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1 Introduction

The main objective of this paper is to give a type B analogue of a property of set
partitions discovered by Bernhart [1], that is, the number sn of partitions of [n] =
{1, 2, . . . , n} without singletons is equal to the number an of partitions of [n] for which
no block contains two adjacent elements i and i+1 modulo n. In fact, it is easy to show
that sn and an have the same formula by the principle of inclusion-exclusion. Bernhart
gave a recursive proof of the fact that sn = an by showing that sn + sn+1 = Bn and
an + an+1 = Bn, where Bn denotes the Bell number, namely, the number of partitions
of [n]. As noted by Bernhart, there may be no simple way to bring the set of partitions
of [n] without singletons and the set of partitions of [n] without adjacencies into a
one-to-one correspondence.
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From a different perspective, Callan [4] found a bijection in terms of an algorithm
that interchanges singletons and adjacencies. Indeed, Callan has established a stronger
statement that the joint distribution of the number of singletons and the number of
adjacencies is symmetric over the set of partitions of [n]. While the proof of Callan is
purely combinatorial, we feel that there is still some truth in the remark of Bernhart.

The study of singletons and adjacencies of partitions goes back to Kreweras [9]
for noncrossing partitions. Kreweras has shown that the number of noncrossing parti-
tions of [n] without singletons equals the number of noncrossing partitions of [n] with-
out adjacencies. Bernhart [1] found a combinatorial proof of this assertion. Deutsch
and Shapiro [6] considered noncrossing partitions of [n] without visible singletons and
showed that such partitions are enumerated by the Fine number. Here a visible single-
ton of a partition means a singleton not covered by any arc in the linear representation.
Canfield [5] has shown that the average number of singletons in a partition of [n] is
an increasing function of n. Biane [2] has derived a bivariate generating function for
the number of partitions of [n] containing a given number of blocks but no singletons.
Knuth [8] proposed the problem of finding the generating function for the number of
partitions of [n] with a given number of blocks but no adjacencies. The generating
function has been found by several problem solvers, see Lossers [10] for example. The
sequence of the numbers sn is listed as the entry A000296 in Sloane [12].

The lattice of ordinary set partitions can be regarded as the intersection lattice for
the hyperplane arrangement corresponding to the root system of type A, see Björner
and Brenti [3] or Humphreys [7]. Type B set partitions are a generalization of ordinary
partitions from this point of view, see Reiner [11]. To be more precise, ordinary set
partitions encode the intersections of hyperplanes in the hyperplane arrangement for
the type A root system, while the intersections of subsets of hyperplanes from the type
B hyperplane arrangement can be encoded by type B set partitions. A partition of
type Bn is a partition π of the set

[±n] = {1, 2, . . . , n,−1,−2, . . . ,−n}

such that for any block B of π, −B is also a block of π, and that π has at most one
block, called the zero-block, which is of the form {i1, i2, . . . , ik,−i1,−i2, . . . ,−ik}.

It is natural to ask whether there exists a type B analogue of Bernhart’s theorem
and a type B analogue of Callan’s algorithm. We give the peeling and patching algo-
rithm which implies the symmetric distribution of the number of singleton pairs and
the number of adjacency pairs for type B partitions without zero-block. Moreover, we
can transform the bijection into an involution.
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2 The peeling and patching algorithm

In this section, we give a type B analogue of Callan’s symmetric distribution of single-
tons and adjacencies over set partitions. We find that the algorithm of Callan can be
extended into the type B case. This type B algorithm will be called the peeling and
patching algorithm.

Let π be a Bn-partition. We call ±i a singleton pair of π if π contains a block {i},
and call ±(j, j + 1) an adjacency pair of π if j and j + 1 (modulo n) lie in the same
block of π. Denote the number of singleton pairs (resp. adjacency pairs) of π by sπ
(resp. aπ). For example, let n = 12 and

π =
{
±{1}, ±{2}, ±{3, 11, 12}, ±{4,−7, 9, 10}, ±{5, 6,−8}

}
. (2.1)

Then we have sπ = 2 and aπ = 3.

