− k + 1 ≤ |πj| and j is odd}
≤ #{1 ≤ j ≤ n |πj < 0, n− k + 1 < |πj| and j is even}.

On the other hand, for any positive element π2i at an even position, we see that
π2i−1 > π2i and hence π2i−1 is also positive. This implies that

#{1 ≤ j ≤ n |πj > 0, n− k + 1 < πj and j is even}
≤ #{1 ≤ j ≤ n |πj > 0, n− k + 1 < πj and j is odd}.

Thus we deduce that whenever there is a negative term contributing to hk, there is
at least one positive term contributing to hk as well. So we conclude that hk ≥ 0. A
similar argument applies to the case when πi = n− k+ 1 and i is even. Hence we have
shown that P is a ballot path.

We next prove that for any step in Φ(π), its label does not exceed its height. Assume
we are in step k in the construction of Φ(π) and we have determined a labeled ballot
(p1 · · · pk−1, w1 · · ·wk−1) of length k − 1. We proceed to locate n − k + 1 or n− k + 1
in π in order to determine whether pk is an up step or a down step and the label wk
of pk. Suppose that πi = n− k + 1 and i is odd. In this case, by the definition of Φ,
we see that pk = d and wk = hk − ci(π). We claim that ci(π) ≤ hk. To compute hk
by using formula (3.5), we shall consider two cases with respect to the range of j. The
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first case is 1 ≤ j ≤ i and the second case is i + 1 ≤ j ≤ n. In other words, we shall
consider the contributions of π1π2 · · · πi and πi+1 · · · πn to the value of hk.

We claim that ci(π) does not exceed the contribution of πi+1 · · · πn to hk. Suppose
that n is odd. By the definition of ci(π), a pair (π2j, π2j+1) of consecutive elements of
π with i < 2j ≤ n − 1 contributes 1 to the value of ci(π) if π2j < πi < π2j+1 < 0 or
π2j < πi < 0 and π2j+1 > 0. If there is a pair (π2j, π2j+1) with π2j < πi < π2j+1 < 0,
then this pair contributes 1 to both hk and ci(π). If there is a pair (π2j, π2j+1) with
π2j < πi < 0 and π2j+1 > 0, then this pair contributes 1 or 2 to hk (depends on whether
π2j+1 is greater than n− k+ 1), while it contributes 1 to ci(π). It is straightforward to
check that if a pair (π2j, π2j+1) contributes 0 to ci(π), then it contributes 0 or 1 to hk.
On the other hand, because π1 · · · πi contributes 0 to ci(π), it remains to show that the
contribution of π1 · · · πi to hk is nonnegative. Let

gi(π) = #{1 ≤ j ≤ i |πj > 0, n− k + 1 < πj and j is odd}
+ #{1 ≤ j ≤ i | πj < 0, n− k + 1 < |πj| and j is even}
−#{1 ≤ j ≤ i | πj < 0, n− k + 1 ≤ |πj| and j is odd}
−#{1 ≤ j ≤ i | πj > 0, n− k + 1 < πj and j is even}.

By the same reasoning as in the proof of the fact that hk ≥ 0, we can verify that
gi(π) ≥ 0. Thus we have completed the proof for the case when πi = n− k + 1 and
both n and i are odd. All the other cases with respect to the sign of πi and the parities
of n and i can be treated in the same manner. The details are omitted. This completes
the proof.

Proposition 3.2 The map Ψ is well-defined, that is, for any labeled ballot path (P,W )
of length n, the signed permutation π = Γn = π1π2 · · · πn is a snake of type Bn.

Proof. Suppose that at the i-th step in the construction of Ψ(P,W ), we have already
constructed a labeled ballot path (Pi,Wi). We first consider the case when Pi has an
odd number of steps. In this case we aim to show that after contracting a certain step
of Pi, we get a ballot path Pi+1.

