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1 Introduction

Ramanujan’s sum for 1ψ1 has been extensively studied in the theory of q-series, which is
usually stated in the following form:

1ψ1(a; b; q, z) =
∞∑

n=−∞

(a; q)n
(b; q)n

zn =
(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

, |b/a| < |z| < 1, |q| < 1, (1.1)

where the q-shifted factorial is defined by

(a; q)∞ =
∞∏
n=0

(1− aqn), (a; q)n = (a; q)∞/(aq
n; q)∞.

The main result of this paper is a combinatorial proof of the above formula by using
a variation of the Algorithm Z named after Zeilberger [7]. Since Hahn and Jackson
published the first proofs in 1949 and 1950, many other proofs have been found, see,
for example, Andrews [4], Andrews and Askey [2], Berndt [5], Fine [12], Ismail [15],
Mimachi [17]. However, the combinatorial proofs have appeared only recently. Using
the Frobenius notation for overpartitions, Corteel and Lovejoy [10] have found a bijective
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proof of the constant term identity for the the following formulation of Ramanujan’s 1ψ1

summation:

(−aq; q)∞(−bq; q)∞
(q; q)∞(abq; q)∞

∞∑
n=−∞

(−a−1; q)n(zqa)n

(−bq; q)n
=

(−zq; q)∞(−z−1; q)∞
(bz−1; q)∞(azq; q)∞

. (1.2)

Corteel [9] went on to find a bijection, by using particle seas, to show that the coefficients
of zN (N 6= 0) on both sides of (1.2) are equal as well, which leads to the completion of
the combinatorial proof of (1.2). In the meantime, Yee [19] also found a combinatorial
proof of (1.2) in the language of F -partitions defined as pairs of overpartitions with
different sizes written in the two line notation.

In this paper, we shall present a new combinatorial proof of Ramanujan’s 1ψ1 sum
based on a variation of the Algorithm Z. Conceptually, our bijection is rather simple
despite that there are several steps which do not seem to be avoidable to accomplish
the task of transformations of partitions. As will be seen, the Algorithm Z serves as
the main ingredient of our combinatorial construction for Ramanujan’s formula. To be
precise, our bijection is devised for following restatement of Ramanujan’s formula

(−q/a; q)∞(−b/az; q)∞
(q; q)∞

∞∑
n=−∞

(−a; q)n
(b; q)n

zn =
(−b/a; q)∞(−az; q)∞(−q/az; q)∞

(b; q)∞(z; q)∞
. (1.3)

The Algorithm Z, as called by Andrews and Bressoud [3], was found by Zeilberger [7]
(Proposition 3.1) as a combinatorial interpretation of the Gauss coefficient

[
n
k

]
as defined

by the following relation

1

(q; q)i+j

[
i+ j

i

]
=

1

(q; q)i(q; q)j
.

Using this algorithm, Andrews and Bressoud have found combinatorial proofs of some
classical q-identities. The Algorithm Z has also been employed by Bessenrodt [6] to
give a bijective proof of a theorem of Alladi and Gordon, and to give a combinatorial
interpretation of the Lebesgue identity by Fu [13].

2 The Algorithm Z

In this section, we shall give an overview of the Algorithm Z and use it to give a combi-
natorial interpretation of q-binomial theorem, which is an important step of our combi-
natorial proof of Ramanujan’s summation (1.3):∑

n≥0

Pn(b,−a)

(q; q)n
zn =

∑
n≥0

(−a/b; q)n
(q; q)n

(bz)n =
(−az; q)∞
(bz; q)∞

. (2.1)

where the polynomials

Pn(b,−a) =
n∑
k=0

[
n

k

]
akq(

k
2)bn−k =

 (b+ a)(b+ aq) · · · (b+ aqn−1), if n ≥ 1;

1, if n = 0,
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are the Cauchy polynomials as called in [8].

A partition λ of a nonnegative integer with r parts is denoted by λ = (λ1, λ2, . . . , λr),
where λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0. The number of parts, called the length of λ, is denoted
by l(λ), and the sum of parts, called the weight of λ, is denoted by |λ|. The conjugate
of λ is denoted by λ′ = (λ′1, . . .), where λ′i is the number of positive parts of λ that are
greater than or equal to i. The following bijection is call the Algorithm Z.

