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Abstract. For 0 ≤ k ≤ n, let ekn be the entries in Euler’s difference table and let dkn =
ekn/k!. Dumont and Randrianarivony showed ekn equals the number of permutations on [n]
whose fixed points are contained in {1, 2, . . . , k}. Rakotondrajao found a combinatorial
interpretation of the number dkn in terms of k-fixed-points-permutations of [n]. We show
that for any n ≥ 1, the sequence {dkn}0≤k≤n is both 2-log-concave and reverse ultra log-
concave.
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1 Introduction

Euler’s difference table (ekn)0≤k≤n is defined by enn = n! and

ek−1n = ekn − ek−1n−1, (1.1)

for 1 ≤ k ≤ n. Dumont and Randrianarivony [5] showed that ekn equals the number of
permutations on [n] whose fixed points are contained in {1, 2, . . . , k}. Clarke, Han and
Zeng [4] gave a combinatorial interpretation of a q-analogue of Euler’s difference table.
This combinatorial interpretation was further extended by Faliharimalala and Zeng [7, 8]
to the wreath product C` o Sn of the cyclic group and the symmetric group.

It is easily seen from the recurrence relation (1.1) that k! divides ekn. Thus the number
dkn = ekn/k! is always an integer. Rakotondrajao [13] has shown that dkn equals the number
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of k-fixed-points-permutations of [n], where a permutation π ∈ Sn is called a k-fixed-
points-permutation if there are no fixed points in the last n− k positions and the first k
elements are in different cycles. Based on this combinatorial explanation, Rakotondrajao
[14] has found bijective proofs for the following recurrence relations

dkn = (n− 1)dkn−1 + (n− k − 1)dkn−2, (1.2)

and
dkn = ndkn−1 − dk−1n−2, (1.3)

where 0 ≤ k ≤ n− 1 and dnn = 1.

Recently, Eriksen, Freij and Wästlund [6] generalized the above recurrence relations to
λ-colored permutations. By equating the right hand sides of (1.2) and (1.3), and changing
the index from n− 1 to n, we obtain the following relation for 1 ≤ k ≤ n− 1,

dkn = dk−1n−1 + (n− k)dkn−1. (1.4)

Applying the above relations (1.2) (1.3) and (1.4), we shall prove that for any n ≥ 1, the
sequence {dkn}0≤k≤n is 2-log-concave and reverse ultra log-concave.

2 The 2-log-concavity

In this section, we show that the sequence {dkn}0≤k≤n is 2-log-concave for any n ≥ 1.
Recall that a sequence {ak}k≥0 of real numbers is said to be log-concave if a2k ≥ ak+1ak−1
for all k ≥ 1; see Stanley [15] and Brenti [2]. From the recurrence relation (1.4), it is easy
to prove by induction that the sequence {dkn}0≤k≤n is log-concave.

Theorem 2.1 The sequence {dkn}0≤k≤n is log-concave.

The notion of high order log-concavity was introduced by Moll [12]; see also, [9]. Given
a sequence {ak}k≥0, define the operator L as L{ak} = {bk}, where

bk = a2k − ak−1ak+1.

The log-concavity of {ak} becomes non-negativity of L{ak}. If the sequence L{ak} is not
only nonnegative but also log-concave, then we say that {ak} is 2-log-concave. In general,
we say that {ak} is l-log-concave if Ll{ak} is nonnegative, and that {ak} is infinite log-
concave if Ll{ak} is nonnegative for any l ≥ 1. From numerical evidence, we conjecture
that the sequence {dkn}0≤k≤n is infinitely log-concave.

Recently, Brändén [1] has proved that if a polynomial has only real and nonpositive
zeros, then its coefficients form an infinite log-concave sequence. However, this is not
the case for the polynomials

∑
dknx

k, since not all polynomials
∑
dknx

k have only real
zeros, for example, when n = 2, the polynomial x2 + x + 1 does not have any real root.
Nevertheless, we shall show that the sequence {dkn} is 2-log-concave in support of the
general conjecture.
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Theorem 2.2 The sequence {dkn}0≤k≤n is 2-log-concave. In other words, for n ≥ 4 and
2 ≤ k ≤ n− 2, we have(

(dkn)2 − dk−1n dk+1
n

)2 − ((dk−1n )2 − dk−2n dkn
) (

(dk+1
n )2 − dkndk+2

n

)
≥ 0. (2.1)

The idea to prove Theorem 2.2 can be outlined as follows.

1. As the first step, we reformulate the left hand side of inequality (2.1) as a cubic

function f in
dkn+1

dkn
by applying the recurrence relations (1.2), (1.3), (1.4) and a

recurrence relation presented in Lemma 2.3.