By the construction of Ψ, if there exists a saturated down step in Pi, then we
contract the leftmost saturated down step. In this case, we get a ballot path Pi+1. We
now assume that all the down steps are unsaturated. This means that there are no
down steps with height 0, that is, there are no down steps touching the x-axis. By
the construction of Ψ, we shall contract the rightmost up step labeled by 0. After this
step is contracted, it is easily seen that the height of every step in Pi+1 is nonnegative,
since by assumption there are no down steps that touch the x-axis. Hence we also get
a ballot path Pi+1 in this case. Moreover, one can check that after updating the labels
of the steps in Pi+1, each step has a nonnegative label that does not exceed its height.
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The case when Pi has an even number of steps can be dealt with by the same
argument. Thus we conclude that once we have accomplished the task in step i, we
are led to a labeled ballot path (Pi+1,Wi+1).

We now turn to the proof of the alternating property of π. It is apparent from the
construction of Ψ that π1 > 0. Now we prove that π1 > π2 < π3 > · · · πn. Suppose that
in step i we have already constructed a partial signed permutation Γi−1 and a labeled
ballot path (Pi,Wi). To determine Γi, by our construction, we are supposed to contract
a certain step pri in Pi to form a ballot path Pi+1 and to set Γi = (n − ri + 1)Γi−1 or
Γi = n− ri + 1Γi−1 depending on whether pri is an up step or a down step and the
parity of the number of steps of Pi.

Similarly, in order to determine Γi+1, we contract a certain step pri+1
of Pi+1 to

form Pi+2 and set Γi+1 = (n − ri+1 + 1)Γi or Γi+1 = n− ri+1 + 1Γi. For notational
convenience, set ti = n− ri + 1 and ti+1 = n− ri+1 + 1. There are four possibilities for
the construction of Γi+1, namely, t̄i+1t̄iΓi−1, ti+1tiΓi−1, t̄i+1tiΓi−1 and ti+1t̄iΓi−1.

We only consider the case that Pi has an odd number of steps and so ti is at an
odd position of π. To prove the alternating property of Γn, we aim to verify that

t̄i+1 < t̄i if Γi+1 = t̄i+1t̄iΓi−1,

ti+1 < t̄i if Γi+1 = ti+1t̄iΓi−1,

ti+1 < ti if Γi+1 = ti+1tiΓi−1,

and that the situation Γi+1 = ti+1t̄iΓi−1 can never happen.

We shall give the proof only for the case Γi+1 = t̄i+1t̄iΓi−1. To this end, we assume
that in the i-th step in the construction of Ψ(P,W ), we contract a down step pri of Pi,
and in the (i+ 1)-st step, we contract an up step pri+1

of Pi+1. By the implementation
of Ψ, we see that Γi+1 = t̄i+1t̄iΓi−1. We claim that ti < ti+1, that is, ri > ri+1.
Assume to the contrary that ri < ri+1. Once the down step pri is contracted, the
height of all steps to the right of the step pri will increase by 1. However, by the
construction of Ψ, the labels of up steps remain unchanged. Since the height of each
up step has been increased by 1, this implies that the up steps to the right of pri are
unsaturated. Therefore, the up step pri+1

cannot be chosen in the (i+1)-st step, which
is a contradiction. So we deduce that t̄i+1 < t̄i. The discussions for the other three
cases are similar, and hence are omitted.

It remains to consider the case when the number of steps of Pi is even. But the
argument for this case is analogous to the case when the number of steps of Pi is odd.
Hence we have reached the conclusion that Γn = π1π2 · · · πn is a snake of type Bn. This
completes the proof.

Proposition 3.3 The maps Φ and Ψ are inverses of each other.
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Proof. It suffices to show that Ψ is the inverse of Φ. In fact, we need to prove a stronger
property. To this end, let π = π1π2 · · · πn be a snake of type Bn. For 1 ≤ i ≤ n, let
Πi = π1π2 · · · πi. For convenience, we use Φ(Πi) to denote the labeled ballot path
obtained by applying the map Φ to the partial signed permutation Πi. Set Φ(Π0) to
be the empty path. Roughly speaking, by the construction of Φ, it can be seen that
Φ(Πi) is obtained from Φ(Πi−1) by adding a step to Φ(Πi−1) and updating the labels of
other steps. A precise description of the process to obtain Φ(Πi) from Φ(Πi−1) enables
us to show that

Ψ(Φ(Πi)) = Πi. (3.6)

Of course, this implies that Ψ is the inverse of Φ.