Theorem 2.1 There is a bijection between the set of pairs of partitions (α, β) where α
has s − r parts and β has r parts, and the set of pairs of partitions (µ, ν), where µ has
s parts and ν has r parts with each part not exceeding s − r. We call µ the insertion
partition and call ν the record partition.

Proof. Given a partition α with s− r parts, denoted by (α1, . . . , αs−r), and a partition β
with r parts, denoted by (β1, . . . , βr), we may insert β into α to create a pair of partitions
µ and ν. The insertion algorithm can be described as the following recursive procedure.

• If β1 ≤ αs−r, we insert β1 into α so that we get a new partition (α1, α2, . . . , αs−r+1),
where αs−r+1 = β1. Moreover, we use a zero part as a record of the insertion
position.

• If β1 > αs−r, we recursively insert β1 − 1 into the partition (α1, α2, . . . , αs−r−1).
Suppose that the recursive procedure ends up with β1 − ν1 being inserted, we use
a part ν1 to record the position of β1 − ν1. Obviously, we have 0 ≤ ν1 ≤ s− r.

Conversely, given a partition (α1, . . . , αs−r+1) and a number ν1 with 0 ≤ ν1 ≤ s−r, we
may extract the part β1 from the given partition. It is easy to see that above procedure
is reversible.

After the part β1 has been inserted to α, we may iterate the above procedure to insert
remaining parts of β. Eventually, we obtain a pair of partitions (µ, ν). This completes
the proof.

As an example, taking α = (5, 3, 2, 1), β = (4, 3, 0) with s = 7, r = 3, we have

µ = (5, 3, 2, 2, 2, 1, 0), ν = (2, 1, 0).

Below is the illustration of the insertion procedure

5 3 2 1

5 3 2 2 2 1 0

2 1 0

4 3 0

Corollary 2.2 There is a bijection φ between the set of pairs of partitions (α, β) and
the set of pairs of partitions (µ, ν) satisfying the following conditions
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• α has i distinct parts, β has j parts;

• µ has i+ j parts, ν has i distinct parts with each part ≤ i+ j − 1;

• |α|+ |β| = |µ|+ |ν|.

Proof. Given a pair of partitions (α, β), where α has i distinct parts and β has j parts,
we denote by α the partition (α1− i+ 1, α2− i+ 2, . . . , αi− 0). Applying the Algorithm
Z to (β, ᾱ) yields the desired partition µ into exactly i + j parts and a partition ν̄ into
exactly i parts with each part ≤ j. Set ν = (ν̄1 + i − 1, . . . , ν̄i + 0). It is clear that
|µ| + |ν| = |α| + |β|. Hence the pair of partitions (µ, ν) satisfy the conditions in the
corollary. Since each step is reversible, we have established a bijection. This completes
the proof.

It is clear that Corollary 2.2 leads to a combinatorial proof of the q-binomial theorem.
The first partition-theoretic proof of (2.1) is due to Andrews [1]. There are other proofs
of this classical identity, for example, by overpartitions [11] and by MacMahon diagrams
[16, 18].

3 A Variation of the Algorithm Z

In this section, we give a variation of the Algorithm Z. This algorithm plays a key role
in our combinatorial proof of Ramanujan’s summation formula.

Theorem 3.1 Let s, t, k,m be nonnegative integers. There is a bijection ϕ between the
set of pairs of partitions (α, β) and the set of pairs of partitions (µ, ν) satisfying the
conditions

• α has s distinct parts with each part ≥ m and β has t parts with each part ≥
k + s+ t− 1;

• If s, t > 0, then µ has s+ t distinct nonnegative parts with µs − µs+1 ≥ m+ 1 and
ν has t distinct parts with k ≤ νi ≤ k + s+ t− 1 for each 1 ≤ i ≤ t;

If s > 0 and t = 0, then µ = α and ν is an empty partition;

If s = 0, t > 0, then µ = (β1 − k, β2 − k − 1, . . . , βt − k − t + 1) and ν =
(k + t− 1, k + t− 2, . . . , k);

If s = t = 0, then both µ and ν are empty partitions.