Denote by Vn the set of Bn-partitions without zero-block. The following theorem
is the main result of this paper.

Theorem 2.1 The joint distribution of the number of singleton pairs and the number
of adjacency pairs is symmetric over Bn-partitions without zero-block. In other words,
let

Pn(x, y) =
∑
π∈Vn

xsπyaπ ,

then we have Pn(x, y) = Pn(y, x).

For example, there are three B2-partitions without zero-block:{
±{1}, ±{2}

}
,
{
±{1, 2}

}
,
{
±{1,−2}

}
.

So P2(x, y) = x2 + y2 + 1. Moreover,

P3(x, y) = (x3 + y3) + 3xy + 3(x+ y),

P4(x, y) = (x4 + y4) + 4(x2y + xy2) + 8(x2 + y2) + 8xy + 4(x+ y) + 7.

Recall that Bernhart showed that the number of partitions of [n] without singletons
equals the number of partitions of [n] without adjacencies. As a type B analogue of
this result, we have the following consequence of Theorem 2.1.

Corollary 2.2 The number of Bn-partitions containing no zero-block and no singleton
pairs equals the number of Bn-partitions containing no zero-block and no adjacency
pairs.

3



To prove Theorem 2.1, we shall construct a map ψ : Vn → Vn, called the peeling
and patching algorithm, such that for any Bn-partition π without zero-block, sπ = aψ(π)
and aπ = sψ(π). To describe this algorithm, we need a more general setting. Let

S = {±t1, ±t2, . . . , ±tr}

be a subset of [±n], where 0 < t1 < t2 < · · · < tr. Let π be a partition of S. We call π
a symmetric partition if for any block B of π, −B is also a block of π. Similarly, we
call ±ti a singleton pair of π if π contains a block {ti}, and call ±(tj, tj+1) an adjacency
pair of π if tj and tj+1 are contained in the same block. Moreover, we identify tr+1 with
t1. We call ±tj (resp. ±tj+1) a left-point-pair (resp. right-point-pair) if ±(tj, tj+1) is an
adjacency pair. For example, for the case r = 1, the partition π =

{
±{t1}

}
contains

exactly one singleton pair ±t1 and one adjacency pair ±(t1, t1).

The peeling and patching algorithm ψ consists of the peeling procedure α and
the patching procedure β. For the peeling procedure, at each step we take out the
singleton pairs and the left-point-pairs, until there exists neither singleton pairs nor
adjacency pairs. Then we use the patching procedure. By interchanging the roles of
singleton pairs and adjacency pairs, we put the singleton pairs and left-point-pairs back
to the partition. It should be mentioned that the patching procedure is not exactly
the reverse of the peeling procedure.

The peeling procedure α. Given a type B partition π without zero-block, let
π0 = π. We extract the set S1 of singleton pairs and the set L1 of left-point-pairs (of
adjacency pairs) from π0. Let π1 be the remaining partition of the set [±n]\(S1 ∪ L1).
Note that π1 is again a type B partition without zero-block. So we can extract the
set S2 of singleton pairs and the set L2 of left-point-pairs from π1. Denote by π2 the
remaining partition. Repeating this process, we eventually obtain a partition πk that
has neither singleton pairs nor adjacency pairs. It should noticed that πk may be the
empty partition.

For example, consider the partition π in (2.1), that is,

π =
{
±{1}, ±{2}, ±{3, 11, 12}, ±{4,−7, 9, 10}, ±{5, 6,−8}

}
.

The peeling procedure is illustrated by Table 2.1. In this example, we have k = 4.

The patching procedure β. Let σk = πk. We shall interchange the roles of the
singleton-sets and the adjacency-sets in the process to reconstruct a type B partition.
For each i from k to 1, we put the elements of Si and Li back into the partition σi, so that
Si (resp. Li) is the right-point-set (resp. singleton-set) of the resulting partition σi−1.