Before we examine how to obtain Φ(Πi) from Φ(Πi−1), we need to recall the con-
struction of Φ(Πi). The labeled ballot path Φ(Πi) consists of i steps. Let p1p2 · · · pi
denote this path. For any k with 1 ≤ k ≤ i, we can find the element πj among
π1, π2, . . . , πi such that |πj| is the k-th largest element of the set {|π1|, . . . , |πi|}. Then
by the construction of Φ(Πi), we have pk = u if πj > 0 and j is odd, or πj < 0 and j is
even; otherwise we have pk = d. If πj > 0, the label of the step pk in Φ(Πi) is equal to
cj(Πi). If πj < 0, then the label of the step pk in Φ(Πi) is equal to hk − cj(Πi), where
hk is the height of the step pk in Φ(Πi). For example, for a snake π = 21̄5476̄3̄, we
have Π3 = 21̄5 and Φ(Π3) consists of 3 steps p1p2p3, where p1 = u, p2 = u and p3 = u,
and the labels are 0, 1 and 2.

Notice that for i < n, Πi is a partial signed permutation on [n], which is not
necessarily a permutation of the set {1, 2, . . . , i}. For example, for a snake π = 21̄5476̄3̄,
we have Π3 = 21̄5. For this reason, we should note that for 1 ≤ k ≤ i, the k-th
largest element of the set {|π1|, . . . , |πi|} is not necessarily the element i + 1 − k in
the construction of the k-th step pk of the labeled ballot path Φ(Πi). This explains
why we should keep track of the k-th largest element of the set {|π1|, . . . , |πi|} in the
construction of the k-th step of the labeled ballot path Φ(Πi).

Given a labeled ballot path (P,W ) of length n, let us look at the construction of
Ψ(P,W ), which consists of n steps. At each step, we contract a certain step of P ,
delete the label of the contracted step and update the labels of other steps. We also
obtain a partial signed permutation at every step.

For i < n, at the first step of applying Ψ to Φ(Πi), let pk denote the contracted
step of the labeled ballot path Φ(Πi) = p1p2 · · · pi. Assume the k-th largest element of
the set {|π1|, . . . , |πi|} is |πj|. Set Γ0 = ∅. The partial signed permutation obtained at
the first step of applying Ψ to Φ(Πi) is Γ1 = (n− (n− |πj|+ 1) + 1)Γ0 = |πj|Γ0 = |πj|
or Γ1 = n− (n− |πj|+ 1) + 1Γ0 = |πj|Γ0 = |πj|.

To prove the claim (3.6), we proceed by induction on i. When i = 1, Φ(Π1) = Φ(π1)
is a ballot path consisting of a single up step labeled by 0. As stated before, we should
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keep track of π1. When applying Ψ to Φ(Π1), we contract p1 and obtain the partial
signed permutation n − (n − π1 + 1) + 1 = π1. Assume that Ψ(Φ(Πi−1)) = Πi−1.
We continue to show that Ψ(Φ(Πi)) = Πi. In fact, we need to prove the following
properties:

(1) At the first step of applying Ψ to Φ(Πi), the contracted step is exactly the step
that is added to Φ(Πi−1) in order to get Φ(Πi).

(2) After contracting the added step in Φ(Πi) and updating the labels of other steps,
we get the labeled ballot path Φ(Πi−1).

(3) The partial signed permutation obtained at the first step is πi.

To describe the process to construct Φ(Πi) from Φ(Πi−1), we need to consider four
cases according to the parity of i and the sign of πi. We shall restrict our attention only
to the case when i is even and πi > 0, because the same argument applies to other cases.
In this case, assume that |πi| is the r-th largest element of the set {|π1|, . . . , |πi|}. So
we deduce that Φ(Πi) can be obtained from Φ(Πi−1) by adding a down step pr labeled
by 0.

We now prove property (1), that is, at the first step of applying Ψ to Φ(Πi), we
must contract the down step pr. Since pr is labeled by 0, it is sufficient to show that
there are no down steps of Φ(Πi) labeled by 0 that appear to the left of pr. Again, by
the construction of Φ(Πi), we see that there is a down step pt of Φ(Πi) appearing to
the left of pr if there exists an element of Πi that is either

(a) a positive element at an even position which is greater than πi, or

(b) a negative element at an odd position whose absolute value is greater than πi.

