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1 Introduction

Let Dn be the set of derangements on {1, 2, . . . , n}, and let maj(π) denote the major
index of a permutation π. The q-derangement number Dn(q) is defined as

∑
π∈Dn

qmaj(π).

The following formula is due to Gessel [5] (see also Gessel and Reutenauer [6]):

Dn(q) = [n]!
n∑
k=0

(−1)kq(
k
2) 1

[k]!
, (1.1)

where [n] = 1+q+q2 + · · ·+qn−1 and [n]! = [1][2] · · · [n]. Combinatorial proofs of (1.1)
have been found by Wachs [7], and Chen and Xu [3]. The polynomials Dn(q) satisfy
the following recurrence relation

Dn(q) = [n]Dn−1(q) + (−1)nq(
n
2), n ≥ 2, (1.2)

with D1(q) = 0. Note that the q-derangement polynomials of type B have been
introduced and studied independently by Chen, Tang and Zhao [2] and Chow [4].
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Chen and Rota [1] showed that the q-derangement numbers are unimodal and
conjectured the maximum coefficient appears in the middle. Zhang [8] confirmed this
conjecture by showing that the q-derangement numbers satisfy the spiral property. For
example, we have

D6(q) =q + 4q2 + 9q3 + 16q4 + 24q5 + 32q6 + 37q7 + 38q8 + 35q9

+ 28q10 + 20q11 + 12q12 + 6q13 + 2q14 + q15.

Observe that D6(q) has the following spiral property

1 < 2 < 4 < 6 < 9 < 12 < 16 < 20 < 24 < 28 < 32 < 35 < 37 < 38,

where the last term is not taken into consideration. We say that a sequence a(1), a(2), . . . , a(n)
of positive numbers is ratio monotone if

a(1)

a(n)
≤ a(2)

a(n− 1)
≤ · · · ≤ a(bn/2c)

a(dn/2e+ 1)
≤ 1 (1.3)

and

a(n)

a(2)
≤ a(m− 1)

a(3)
≤ · · · ≤ a(bn/2c+ 2)

a(dn/2e)
≤ 1, (1.4)

where bxc and dxe are the floor function and the ceiling function. In the case that all
the inequalities are strict, we say that the sequence is strictly ratio monotone. It can
be easily seen that the ratio monotone property implies the spiral property and the
log-concavity. For example, for the case of D6(q) without the last term, we see that

1

2
<

4

6
<

9

12
<

16

20
<

24

28
<

32

35
<

37

38
< 1, (1.5)

2

4
<

6

9
<

12

16
<

20

24
<

28

32
<

35

37
< 1. (1.6)

In the next section, we shall show that the q-derangement numbersDn(q) are strictly
ratio monotone for n ≥ 6 except for the last term when n is even.

2 The ratio monotonicity

In order to state the main result, we first introduce some notation. Set

Bn(q) =

 Dn(q)− q(
n
2), if n is even,

Dn(q), if n is odd.
(2.1)
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Let δn =
(
n
2

)
− 1 denote the degree of Bn(q). Then (1.2) can be recast as

Bn(q) =

 [n]Bn−1(q), if n is even,

[n]Bn−1(q) + [n− 1]q(
n−1
2 ), if n is odd.

(2.2)

Write
Bn(q) = bn(1)q + bn(2)q2 + · · ·+ bn(δn)qδn .

The ratio monotone property of Bn(q) can be stated as follows.

Theorem 2.1. For n ≥ 6, we have

bn(1)

bn(δn)
<

bn(2)

bn(δn − 1)
< · · · <

bn(d
(
n
2

)
/2e − 1)

bn(b
(
n
2

)
/2c+ 1)

< 1, (2.3)

bn(δn)

bn(2)
<
bn(δn − 1)

bn(3)
< · · · <

bn(d
(
n
2

)
/2e+ 1)

bn(b
(
n
2

)
/2c)

< 1. (2.4)

Theorem 2.1 implies the log-concavity of Bn(q).

Corollary 2.2. For n ≥ 6, the polynomials Bn(q) are log-concave, that is,

bn(1)

bn(2)
<
bn(2)

bn(3)
< · · · < bn(δn − 2)

bn(δn − 1)
<
bn(δn − 1)

bn(δn)
. (2.5)

To prove Theorem 2.1 we need the following lemmas.

Lemma 2.3. For positive numbers c1, c2, . . . , ck+1, d1, d2, . . . , dk+1 satisfying

d1
c1
<
d2
c2
< · · · < dk

ck
<
dk+1

ck+1

,

we have

d1 + d2 + · · ·+ dk
c1 + c2 + · · ·+ ck

<
d1 + d2 + · · ·+ dk + dk+1

c1 + c2 + · · ·+ ck + ck+1

, (2.6)

d1 + d2 + · · ·+ dk
c1 + c2 + · · ·+ ck

<
d2 + · · ·+ dk + dk+1

c2 + · · ·+ ck + ck+1

, (2.7)

d1 + d2 + · · ·+ dk + dk+1

c1 + c2 + · · ·+ ck + ck+1

<
d2 + · · ·+ dk + dk+1

c2 + · · ·+ ck + ck+1

. (2.8)

The proof of Lemma 2.3 is straightforward, and the details are omitted. Using
recurrence relation (2.2), it is easy to verify the following lemma.
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Lemma 2.4. If n ≥ 3, we have bn(1) = 1, bn(2) = n− 2, and

bn(3) =
n(n− 3)

2
,

bn(4) =
(n2 − 4)(n− 3)

6
,

bn(δn) = dn/2e − 1,

bn(δn − 1) = dn2/4− n/2e,

bn(δn − 2) = dn3/12− n2/8− n/12e − 1.