• |α|+ |β| = |µ|+ |ν|.

Proof. Given two partitions α = (α1, . . . , αs) and β = (β1, . . . , βt) satisfying above
conditions. We shall only consider the case when s, t > 0 because the other three cases
are trivial.

Set ᾱi = αi − m + t and β̄j = βj − k − s − j + 1. It is easy to chcek that ᾱ =
(ᾱ1, ᾱ2, . . . , ᾱs) and β̄ = (β̄1, β̄2, . . . , β̄t) form two partitions with ᾱs ≥ t and β̄t ≥ 0. So
we may insert β̄ into ᾱ to create a pair of partitions (µ, ν) via the following procedure.
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• If β̄1 ≥ ᾱ1, we insert β̄1 into ᾱ to form a new partition δ = (δ1, δ2, . . . , δs+1) =
(β̄1, ᾱ1 − 1, ᾱ2 − 1, . . . , ᾱs − 1). Moreover, we set ν1 = k + s + t− 1 to record the
insertion position.

• Otherwise, we assume that j1 is the largest integer such that ᾱj1 > β̄1. Then we in-
sert β̄1 into ᾱ to form a new partition δ = (δ1, δ2, . . . , δs+1) = (ᾱ1, . . . , ᾱj1 , β̄1, ᾱj1+1−
1, . . . , ᾱs − 1). In this case, we use ν1 = k + s + t− j1 − 1 to record the insertion
position of β̄1. Obviously, k + t− 1 ≤ ν1 ≤ k + s+ t− 2.

Conversely, given a partition δ = (δ1, δ2, . . . , δs+1) and a number ν1 with k + t− 1 ≤
ν1 ≤ k+s+ t−1, we may extract the part β̄1 from δ. It is clear that the above procedure
is reversible.

Similarly, we can insert β̄2 into the partition δ = (δ1, δ2, . . . , δs+1). Applying the
insertion algorithm repeatedly to β̄2, . . . , β̄t, we come to a partition µ̄ with s + t parts
and the desired partition ν, where ν = (ν1, . . . , νt) with νi = k + s + t− ji − 1 for each
1 ≤ i ≤ t. Furthermore, one sees that k + t− i ≤ νi ≤ k + s+ t− i. On the other hand,
we get the desired partition µ by setting µ = {µ̄1 + m, . . . , µ̄s + m, µ̄s+1, . . . µ̄s+t}. This
completes the proof.

In the above correspondence, the partition µ is also called the insertion partition
and ν is called the record partition. As an example, let k = 3,m = 2,s = 4, t = 3 and
α = (8, 7, 5, 3), β = (12, 11, 9). Then we have ᾱ = (9, 8, 6, 4) and β̄ = (5, 3, 0), and

µ̄ = (9, 8, 6, 5, 3, 2, 0), ν = (6, 5, 3), µ = (11, 10, 8, 7, 3, 2, 0).

The above correspondence is illustrated as follows

9 8 6 4

9 8 6 5 3 2 0

6 5 3

5 3 0

It is worth mentioning that the conditions αs > m and βt > k + s + t − 1 can be
recast in terms of the single statement that µs+t > 0. This observation will be useful in
the proof of Theorem 4.1.

We now turn our attention to the minor difference between the Algorithm Z and
the above variation. Given two partitions α and β, we may apply the Algorithm Z to
a pair of partitions (ᾱ, β̄), where ᾱ = (α1 − s − m + 1, α2 − s − m + 2, . . . , αs − m)
and β̄ = (β1 − s − t − k + 1, . . . , βt − s − t − k + 1). It can be seen that the record
partition of (α, β) and the record partition of (ᾱ, β̄) differ only by a staircase partition
(k+ t− 1, k+ t− 2, . . . , k). For the above example, one has ᾱ = (3, 3, 2, 1), β̄ = (3, 2, 0).
Inserting β̄ into ᾱ via the Algorithm Z gives µ̄ = (3, 3, 2, 2, 1, 1, 0), ν̄ = (1, 1, 0) as
illustrated below
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3 3 2 1

3 3 2 2 1 1 0

1 1 0

3 2 0

It is not hard to see that our combinatorial proof of Ramanujan’s formula can be
restated in terms of the original Algorithm Z. Nevertheless, the variation seems to be
more convenient for the sake of presentation.