It can be shown that if the step pt is labeled by 0, then neither cases can happen. If
(a) happens, that is, there exists an element of Πi, say π2k, such that π2k > πi > 0 and
π2k is the t-th largest element of the set {|π1|, . . . , |πi|}. Since the step pt is labeled by
0, we have c2k(Πi) = 0. By the definition of c2k(Πi) = 0, there are no pairs (π2j−1, π2j)
of Πi such that π2j−1 > π2k > π2j. In particular, by the assumption π2k > πi, we have
π2k > πi−1. Since i is even, by the alternating property of Πi, we have πi−1 > πi−2.
Thus we obtain π2k > πi−2. Moreover, since c2k(Πi) = 0, we get π2k > πi−3. Continuing
this process, we reach the conclusion that π2k > π2k+1, contradicting the alternating
property of Πi.

If (b) happens, that is, there is an element of Πi, say π2k+1, such that π2k+1 < 0,
|π2k+1| > πi and |π2k+1| is the t-th largest element of the set {|π1|, . . . , |πi|}. Since
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the step pt is labeled by 0, we find that c2k+1(Πi) equals the height of the step pt.
However, to the contrary, we can show that the height of pt is greater than c2k+1(Πi).
Consider any pair (π2j−1, π2j) such that π2j−1 > π2k+1 > π2j. Suppose that |π2j| is the
j1-th largest element of the set {|π1|, . . . , |πi|}. Then the step pj1 is an up step and it
appears to the left of pt. On the other hand, suppose that |π2j−1| is the j2-th largest
element of the set {|π1|, . . . , |πi|}. Then one can check that the step pj2 cannot be a
down step that appears to the left of pt. In other words, the pair (π2j−1, π2j) contributes
1 to c2k+1(Πi), and it contributes at least 1 to the height of pt. Moreover, suppose that
|π2k+2| is the j3-th largest element of the set {|π1|, . . . , |πi|}. Since π2k+2 < π2k+1 < 0,
we see that the step pj3 is an up step that appears to the left of pt. This means that
the step pj3 increases the height of the step pt by 1. So we deduce that the height of
pt is at least c2k+1(Πi) + 1.

Next we verify property (2), that is, after contracting the added step pr in Φ(Πi)
and updating the labels of other steps, we get the labeled ballot path Φ(Πi−1). By
the construction of Ψ, after contracting the down step pr, we add 1 to the labels of up
steps to the right of pr, and subtract 1 from the labels of down steps to the left of pr,
all the labels of other steps remain unchanged.

We proceed to show that in the process of constructing Φ(Πi) from Φ(Πi−1), after
we add the down step pr to Φ(Πi−1), the labels of all the up steps to the right of pr
decrease by 1, the labels of all the down steps to the left of pr increase by 1, the labels
of other steps remain unchanged.

Since the labels of the steps of Φ(Πi−1) involve the inversion code c(Πi−1), let us
examine the change of c(Πi−1) after adding the element πi to Πi−1. According to
Lemma 2.1, we see that after adding the element πi to Πi−1, for any element π2j of
Πi−1 with π2j > πi, c2j(Πi−1) increases by 1. For any element π2j+1 of Πi−1 with
π2j+1 < πi, c2j+1(Πi−1) decreases by 1. Let us consider the changes of the labels of the
steps in Φ(Πi−1) in the process of constructing Φ(Πi) from Φ(Πi−1).

Suppose that |π2j| (|π2j+1| resp.) is the j4-th (j5-th resp.) largest element of the set
{|π1|, . . . , |πi|}. By the construction of Φ(Πi−1), pj4 is a down step whose label equals
c2j(Πi−1). Thus the label of the step pj4 increases by 1 in Φ(Πi).