To be more precise, we start the patching procedure by putting the elements of Sk
and Lk back to σk in such a way that the resulting partition σk−1 contains Sk (resp. Lk)
as its right-point-set (resp. singleton-set). The existence of such a partition σk−1 will be

4



j Sj Lj πj

1 ±1, ±2 ±5, ±9, ±11 ±{3, 12}, ±{4,−7, 10}, ±{6,−8}

2 ∅ ±12 ±{3}, ±{4,−7, 10}, ±{6,−8}

3 ±3 ∅ ±{4,−7, 10}, ±{6,−8}

4 ∅ ±10 ±{4,−7}, ±{6,−8}

Table 2.1: The peeling procedure.

confirmed later. Next, in the same manner we put the elements of Sk−1 and Lk−1 back
into σk−1 to get σk−2. Repeating this process, we finally arrive at a type B partition
σ0, which is defined to be the output of the patching procedure.

Now let us describe the process of constructing σk−1 in detail. In the case that
Sk is empty, we define σk−1 to be the partition obtained by adding to σk the singleton
blocks that each singleton block consists of a number in Lk. Suppose that Sk is not
empty. Let

Tk−1 = {±t1, ±t2, . . . , ±tr}

be the underlying set of πk−1, where 0 < t1 < t2 < · · · < tr. Consider another extremal
case that σk is empty. Since Sk is not empty, it follows from the last step of the
peeling procedure that Lk is empty. In this case, we define σk−1 to be the partition{
±{t1, t2, . . . , tr}

}
.

Now we can assume that both Sk and σk are not empty. According to the adjacent
relation imposed on the set Tk−1, we can uniquely decompose the set Sk(⊂ Tk−1) into
maximal subsets of consecutive elements, which are of the following form

{±ti+1, ±ti+2, . . . , ±ti+h}. (2.2)

In other words, the element ti ∈ Tk−1 does not appear in Sk since σk is not empty.
On the other hand, ti 6∈ Lk by the definition of Lk. Thus ti is contained in σk. This
observation allows us to put the elements ti+1, ti+2, . . . , ti+h into the block of σk that
contains ti. Accordingly, we put the elements −ti+1, −ti+2, . . . , −ti+h into the block
that contains −ti. After having processed all maximal subsets of consecutive elements
of Sk, we put each element in Lk as a singleton block into the partition σk. The
resulting partition is defined to be σk−1. Since σk contains neither singleton pairs nor
adjacency pairs, it is easy to check that Lk (resp. Sk) is the set of singleton pairs
(right-point-pairs) of σk−1.

For example, Table 2.2 is an illustration of the patching procedure for the partition
generated in Table 2.1. In the last step, putting S1 and L1 back to σ1, we finally obtain
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j Sj Lj σj

4 ∅ ±10 ±{4,−7}, ±{6,−8}

3 ±3 ∅ ±{4,−7}, ±{6,−8}, ±{10}

2 ∅ ±12 ±{4,−7}, ±{6,−8}, ±{3, 10}

1 ±1, ±2 ±5, ±9, ±11 ±{4,−7}, ±{6,−8}, ±{3, 10},±{12}

Table 2.2: The patching procedure.

σ0 =
{
±{1, 2, 12}, ±{3, 10}, ±{4,−7}, ±{5}, ±{6,−8}, ±{9}, ±{11}

}
. (2.3)

The peeling and patching algorithm ψ is defined by

ψ(π) = β(α(π))

for any Bn-partition π without zero-block. Keep in mind that the roles of singleton
pairs and adjacency pairs are interchanged in the patching procedure. We are now
ready to give a proof of Theorem 2.1.

Proof of Theorem 2.1. We proceed to show that the peeling and patching algorithm ψ
gives a bijection on Bn-partitions without zero-block, which interchanges the number
of singleton pairs and the number of adjacency pairs.