Corollary 2.5. For n ≥ 3,

bn(1)

bn(δn) + 1
<

bn(2)

bn(δn − 1)
. (2.9)

For n ≥ 4 and n even,

bn(δn) + 1

bn(2)
<
bn(δn − 1)

bn(3)
. (2.10)

For n ≥ 6,

bn(δn) + bn(δn − 1) + 1

bn(2) + bn(3)
<
bn(δn − 2)

bn(4)
. (2.11)

We are now ready to present the proof of Theorem 2.1.

Proof of Theorem 2.1. We claim that for n ≥ 6 the coefficients of Bn(q) satisfy the
following relations

bn(1)

bn(δn)
<

bn(2)

bn(δn − 1)
< · · · < bn(δn − 1)

bn(2)
<
bn(δn)

bn(1)
, (2.12)

bn(δn)

bn(2)
<
bn(δn − 1)

bn(3)
< · · · < bn(3)

bn(δn − 1)
<

bn(2)

bn(δn)
. (2.13)

To prove the above assertion we use induction on n. For n = 6, 7, it is easy to check
that the claim is valid. Suppose that the claim holds for n. We now proceed to show
that the it holds for n+ 1, that is,

bn+1(i)

bn+1(δn+1 − i+ 1)
<

bn+1(i+ 1)

bn+1(δn+1 − i)
, 1 ≤ i ≤ δn+1 − 1, (2.14)

bn+1(δn+1 − i+ 1)

bn+1(i+ 1)
<
bn+1(δn+1 − i)
bn+1(i+ 2)

, 1 ≤ i ≤ δn+1 − 2. (2.15)
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We only consider the case when n is even, since the case when n is odd can be dealt
with by using the same argument. Assume that n ≥ 6 and n is even. From (2.2) we
get the following recurrence relation for bn(k),

bn+1(k) =

{ ∑k
i=k−n bn(i), 1 ≤ k <

(
n
2

)
,

1 +
∑k

i=k−n bn(i),
(
n
2

)
≤ k <

(
n+1
2

)
,

(2.16)

with the convention that bn(i) = 0 if i < 1 or i > δn.

By (2.12), (2.13) and Corollary 2.5, we obtain that

bn(1)

bn(δn) + 1
<

bn(2)

bn(δn − 1)
< · · · < bn(δn − 1)

bn(2)
<
bn(δn) + 1

bn(1)
, (2.17)

bn(δn) + 1

bn(2) + 1
<
bn(δn − 1)

bn(3)
< · · · < bn(3)

bn(δn − 1)
<

bn(2) + 1

bn(δn) + 1
. (2.18)

Thus (2.14) can be deduced from (2.17) and (2.16) by using Lemma 2.3. For 1 ≤ i ≤ n,
use (2.6). For n < i ≤ δn − 1, use (2.7). For δn − 1 < i ≤ δn+1 − 1, use (2.8). Again,
using Lemma 2.3 and Corollary 2.5, (2.15) can be deduced from (2.18) and (2.16). For
1 ≤ i < n, use (2.6). For n < i < δn− 1, use (2.7). For δn− 1 < i ≤ δn+1− 2, use (2.8).

Now special attention should be paid to the case i = n. It follows from (2.11) and
(2.13) that

bn(δn) + bn(δn − 1) + 1

bn(2) + bn(3)
<
bn(δn − n)

bn(n+ 2)
. (2.19)

By (2.13) we find that ∑n−1
i=2 bn(δn − i)∑n+1

i=4 bn(i)
<
bn(δn − n)

bn(n+ 2)
. (2.20)

In view of (2.12) and (2.7), we obtain∑n+1
i=2 bn(i)∑n

i=1 bn(δn − i)
<

∑n
i=1 bn(δn − i)∑n+1

i=2 bn(i)
,

which yields that

n+1∑
i=2

bn(i) <
n∑
i=1

bn(δn − i). (2.21)

From (2.19), (2.20) and (2.21) we conclude that

1 +
∑n−1

i=0 bn(δn − i)
1 +

∑n+1
i=2 bn(i)

<

∑n
i=0 bn(δn − i)∑n+2

i=2 bn(i)
,
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which can be restated as the case i = n of (2.15) based on (2.16).

The case i = δn − 1 can be verified by the same argument, and hence the above
claim is confirmed.

In order to prove (2.3) and (2.4), it remains to verify that bn(r)
bn(s)

< 1 and bn(u)
bn(v)

< 1,
where

r = dn(n− 1)/4e−1, s = bn(n− 1)/4c+1, u = dn(n− 1)/4e+1, v = bn(n− 1)/4c .

If n ≡ 0, 1 (mod 4), then r + 1 = s− 1. By (2.12), we see that bn(r)
bn(s)

< bn(r+1)
bn(s−1) = 1.

If n ≡ 2, 3 (mod 4), then r = s− 1. By (2.12), we get bn(r)
bn(s)

< bn(r+1)
bn(s−1) = bn(s)

bn(r)
. Hence, in

either case, we have bn(r)
bn(s)

< 1, and so (2.3) holds.

If n ≡ 0, 1 (mod 4), then u = v + 1. By (2.13), we see that bn(u)
bn(v)

< bn(u−1)
bn(v+1)

= bn(v)
bn(u)

.

If n ≡ 2, 3 (mod 4), then u − 1 = v + 1. By (2.13), we find bn(u)
bn(v)

< bn(u−1)
bn(v+1)

= 1.

Consequently, we have bn(u)
bn(v)

< 1 in either case, and so (2.4) holds. This completes the
proof.
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