Next, we examine the change of the label of the step pj5 . There are three cases: (i)
If π2j+1 > 0, then pj5 is an up step appearing to the right of pr. Since the label of pj5
equals c2j+1(Πi), we see that its label decreases by 1 in Φ(Πi). (ii) If π2j+1 < 0 and
|π2j+1| < πi, then pj5 is a down step appearing to the right of pr. Since the label of
the step pj5 equals its height minus c2j+1(Πi), and the height of pj5 decreases by 1, we
deduce that label of pj5 remains unchanged. (iii) If π2j+1 < 0 and |π2j+1| > πi, then pj5
is a down step appearing to the left of pr. Since the height of pj5 remains unchanged
and c2j+1(Πi−1) decreases by 1, we deduce that the label of pj5 increases by 1 in Φ(Πi).
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The proof of property (3) is obvious according to the construction of Ψ. Thus we
have completed the proof for the case when i is even and πi > 0. The other cases are
omitted as mentioned before.

4 A refinement

In this section, we obtain a formula for the bivariate generating function for the number
B(n, k) of labeled ballot paths of length n that end at the point (n, k), where 0 ≤ k ≤ n.
The numbers B(n, k) can be considered as a refinement of the Springer numbers. By
a restriction of our bijection, we also obtain a correspondence between labeled Dyck
paths of length 2n and alternating permutations on [2n]. By considering the last step
of a labeled ballot path, it is easy to derive the following recurrence relation.

Theorem 4.1 For 1 ≤ k ≤ n, we have

B(n, k) = (k + 1)B(n− 1, k + 1) + kB(n− 1, k − 1). (4.7)

Since a ballot path can never end at a point (n, k) when n + k is odd, we have
B(n, k) = 0 if n+ k is odd.

When k = 0, B(2n, 0) is the number of labeled Dyck paths of length 2n, where a
labeled Dyck path of length 2n is a labeled ballot path of length 2n that ends at a point
on the x-axis. It should be noticed that the numbers B(2n, 0) are the secant numbers
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Figure 4: The table for B(n, k) when 0 ≤ k, n ≤ 8.

and they are closely related to alternate level codes of ballots, see Strehl [18]. Recall
that an alternate level code of ballots of length n is an integer sequence λ = λ1λ2 · · ·λn
such that λ1 = 1, and for 2 ≤ j ≤ n,

λj−1 + 1 ≥ λj ≥ 1.

Denote by Λn the set of alternate level codes of ballots of length n. For example,

Λ3 = {111, 112, 121, 122, 123}.

Rosen [14] derived the formula

∑
n≥0

(∑
λ∈Λn

n∏
i=1

λi(λi + 1)

)
xn

n!
= tanx. (4.8)

Strehl [18] deduced the secant companion equation of (4.8):

∑
n≥0

(∑
λ∈Λn

n∏
i=1

λ2
i

)
xn

n!
= secx. (4.9)

To make a connection between labeled Dyck paths and alternate level codes of
ballots, we need the following bijection, see Stanley [17, Ex. 6.19].

Theorem 4.2 There is a bijection between the set of Dyck paths of length 2n and the
set of alternate level codes of ballots of length n.

Proof. Let λ = λ1λ2 · · ·λn ∈ Λn be an alternate level code of ballots of length n. We
shall construct a Dyck path P of length 2n from λ. For convenience, we set λn+1 = 1.
Let P = P1P2 · · ·Pn, where Pi = udλi−λi+1+1. We proceed to prove that P is a Dyck
path of length 2n. First, we show that for 1 ≤ i ≤ n, the number of down steps is less
than or equal to the number of up steps in P1 · · ·Pi, that is,

i∑
j=1

(λj − λj+1 + 1) ≤ i,
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which is evident since λ1 = 1 and λi+1 ≥ 1. Furthermore, one can check that there are
exactly n down steps in P , namely,

n∑
j=1

(λj − λj+1 + 1) = n.

Thus P is indeed a Dyck path of length 2n.

Conversely, given a Dyck path P of length 2n, we can construct an alternate level
code of ballots λ = λ1λ2 · · ·λn of length n. Let λi be the larger y-coordinate of the
endpoints of the i-th up step of P . It is straightforward to verify that λ is an alternate
level code of ballots of length n. This completes the proof.

For instance, let λ = 122 ∈ Λ3. Then the Dyck path corresponding to λ is uududd.
Using the above bijection we are led to a connection between the number B(2n, 0) and
alternate level codes of ballots.