2. We show that Theorem 2.2 follows from the assertion that f ≥ 0 in the interval

I =

[
n+

n− k
n

, n+
n− k
n

+
n− k
n2

]
,

since it can be verified that for n ≥ 4 and 2 ≤ k ≤ n− 2,

n+
n− k
n
≤
dkn+1

dkn
≤ n+

n− k
n

+
n− k
n2

. (2.2)

3. In order to prove f > 0, we consider f as a continuous function in x. It can be
shown that f ′(x) < 0 for x ∈ I and

f

(
n+

n− k
n

+
n− k
n2

)
≥ 0.

Hence we deduce that f ≥ 0 in the interval I. This proves Theorem 2.2.

Lemma 2.3 For 1 ≤ k ≤ n, we have

dk−1n = (k + 1)(n− k)dk+1
n − (n− 2k + 1)dkn. (2.3)

Proof. First, from (1.1) it is easy to establish the following recurrence relation for 1 ≤
k ≤ n,

dk−1n = kdkn − dk−1n−1. (2.4)

For 1 ≤ k ≤ n, we find

dkn = (k + 1)dk+1
n − dkn−1

= (k + 1)dk+1
n −

(
1

n− k
dkn −

1

n− k
dk−1n−1

)
(by (1.4))

= (k + 1)dk+1
n − 1

n− k
dkn +

1

n− k
(
kdkn − dk−1n

)
(by (2.4))

= (k + 1)dk+1
n +

k − 1

n− k
dkn −

1

n− k
dk−1n .
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Consequently,
dk−1n = (k + 1)(n− k)dk+1

n − (n− 2k + 1)dkn,

as desired.

To prove (2.2), we need a lower bound on dkn+1/d
k
n.

Lemma 2.4 For n ≥ 1 and 1 ≤ k ≤ n− 1, we have

dkn+1

dkn
≥ n+

n− k
n

. (2.5)

Proof. First we consider the case 1 ≤ k ≤ n − 2. We proceed by induction on n. It is
clear that (2.5) holds for n = 1 and n = 2. We now assume that (2.5) holds for n − 2,
that is,

dkn−1
dkn−2

≥ n− 2 +
n− k − 2

n− 2
. (2.6)

By recurrence (1.2), we have

dkn+1

dkn
=
ndkn + (n− k)dkn−1

dkn

= n+ (n− k)
dkn−1
dkn

= n+ (n− k)
dkn−1

(n− 1)dkn−1 + (n− k − 1)dkn−2
.

Thus (2.5) can be recast as

(n− 1) + (n− k − 1)
dkn−2
dkn−1

≤ n.

So it suffices to check that
dkn−1
dkn−2

≥ n− k − 1.

Since n ≥ 3, by the induction hypothesis, we have

dkn−1
dkn−2

≥ n− 2 +
n− 2− k
n− 2

= n− 1− k

n− 2

≥ n− k − 1.
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as required.

We now turn to the case k = n− 1. By (1.3), we get

dn−1n = (n− 1)dn−1n−1.

By definition, we have dn−1n−1 = 1. Moreover, it is easy to see that dn−1n = n− 1. Hence, by
(1.4), we have

dn−1n+1

dn−1n

=
ndn−1n + dn−1n−1

dn−1n

= n+
1

n− 1
> n+

1

n
.

This completes this proof.

Next we give an upper bound on dkn+1/d
k
n.

Lemma 2.5 For n ≥ 4 and 2 ≤ k ≤ n− 2, we have

dkn+1

dkn
≤ n+

n− k
n

+
n− k
n2

. (2.7)

Proof. From (1.2) it follows that

dkn+1

dkn
= n+ (n− k)

dkn−1
dkn

= n+ (n− k)
dkn−1

(n− 1)dkn−1 + (n− k − 1)dkn−2
.

Thus (2.7) can be rewritten as

(n− 1) + (n− k − 1)
dkn−2
dkn−1

≥ n2

n+ 1
,

that is,
dkn−1
dkn−2

≤ (n+ 1)(n− k − 1). (2.8)

By recurrence (1.3) for 2 ≤ k ≤ n− 2, we see that

dkn−1
dkn−2

≤ n− 1,

which implies (2.8). This completes the proof.

We are now ready to give the proof of Theorem 2.2.

Proof of Theorem 2.2 . It is easy to check that the theorem holds for n = 4, 5, 6. So we
may assume that n ≥ 7.
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We claim that the left hand side of (2.1) can be expressed as a cubic function f in
dkn+1

dkn
. By the recurrences (1.2), (1.3), (1.4) and (2.3), we can derive the following relations,

dk−2n = (n− k + 1)(n− k + 3)dkn − (n− 2k + 3)dkn+1,

dk−1n = dkn+1 − (n− k + 1)dkn,

dk+1
n =

1

(k + 1)(n− k)

(
dkn+1 − kdkn

)
,

dk+2
n =

1

(k + 1)(k + 2)(n− k − 1)(n− k)

(
(n− 2k − 1)dkn+1 + (n+ k2)dkn

)
.