It is easy to see that the inverse algorithm can be described as follows. In fact,
the inverse algorithm of ψ is the composition of another peeling procedure and another
patching procedure. To be precise, let σ be the input partition. Let σ0 = σ. We first
peel the singleton pairs and right-point-pairs at each step, until we obtain a partition
σk which has neither singleton pairs nor adjacency pairs. As the second step, based
on the partition πk = σk, we recursively put back the elements that have been taken
out before. Meanwhile, we also interchange the roles of the singleton-sets and right-
point-sets. Finally, we get a type B partition, as the output of the inverse algorithm.
Therefore, ψ is a bijection which induces a bijection on Bn-partitions without zero-
block.

An illustration of the peeling and patching algorithm is given by the partition
(2.1), Table 2.1, Table 2.2, and (2.3). To conclude this section, we give the generating
function for the number sBn of Bn-partitions without zero-block and singleton pairs,
that is, ∑

n≥0

sBn
xn

n!
= exp (sinh(x)ex − x) . (2.4)
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In fact, by the principle of inclusion-exclusion, we obtain

sBn =
n∑
k=0

(−1)n−k
(
n

k

) k∑
j=0

2k−jS(k, j), (2.5)

where S(k, j) is the Stirling number of the second kind. Note that 2k−jS(k, j) is the
number of partitions in Vk with 2j blocks. The formula (2.4) can be easily derived
from (2.5).

3 From bijection to involution

The bijection given in the previous section is not an involution although it interchanges
the number of singleton pairs and the number of adjacency pairs. In this section, we
show that the peeling and patching algorithm can be turned into an involution. Such
an involution for ordinary partitions has been given by Callan [4].

For any i ∈ [n], we define the complement of i to be n + 1 − i. The complement
of −i is defined to be −(n + 1 − i). This notion can be extended to any symmetric
partition π of [±n] by taking the complement of each element in the partition. The
complement of π is denoted by ω(π). It is clear that ω is an involution. Assume that
σ0 is given by (2.3). We have

ω(σ0) =
{
±{1, 11, 12}, ±{2}, ±{3, 10}, ±{4}, ±{5,−7}, ±{6,−9}, ±{8}

}
. (3.1)

In light of the complementation operation, we get an involution based on the
peeling and patching algorithm.

Theorem 3.1 The mapping ω◦ψ is an involution on Bn-partitions without zero-block,
which interchanges the number of singleton pairs and the number of adjacency pairs.

The proof is straightforward and hence is omitted. We give an example to demon-
strate that ω ◦ ψ is involution, that is,

ω(ψ(π)) = ψ−1(ω(π)). (3.2)

Consider the partition π in (2.1). In this case, the left hand side of (3.2) is ω(σ0),
which is computed as in (3.1). On the other hand,

ω(π) =
{
±{1, 2, 10}, ±{3, 4,−6, 9}, ±{5,−7,−8}, ±{11}, ±{12}

}
.
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j Rj Sj σj

1 ±2, ±4, ±8 ±11, ±12 ±{1, 10}, ±{3,−6, 9}, ±{5,−7}

2 ±1 ∅ ±{10}, ±{3,−6, 9}, ±{5,−7}

3 ∅ ±10 ±{3,−6, 9}, ±{5,−7}

4 ±3 ∅ ±{5,−7}, ±{6,−9}

Table 3.3: The procedure β−1.

j Rj Sj πj

4 ±3 ∅ ±{5,−7}, ±{6,−9}

3 ∅ ±10 ±{3}, ±{5,−7}, ±{6,−9}

2 ±1 ∅ ±{3, 10}, ±{5,−7}, ±{6,−9}

1 ±2, ±4, ±8 ±11, ±12 ±{1}, ±{3, 10}, ±{5,−7}, ±{6,−9}

Table 3.4: The procedure α−1.

Applying the procedure β−1, we obtain Table 3.3, where Rj (resp. Sj) denotes the set
of right-point-pairs (singleton pairs). Next, by the procedure α−1, we get Table 3.4.
Finally, putting R1 and S1 back to π1, we obtain the partition π0 which is in agreement
with (3.1).
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