Corollary 4.3 We have

B(2n, 0) =
∑
λ∈Λn

n∏
i=1

λ2
i . (4.10)

Proof. Relation (4.10) follows from the observation that for a given Dyck path, the
number of labelings equals the product of squares of the elements of the corresponding
alternate level code of ballots.

In passing, we mention that Getu, Shapiro and Woen [8] considered a generaliza-
tion of the formula of Rosen [14] on tangent numbers, namely, equation (4.8). More
precisely, for a given ballot path, they defined the weight of the path to be the product
of the y-coordinates of all the endpoints, except for the last point. Let T (n, k) denote
the sum of weights of ballot paths from (1, 1) to (n, k). It is easily checked that

T (n, k) = (k − 1)T (n− 1, k − 1) + (k + 1)T (n− 1, k + 1).

When k = 1, T (n, 1) is the tangent number, that is,∑
n≥1

T (n, 1)
xn

n!
= tanx.

They gave a table for T (n, k) similar to the table in Figure 4, where the first row
consists of the tangent numbers. For k ≥ 1, they obtained the generating function∑

n≥1

T (n, k)
xn

n!
=

tank x

k
.
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By replacing the first row of their table with the secant numbers, they introduced
another number E(n, k) and considered the following recurrence relation

E(n, k) = (k − 1)E(n− 1, k − 1) + kE(n− 1, k + 1),

where E(0, 1) = 1, E(1, 2) = E(2, 1) = 1 and E(n, k) = 0 for n < k−1 or k < 1. When
k = 1, E(n, 1) is the secant number. However, no combinatorial interpretation was
given for the numbers E(n, k). Using the recurrence relation of E(n, k), Getu, Shapiro
and Woen [8] derived the exponential generating function∑

n≥k

E(n, k)
xn

n!
= tank−1 x secx. (4.11)

Comparing the recurrence relations and the initial values of B(n, k) and E(n, k), we
find that

B(n, k) = E(n, k + 1).

Therefore B(n, k) can be viewed as a combinatorial explanation for E(n, k). Moreover,
we obtain the generating function Gn(y) for the n-th row of the table for B(n, k). Let

Gn(y) =
n∑
k=0

B(n, k)yk. (4.12)

Note that

Gn(1) =
n∑
k=0

B(n, k)

equals the n-th Springer number. Let B(x, y) be the generating function for Gn(y),
that is,

B(x, y) =
∑
n≥0

Gn(y)
xn

n!
.

Then we have the following formula.

Theorem 4.4 We have

B(x, y) =
1

cosx− y sinx
.

Proof. Let

Fk(x) =
∑
n≥k

B(n, k)
xn

n!
=
∑
n≥k

E(n, k + 1)
xn

n!
= tank x secx.
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Hence

B(x, y) =
∑
n≥0

∑
0≤k≤n

B(n, k)yk
xn

n!
=
∑
k≥0

Fk(x)yk =
1

cosx− y sinx
,

as required.

As applications of our bijection, we shall give a classification of snakes of type Bn

and establish a connection between labeled Dyck paths and alternating permutations.

Define the statistic

α(π) = #{1 ≤ j ≤ n |πj > 0 and j is odd}
+ #{1 ≤ j ≤ n |πj < 0 and j is even}
−#{1 ≤ j ≤ n | πj < 0 and j is odd}
−#{1 ≤ j ≤ n | πj > 0 and j is even}.

Then we have the following classification of snakes of type Bn.

Theorem 4.5 For 0 ≤ k ≤ n, B(n, k) equals the number of snakes π = π1π2 · · · πn
with α(π) = k.

Proof. From the construction of Φ from the set of snakes of type Bn to the set of
labeled ballot paths of length n, it can be seen that α(π) equals the number of up
steps minus the number of down steps of Φ(π). Consequently, if α(π) = k, then the
ballot path Φ(π) ends at a point with y-coordinate k. So the theorem follows from the
definition of B(n, k). This completes the proof.

We remark that Theorem 4.4 and Theorem 4.5 lead to a combinatorial interpreta-
tion for a sequence of derivative polynomials for the secant function secx, as introduced
by Hoffman [9]. Let {Qn(y)}n≥0 be a sequence of polynomials defined by

dn

dxn
secx = Qn(tanx) secx.