Corollary 3.2 There is a bijection between the set of pairs of partitions (α, β) and the
set of triples of partitions (n;µ, ν, γ) satisfying the conditions

• α has distinct nonnegative parts and β has nonnegative parts;

• µ has n distinct nonnegative parts, ν has either distinct nonnegative parts with each
part ≤ n− 1 (corresponding to β1 ≥ l(α)) or is an empty partition (corresponding
to β1 < l(α)), and γ has nonnegative parts with each part ≤ n− 1;

• |α|+ |β| = |µ|+ |ν|+ |γ|.

Proof. Assume that n is the largest number satisfying βn−l(α) ≥ n − 1. If such an n
exists, then set γ = (βn−l(α)+1, . . . , βl(β)), which is a partition with each part ≤ n − 1.
Denote by β̄ the partition (β1, . . . , βn−l(α))and apply the bijection ϕ in Theorem 3.1 to
(α, β̄) for m = 0 and k = 0, we get a partition µ having n distinct nonnegative parts and
a partition ν having distinct parts with 0 ≤ νi ≤ n− 1. If there does not exist such an
n, namely β1 ≤ l(α)− 1, then we set n = l(α), µ = α, γ = β and set ν to be the empty
partition. This completes the proof.

The above corollary can be regarded as a combinatorial interpretation of the following
identity [14, Exercise 1.6 (ii)]:

(−a; q)∞
(b; q)∞

=
∞∑
n=0

Pn(a,−b)q(
n
2)

(q; q)n(b; q)n
. (3.1)

4 The Combinatorial Proof

In this section, we aim to give a combinatorial proof of Ramanujan’s 1ψ1 summation
formula (1.3). When N ≥ 0, the coefficient of zN on the left-hand side equals the
generating function for the quintuples (n;α, β, γ, λ, µ) subject to the following conditions:

• α has distinct and positive parts,

• β has positive parts,

• γ has distinct nonnegative parts,
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• λ has distinct nonnegative parts with each part ≤ n− 1,

• µ has nonnegative parts with each part ≤ n− 1,

where the exponents of a and b are used to keep track of l(λ)− l(α)− l(γ) and l(γ)+ l(µ)
respectively, and N records n− l(γ). The coefficient of zN on the right-hand side is the
generating function for the quintuples (A,B,C,D,E) of partitions with the following
restrictions:

• Both A and C have distinct nonnegative parts,

• Both B and D have nonnegative parts,

• E has distinct and positive parts,

where the exponents of a and b are used to keep track of l(C)−l(A)−l(E) and l(A)+l(B)
respectively, and N records the number l(C) + l(D) − l(E). Let A and B be the sets
of the quintuples (n;α, β, γ, λ, µ) and (A,B,C,D,E), as defined above.

Theorem 4.1 There is a bijection between A and B.

Proof. Given a quintuple (n;α, β, γ, λ, µ) with N = n− l(γ). As an example, for N = 4,
n = 9, let

α = (10, 9, 5, 3, 2), β = (13, 11, 10, 9, 9, 5, 4, 4, 2), γ = (9, 6, 4, 2, 1),

λ = (7, 6, 5, 3, 1), µ = (5, 4, 4, 1).

We shall use this example to illustrate the operations at every step.

Step 1. Find the largest number p such that λp ≥ N . Then λ̄ = (λ1, . . . , λp) is a partition
into distinct parts with N ≤ λi ≤ n− 1 and 1 ≤ i ≤ p. Let F = (λp+1, . . . , λl(λ)), where
p is the largest number such that λp+1 ≤ N − 1. Clearly, l(λ̄) ≤ n−N = l(γ).