It follows that (2.1) can be rewritten as

A·
(
C3(n, k)

(
dkn+1

)3
+ C2(n, k)

(
dkn+1

)2 (
dkn
)

+ C1(n, k)
(
dkn+1

) (
dkn
)2

+ C0(n, k)
(
dkn
)3) ≥ 0,

where

A =
dkn

(k + 1)2(n− k)2(k + 2)(n− k − 1)
,

C3(n, k) = −n2 − 5n+ 6k + 6,

C2(n, k) = n3 + n2k + 5n2 + 3nk − 10k2 + n− 16k − 6,

C1(n, k) = n2 − 2n+ 14k + 14k2 + n3 + 10nk2 − 10n2k − n3k − 3nk,

C0(n, k) = −4n2 − 12k2 − 12k3 + 10nk + 18nk2 − 9n2k + n2k2 − n3k.

Since dkn are positive, it suffices to show that

C3(n, k)

(
dkn+1

dkn

)3

+ C2(n, k)

(
dkn+1

dkn

)2

+ C1(n, k)

(
dkn+1

dkn

)
+ C0(n, k) ≥ 0. (2.9)

We now consider the function

f(x) = C3(n, k)x3 + C2(n, k)x2 + C1(n, k)x+ C0(n, k),

with
f ′(x) = 3C3(n, k)x2 + 2C2(n, k)x+ C1(n, k). (2.10)

We aim to show that f ′(x) < 0, for 2 ≤ k ≤ n− 1 and x ∈ I.

It can be shown that f ′(−1) < 0, f ′(k) > 0, f ′(n) > 0 and C3(n, k) < 0. The proofs
will be given later. Using the facts f ′(−1) < 0, f ′(k) > 0 and f ′(n) > 0, we deduce that
f ′(x) has a zero in the interval [−1, k] and a zero in the interval [k, n]. This implies that
f ′(x) has no zeros in the interval I since f ′(x) is a quadratic function. Since f ′(n) > 0
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and C3(n, k) < 0, we see that f ′(x) < 0 in the interval I. In other words, f(x) is strictly
decreasing in the interval I.

It will be also shown that

f

(
n+

n− k
n

+
n− k
n2

)
> 0. (2.11)

Combining with the fact that f(x) is strictly decreasing in I, we obtain that f(x) > 0 in
I, as desired.

We now finish the proofs of the above claims. First, we show that f ′(−1) < 0. Clearly,
we have

f ′(−1) = −(k + 1)(n3 + 12n2 − 10nk + 19n− 34k − 30).

For n ≥ 7 and 2 ≤ k ≤ n− 2, we find

n3 + 12n2 − 10nk + 19n− 34k − 30

≥ n3 + 12n(k + 2) + 19n− 30− 10nk − 34k

≥ (n3 − 30) + 2nk + (43n− 34k) > 0.

This implies that f ′(−1) < 0.

Next we shall verify that f ′(k) > 0 and f ′(n) > 0. For x = k, we have

f ′(k) = (k + 1)(n− k)(n2 + n+ 2k − 2).

Since n > k and k > 1, we see that f ′(k) > 0.

For x = n, we have

f ′(n) = −(n− k)(n3 + 4n2 − 10nk + 14k − 21n+ 14). (2.12)

To prove f ′(n) < 0, it suffices to show that for 2 ≤ k ≤ n− 2,

n3 + 4n2 − 10nk + 14k − 21n+ 14 > 0.

We consider two cases. For 2 ≤ k ≤ n− 3, we have

n3 + 4n2 − 10nk + 14k − 21n+ 14 = n
(
(n− 3)2 + 10(n− k − 3)

)
+ 14k + 14 > 0,

On the other hand, for k = n− 2, we have

n3 + 4n2 − 10nk + 14k − 21n+ 14 = n(n− 3)2 + 4n− 14 > 0.

Thus f ′(n) < 0 holds for 2 ≤ k ≤ n− 2.
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To prove f ′(x) > 0, we need to verify that C3(n, k) < 0. Since n ≥ k + 2, it is easily
seen that

C3(n, k) = −(n2 + 5n− 6k − 6)

≤ −
(
(k + 2)2 + 5(k + 2)− 6k − 6

)
≤ −(k2 + 3k + 8) < 0.

Till now, we have proved the facts f ′(−1) < 0, f ′(k) > 0, f ′(n) > 0 and C3(n, k) < 0.
Finally, we finish the proof of (2.11). It is easily checked that

f

(
n+

n− k
n

+
n− k
n2

)
=
h(k)(n− k)2

n6
,

where

h(k) = (−10n4 − 26n3 − 28n2 − 18n− 6)k2 + (−n6 + 20n5 + 27n4 + 19n3 − 7n− 6)k

+ (n7 − 10n6 − 4n5 − 4n4 + 9n3 + 7n2 + 6n).