Hoffman [9] obtained the following exponential generating function for Qn(y)

∞∑
n=0

Qn(y)
xn

n!
=

1

cosx− y sinx
.

Hence we have
Qn(y) = Gn(y) =

∑
π

yα(π),

where the sum ranges over snakes of type Bn.
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We now consider a restriction of our bijection to labeled Dyck paths and alternating
permutations. Substituting (4.10) into(4.9), we obtain∑

n≥0

B(2n, 0)
xn

n!
= secx.

Since secx is the generating function for the number E2n of alternating permutations
on [2n], we see that B(2n, 0) equals E2n. Recall that B(2n, 0) equals the number of
labeled Dyck paths of length 2n. The following theorem asserts that the restriction
of the map Ψ to labeled Dyck paths serves as a combinatorial interpretation of the
fact that B(2n, 0) = E2n. When restricted to labeled Dyck paths, the map Ψ does
not involve any negative elements. On the other hand, when restricted to alternating
permutations, the map Φ generates labeled Dyck paths.

Theorem 4.6 The maps Ψ and Φ induce a bijection between labeled Dyck paths of
length 2n and alternating permutations on [2n].

Proof. Let (P,W ) = (p1 · · · p2n, w1 · · ·w2n) be a labeled Dyck path of length 2n. We
wish to show that π = Ψ(P,W ) = π1 · · · π2n contains no negative elements. Since
(P,W ) is a labeled Dyck path, we see that in the first step of Ψ there exists a down
step labeled by 0. Assume that pr1 is the leftmost among such down steps. Applying
the map Ψ, we are supposed to contract pr1 into a single point to form a ballot path
P2. Then we add 1 to the labels of up steps of P2 which are originally to the right of
pr1 and subtract 1 from the labels of down steps of P2 which are originally to the left
of pr1 . Then we get a labeled ballot path (P2,W2) and a partial signed permutation
Γ1 = (n− r1 + 1)Γ0 = (n− r1 + 1), which contains no negative elements.

Similarly, in step 2, in the labeled ballot path (P2,W2), there does not exist any
down step of P2 whose label equals its height. So we can find an up step of P2 labeled
by 0. Suppose that pr2 is the rightmost up step of P2 with label 0. Contracting pr2
gives a ballot path P3. Subtract 1 from the labels of up steps of P3 that are originally
to the right of pr2 and add 1 to the labels of down steps of P3 that are originally to
the left of pr2 . Then we obtain a labeled ballot path (P3,W3) and a partial signed
permutation Γ2 = (n− r2 + 1)Γ1 = (n− r2 + 1)(n− r1 + 1) without negative elements.

Note that P1 is a Dyck path of length 2n, and an up step in P1 and a down step
in P2 are contracted. Hence there are n − 1 up steps and n − 1 down steps in P3. It
follows that (P3,W3) is a labeled Dyck path. Iterating the above process, we eventually
obtain an alternating permutation.

Conversely, let π = π1π2 · · · π2n be an alternating permutation of length 2n. We
wish to show that Φ(π) = p1 · · · p2n is a labeled Dyck path. Since Φ(π) is a labeled
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ballot path already, it suffices to show that Φ(π) has the same number of up steps
as down steps. In step k of the map Φ, we are supposed to find the position of the
element n − k + 1 in π so that we can determine whether pk is an up step or a down
step. Assume that πi = n − k + 1. If i is odd, then pk = u, and if i is even, then
pk = d. Since π has 2n elements, there are n odd positions as well as n even positions
in π. So Φ(π) has n up steps and n down steps. Thus Φ(π) is a labeled Dyck path.
This completes the proof.

To conclude, we point out a connection between a special case of our bijection
for labeled Dyck paths and the special cases of some known bijections. Françon and
Viennot [6] found a bijection, denoted ΦFV , between weighted 2-Motzkin paths of
length n− 1 and permutations on [n] with last elements being n. As a variant of ΦFV ,
Clarke, Steingŕımsson and Zeng [5, p.255–257] obtained a bijection, denoted ΦCSZ ,
between weighted 2-Motzkin paths of length n and permutations on [n].