Applying the bijection ϕ−1 in Theorem 3.1 to the pair (γ, λ̄) with m = 0 and k = N ,
we obtain a partition A with distinct nonnegative parts, and a partition B̄ with every
part ≥ n−1. Now we can put the parts of B̄ and µ together to form the desired partition
B. Note that if such an integer p does not exist, that is, λ1 ≤ N−1, then we have F = λ,
A = γ and B = µ.

For the above example, we have

λ̄ = (7, 6, 5), F = (3, 1), A = (6, 1), B = (12, 11, 10, 5, 4, 4, 1).

Step 2. Find the largest number l such that βl−l(α) ≥ N + l, and set β̄ = (β1, . . . , βl−l(α)).
Add enough zero parts if necessary to the conjugate of the partition (βl−l(α)+1, . . . , βl(β))
to obtain a partition D̄ with N + l parts.

Now we can apply the mapping ϕ to (α, β̄) with m = 0 and k = N to generate a
partition E with l distinct positive parts, since αl(α) > 0 and βl−l(α) ≥ N+ l. Meanwhile,
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we also obtain a partition F̄ into distinct parts with each part ≥ N ≤ N + l− 1. So we
can put F and F̄ together to create a partition C̄ into distinct nonnegative parts with
each part ≤ N+l−1. Note that if such an integer l does not exist, that is, β1 ≤ N+l(α),
we may set E = α and C̄ = F . In this case, D̄ is a partition with N + l(α) parts, which
can be obtained from the conjugate of β with some zero parts added if needed.

For the above example, we have

β̄ = (13, 11), D̄ = (7, 7, 6, 6, 4, 3, 3, 3, 3, 1, 0),

E = (12, 11, 7, 5, 4, 3, 1), C̄ = (6, 4, 3, 1).

Applying the bijection φ−1 in Corollary 2.2 to (D̄,C̄), we obtain the partition C into
distinct nonnegative parts and the partition D into nonnegative parts. For the above
example, we have

C = (10, 7, 6, 2), D = (7, 7, 6, 6, 3, 3, 0).

Whence we have constructed a quintuple (A,B,C,D,E) for which

|A|+ |B|+ |C|+ |D|+ |E| = |α|+ |β|+ |γ|+ |λ|+ |µ|.

Notice that the exponents of a and b remain unchanged during the above procedure.
Since each step is reversible, we have established a bijection between A and B. This
completes the proof.

When N = −m < 0, by multiplying both sides of (1.3) by (b;q)−m

(−a;q)−m
, we get

(−q/a; q)∞(−b/az; q)∞
(q; q)∞

∞∑
l=0

(−aq−m; q)l
(bq−m; q)l

zl−m

=
(−b/a; q)∞(−az; q)∞(−q/az; q)∞(−aq−m; q)m

(bq−m; q)∞(z; q)∞
. (4.1)

Substituting b by bqm and using Euler’s identity,

(−bqm/az; q)∞ =
∞∑
n=0

(b/az)nqmn+(n
2)

(q; q)n
,

the coefficients of zN on both sides can be written as

a−mq(
m+1

2 )(−qm+1/a; q)∞
(q; q)∞

∞∑
l=0

Pl(bq
m/a,−b)q(

l
2)

(b; q)l(q; q)l

=
[
z−m

](−bqm/a; q)∞(−az; q)∞(−q/az; q)∞
(b; q)∞(z; q)∞

, (4.2)

where [xn]F (x) denotes the coefficient of xn in F (x).

Each term on the left-hand side of (4.2) can be interpreted as the generating function
for the quintuples (l;α, β, γ, λ, µ) defined as follows
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• α has distinct and positive parts with αl(α)−m+1 = m,

• β has positive parts,

• λ has distinct nonnegative parts with each part ≤ l − 1,

• γ has distinct l positive parts. Let s = l − l(λ). Then γs − γs+1 ≥ m + 1 if
0 < l(λ) < l and γs ≥ m if l(λ) = 0.

• µ has nonnegative parts with each part ≤ l − 1,

where the exponent of a records l(λ)− l(α)− l(γ) and the exponent of b keeps track of
l(γ) + l(µ).