We continue to show that h(k) ≥ 0 for n ≥ 7 and 2 ≤ k ≤ n− 2. We now consider h(x)
as a continuous function in x, that is,

h(x) = (−10n4 − 26n3 − 28n2 − 18n− 6)x2 + (−n6 + 20n5 + 27n4 + 19n3 − 7n− 6)x

+ (n7 − 10n6 − 4n5 − 4n4 + 9n3 + 7n2 + 6n).

Since the leading coefficient of h(x) is negative, we only need to prove that h(2) > 0 and
h(n− 1) > 0. For n ≥ 7, we have

h(n− 1) = n(n5 − 3n4 + 2n3 + 2n2 + 2n+ 1)

= n
(
n3(n− 1)(n− 2) + 2n2 + 2n+ 1

)
> 0,

and

h(2) = n7 − 12n6 + 36n5 + 10n4 − 57n3 − 105n2 − 80n− 36

= n5(n− 5)(n− 7) + n4(n− 6) + 16n3(n− 7) + 55n2(n− 7)

+ 80n(n− 1) + 200n2 − 36 > 0.

Thus we reach the conclusion that h(k) > 0 for n ≥ 7 and 2 ≤ k ≤ n− 2. This completes
the proof.
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3 The reverse ultra log-concavity

In this section, we show that for any n ≥ 1, the sequence {dkn}0≤k≤n is reverse ultra
log-concave. Recall that a sequence {ak}0≤k≤n is called ultra log-concave if

{
ak
/(

n
k

)}
is

log-concave. This condition can be restated as

k(n− k)a2k − (n− k + 1)(k + 1)ak−1ak+1 ≥ 0. (3.1)

It is well known that if a polynomial has only real zeros, then its coefficients form an ultra
log-concave sequence. If a sequence {ak}0≤k≤n is ultra log-concave, then the sequence
{k!ak}0≤k≤n is log-concave, see Liggett [11].

In comparison with ultra log-concavity, a sequence is said to be reverse ultra log-
concave if it satisfies the reverse relation of (3.1), that is,

k(n− k)a2k − (n− k + 1)(k + 1)ak−1ak+1 ≤ 0. (3.2)

Chen and Gu [3] have shown the Boros-Moll polynomials are reverse ultra log-concave.
The following theorem states that the sequence {dkn}0≤k≤n is reverse ultra log-concave.

Theorem 3.1 For n ≥ 1 and 1 ≤ k ≤ n− 1, we have

dk−1n(
n

k−1

) · dk+1
n(
n

k+1

) ≥ ( dkn(
n
k

))2

,

or equivalently,

(n− k + 1)(k + 1)dk−1n dk+1
n ≥ k(n− k)

(
dkn
)2
. (3.3)

Proof. According to the recurrence relations (1.4) and (2.3), we find that (3.3) can be
reformulated as

(n− k + 1)

(
dkn+1

dkn

)2

− (n− k + 1)(n+ 1)

(
dkn+1

dkn

)
+ k(2n− 2k + 1) ≥ 0. (3.4)

The discriminant of the quadratic polynomial in dkn+1/d
k
n on the left hand side of (3.4)

equals
∆ = ((n− k + 1)(n+ 1))2 − 4k(n− k + 1)(2n− 2k + 1).

We aim to show that ∆ > 0 for 1 ≤ k ≤ n− 1. We can rewrite ∆ as follows

∆ = (n− k + 1)[(n− k − 1)((n+ 1)2 − 8k) + 2((n+ 1)2 − 6k)].

Since (n+1)2−6k ≥ (n+1)2−8k = (n−3)2 ≥ 0, it follows that ∆ > 0 for 1 ≤ k ≤ n−1,
as desired.
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Therefore, the above quadratic function has two distinct real zeros. If we can prove
that for 1 ≤ k ≤ n − 1, dkn+1/d

k
n is larger than the large zero, then (3.4) holds since

n− k + 1 > 0. Thus we still have to show that

dkn+1

dkn
>

(n− k + 1)(n+ 1) +
√

∆

2(n− k + 1)
=
n+ 1

2
+

√
∆

2(n− k + 1)
(3.5)

In view of (2.5), we see that (3.5) can be deduced from the following inequality

n+
n− k
n
≥ n+ 1

2
+

√
∆

2(n− k + 1)
,

which is equivalent to
(n− k + 1)(n2 + n− 2k) ≥ n

√
∆.

Evidently, (
(n− k + 1)(n2 + n− 2k)

)2 − n2∆

= 4k(n− k + 1)(n− k)(n2 − n+ k − 1),

which is nonnegative for 1 ≤ k ≤ n− 1. This completes the proof.
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