If the bijection ΦFV is restricted to weighted 2-Motzkin paths of length 2n without
horizontal steps, then the corresponding permutations become alternating permuta-
tions on [2n + 1] with last elements being 2n + 1, or equivalently, alternating permu-
tations on [2n]. In fact, a weighted 2-Motzkin path of length 2n without horizontal
steps is exactly a labeled Dyck path of length 2n in our terminology. This means that
the above restriction of ΦFV is a bijection between labeled Dyck path of length 2n and
alternating permutations on [2n].

Similarly, if we restrict the bijection ΦCSZ to weighted 2-Motzkin paths of length
2n without horizontal steps, then the corresponding permutations become alternating
permutations on [2n]. Thus the restriction of ΦCSZ can be also regarded as a bijection
between labeled Dyck paths of length 2n and alternating permutations on [2n].

It should be noted that the restriction of our bijection to labeled Dyck paths is
closely related to the restriction of the bijection ΦCSZ . More precisely, we have the
following assertions. Given an alternating permutation π = π1 · · · π2n, let Φ(π) =
(p1 · · · p2n, w1 · · ·w2n). Then we have ΦCSZ(π) = (p′2n · · · p′1, w2n · · ·w1), where u′ = d
and d′ = u. Conversely, given a labeled ballot path (P,W ) = (p1 · · · p2n, w1 · · ·w2n), let
(P ′,W ′) = (p′2n · · · p′1, w2n · · ·w1), where u′ = d and d′ = u. Then we have Ψ(P,W ) =
Φ−1
CSZ(P ′,W ′). On the other hand, it can be seen that the restriction of our bijection

to labeled Dyck paths is different from the restriction of ΦFV .

It is also worth mentioning that Foata and Zeilberger [7] found a bijection, denoted
ΦFZ , between weighted 2-Motzkin paths of length n and permutations on [n]. This
bijection can be reduced to a correspondence between certain weighted 2-Motzkin paths
of length 2n and alternating permutations on [2n]. Biane [2] gave a bijection with
a different weight assignment for 2-Motzkin paths, denoted ΦB, between weighted 2-
Motzkin paths of length n and permutations on [n]. The relations among the bijections

21



ΦFV ,ΦFZ ,ΦB and ΦCSZ are discussed in [5, 13].

Acknowledgments. We wish to thank the referee for valuable suggestions. This work
was supported by the 973 Project, the PCSIRT Project of the Ministry of Education,
and the National Science Foundation of China.

References

[1] V.I. Arnol’d, The calculus of snakes and the combinatorics of Bernoulli, Euler,
and Springer numbers of Coxeter groups, Uspekhi Mat. Nauk., 47 (1992), 3–45
(Russian); Russian Math. Surveys, 47 (1992), 1–51.

[2] P. Biane, Permutations suivant le type d’excédance et le nombre d’inversions et in-
terprétation combinatoire d’une fraction continue de Heine, European J. Combin.,
14 (1993), 277–284.

[3] W.Y.C. Chen, D.Q.J. Dou and T.Y.J. Zhang, On three and four vicious walkers,
J. Statist. Plann. Inference, 141 (2011), 94–101.

[4] W.Y.C. Chen, N.J.Y. Fan and J.Y.T. Jia, The generating function for the Dirichlet
series Lm(s), Math. Comput., to appear.
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[6] J. Françon and G. Viennot, Permutations selon les pics, creux, doubles montées,
doubles descents, nombres d’Euler et nombres de Genocchi, Discrete Math., 28
(1979), 21–35.

[7] D. Foata and D. Zeilberger, Denert’s permutation statistic is indeed Euler-
Mahonian, Studies in Appl. Math., 83 (1990), 31–59.

[8] S. Getu, L. Shapiro and W.J. Woan, Product-weighted lead codes revistied, J.
Combin. Theory, Ser. A, 33 (1982), 112–116.

[9] M.E. Hoffman, Derivative polynomials for tangent and secant, Amer. Math.
Monthly, 102 (1995), 23–30.

[10] M.E. Hoffman, Derivative polynomials, Euler polynomials, and associated integer
sequences, Electron. J. Combin., 6 (1999), #R21.

[11] The OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences,
http://oeis.org.

22
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