Clearly, the right-hand side of (4.2) is the generating function for the quintuples
(A,B,C,D,E) defined as follows

• A has distinct parts with each part ≥ m,

• Both B and D have nonnegative parts,

• C have distinct nonnegative parts,

• E has distinct and positive parts,

where the exponent of a records l(C) − l(A) − l(E), the exponent of b keeps track of
l(A) + l(B) and l(C) + l(D)− l(E) = −m.

Let C and D be the sets of quintuples (l;α, β, γ, λ, µ) and (A,B,C,D,E) as given
before.

Theorem 4.2 There is a bijection between C and D .

Proof. Let (A,B,C,D,E) be a quintuple with N = l(C) + l(D)− l(E). As an example,
for N = −2, assume that

A = (12, 11, 7, 5, 4), B = (15, 13, 12, 11, 11, 7, 6, 6, 4, 2, 1, 1), C = (7, 6, 4, 1, 0),

D = (9, 8, 5, 5, 4, 1), E = (22, 19, 18, 17, 15, 12, 11, 10, 8, 7, 6, 3, 1).

We shall use this example to illustration the operation at each step.

Step 1. If B1 ≤ l(A) − 1, we set l = l(A), µ = B, γ = A and set λ to be the empty
partition. Otherwise, we find the largest number l such that Bl−l(A) ≥ l − 1, and set
B̄ = (B1, . . . , Bl−l(A)). Now (Bl−l(A)+1, . . . , Bl(B)) is the desired partition µ. Apply ϕ
in Theorem 3.1 to (A, B̄) with k = 0. In the case s = l(A) > 0, we get a partition
γ into l distinct nonnegative parts with γl(A) − γl(A)+1 ≥ m + 1 and a partition λ into
distinct nonnegative parts with each part ≤ l − 1. When s = 0, we get a partition
γ = (B1, B2 − 1, . . . , Bl − l + 1) and a partition λ = (l − 1, l − 2, . . . , 0).
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For the above example, we have

B̄ = (15, 13, 12, 11, 11), µ = (7, 6, 6, 4, 2, 1, 1),

γ = (17, 16, 12, 11, 9, 6, 5, 4, 3, 2), λ = (7, 5, 3, 1, 0).

Step 2. Applying the bijection φ in Corollary 2.2 to (C,D) yields a partition C̄ into
distinct nonnegative parts with each part ≤ n− 1 and a partition D̄ into n nonnegative
parts. Evidently, we have l(C) + l(D) = n, and hence l(E) = n+m.

For the above example, we find C̄ = (5, 4, 3, 1, 0), D̄ = (9, 8, 5, 5, 4, 2, 2, 1, 1, 0, 0).

Step 3. After removing a staircase partition (n+m,n+m−1, . . . , 1) from E, we are left
with a partition with l(E) nonnegative parts, whose conjugate is denoted by Ē. Add
m+1 to each part of C̄ to obtain a partition C̃. Now we may construct a partition D̃ by
adding a staircase (n− 1, n− 2, . . . , 0) to D̄, then adding m+ 1 to the first l(D) parts.

Applying ϕ−1 in Theorem 3.1 to (D̃, C̃) with k replaced by m + 1 and m replaced
by m + 1 yields a partition ᾱ into l(D) distinct parts with each part ≥ m + 1 and
a partition β̄ into l(C) parts with each part ≥ n + m = l(E). Combining ᾱ with a
staircase partition (m,m− 1, . . . , 1) gives the partition α, and combining β̄ with Ē gives
the required partition β.

For the above example, we get

Ē = (12, 11, 11, 8, 5, 5, 4, 1, 1), C̃ = (8, 7, 6, 4, 3), D̃ = (22, 20, 16, 15, 13, 10, 6, 4, 3, 1, 0),

β = (16, 16, 15, 13, 13, 12, 11, 11, 8, 5, 5, 4, 1, 1), α = (17, 15, 11, 10, 8, 4, 2, 1).

Thus we have constructed a quintuple (l;α, β, γ, λ, µ) such that

|α|+ |β|+ |γ|+ |λ|+ |µ| = |A|+ |B|+ |C|+ |D|+ |E|.

Moreover, the exponents of a and b are preserved at every step. It should be mentioned
that each step of the above procedure is reversible. This completes the proof.
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