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Abstract. We establish a reflection principle for three lattice walkers and use this
principle to reduce the enumeration of configurations of three vicious walkers to the
enumeration of configurations of two vicious walkers. More precisely, the reflection
principle leads to a bijection between three walks (L1, L2, L3) such that L2 intersects
both L1 and L3 and three walks (L1, L2, L3) such that L1 intersects L3. Hence we find a
combinatorial interpretation of the formula for the generating function for the number
of configurations of three vicious walkers, originally derived by Bousquet-Mélou by
using the kernel method, and independently by Gessel by using tableaux and symmetric
functions. This answers a question posed by Gessel and Bousquet-Mélou. We also find
a reflection principle for four vicious walks that leads to a combinatorial interpretation
of a formula derived from Gessel’s theorem.
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1 Introduction

The vicious walker model was introduced by Fisher [5] in 1984. A walker is said to be
vicious if he does not like to meet any other walker at any point. Formally speaking,
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a configuration of r vicious walkers, also called an r-vicious walk, of length n, is an
r-tuple of pairwise nonintersecting lattice walks of length n, consisting of up steps U
(i.e., (1, 1)) and down steps D (i.e., (1,−1)), starting from (0, 2i1), (0, 2i2), . . . , (0, 2ir)
and ending at (n, e1), (n, e2), . . . , (n, er) where ir > · · · > i2 > i1 = 0 and er >
· · · > e2 > e1. More precisely, two lattice paths are said to be nonintersecting if they
do not share any common points. In particular, an r-watermelon of length n is a
configuration consisting of nonintersecting lattice paths of length n which start at the
points (0, 0), (0, 2), . . . , (0, 2r − 2) and end at the points (n, k), (n, k + 2), . . . , (n, k +
2r− 2) for some k. In other words, an r-watermelon is an r-vicious walk starting from
adjacent points and ending at adjacent points. Note that two lattice points are said
to be adjacent if they are on the same vertical line and their y-coordinates differ by
2. It is known that r-vicious walks can be represented by tableaux. So the theory
of symmetric functions plays an important role in the study of r-vicious walks, see
[10, 11, 12, 13, 15, 16].

The main objective of this paper is to present a combinatorial approach to the
enumeration of 3-vicious walks and 4-vicious walks. Let us fix the starting points
(0, 0), (0, 2i) and (0, 2i+ 2j). Let V (i, j, n) be the set of 3-vicious walks (L1, L2, L3) of
length n, where L1 is the path of the first walker starting from (0, 0), L2 is the path of
the second walker starting from (0, 2i), and L3 is the path of the third walker starting
from (0, 2i+ 2j). Define the generating function Vi,j(t) to be

Vi,j(t) =
∞∑
n=0

|V (i, j, n)|tn, (1.1)

where | · | denotes the cardinality of a set.

The enumeration of configurations of three vicious walkers has been solved inde-
pendently by Bousquet-Mélou [1] by using the obstinate kernel method, and by Gessel
[9] by using tableaux and symmetric functions. They obtained a formula for Vi,j(t) in
terms of the generating function of the Catalan numbers.

Let C(t) be the generating function of the Catalan numbers Cn = 1
n+1

(
2n
n

)
, that is,

C(t) =
∞∑
n=0

Cnt
n.

Recall that C(t) satisfies the recurrence relation

C(t) = 1 + tC2(t). (1.2)

Let
D(t) = tC2(t) = C(t)− 1 =

∑
n=0

Cn+1t
n+1. (1.3)
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The following elegant formula is due to Bousquet-Mélou [1] and Gessel [9].

Theorem 1.1 (Bousquet-Mélou [1] and Gessel [9]).

Vi,j(t) =
1

1− 8t
(1−Di(2t))(1−Dj(2t)). (1.4)

In view of the relation (1.3) and the identity(1 +D(t)

1−D(t)

)2

=
1

1− 4t
, (1.5)

Gessel derived the following formula for Vi,j(t).

Theorem 1.2 (Gessel [9]). For any i, j ≥ 1,

Vi,j(t) = C2(2t)
(
1 +D(2t) + · · ·+Di−1(2t)

)(
1 +D(2t) + · · ·+Dj−1(2t)

)
. (1.6)

Both Bousquet-Mélou [1] and Gessel [9] proposed the problem of finding a combina-
torial interpretation for the above formula for Vi,j(t). The question of Bousquet-Mélou
is concerned with the formula (1.4), while the question of Gessel is concerned with the
formula in the form of (1.6). In this paper, we shall present a combinatorial interpre-
tation of (1.4). As will be seen, the algebraic manipulations to transform the formula
(1.4) to (1.6) can be explained combinatorially. So we have obtained combinatorial
interpretations for both formulas (1.4) and (1.6).

In Section 3, we present an approach to the enumeration of 2-vicious walks. By re-
formulating the problem in terms of pairs of intersecting walks, we give a decomposition
of a pair of converging walks, namely, two walks that do not intersect until they reach
the same ending point, into two-chain watermelons, or 2-watermelons. Then we use
Pólya’s formula for the number of 2-watermelons of length n to derive the formula for
the number of 2-vicious walks of length n. In Section 4, we find a connection between
the Labelle merging algorithm, in the form presented by Chen, Pang, Qu and Stanley
[3], and the classical ballot numbers. In the last section, we give a reflection principle
for the enumeration of configurations of 4-vicious walks with prescribed starting points.
More precisely, we give a combinatorial proof of a formula for the number of 4-vicious
walks derived from Gessel’s theorem [9].

2 The Reflection Principle

In this section, we give a reflection principle so that we can reduce the enumeration
of 3-vicious walks to that of 2-vicious walks. This reduction leads to a combinatorial
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interpretation of the formula (1.4) for the generating function Vi,j(t) of the number of
3-vicious walks as defined by (1.1).

Let us recall some basic definitions. Two walks L1 and L2 are said to be intersecting,
denoted L1 ∩ L2 6= ∅, if L1 and L2 share a common point. Let U(i, j, n) be the set of
all 3-walks (L1, L2, L3) of length n, where L1, L2 and L3 start from (0, 0), (0, 2i) and
(0, 2i+ 2j) respectively. Let

Ui,j(t) =
∞∑
n=0

|U(i, j, n)|tn.

It is obvious that

Ui,j(t) =
1

1− 8t
. (2.1)

We use W12(n), or W12 for short, to denote the set of 3-walks (L1, L2, L3) in U(i, j, n)
such that L1 and L2 are nonintersecting. Similarly, we use W23(n), or W23 for short,
to denote the set of 3-walks (L1, L2, L3) in U(i, j, n) such that L2 and L3 are noninter-
secting. It is readily seen that the set V (i, j, n) of three vicious walks of length n can
be expressed as W12 ∩W23. By the principle of inclusion and exclusion, we find that

|V (i, j, n)| = |W12 ∩W23| = |W12|+ |W23| − |W12 ∪W23|. (2.2)

In order to compute |W12 ∪W23|, we let M12,23(n), or M12,23 for short, denote the set
of 3-walks (L1, L2, L3) in U(i, j, n) such that L2 intersects both L1 and L3. Hence we
have

|W12 ∪W23| = |U(i, j, n)| − |M12,23|. (2.3)

We are now in a position to establish a reflection principle for the enumeration
of the 3-walks in M12,23(n). Let M13(n), or M13 for short, denote the set of 3-walks
(L1, L2, L3) in U(i, j, n) such that L1 intersects L3.

Theorem 2.1. For n ≥ 1, there exists a bijection between M12,23(n) and M13(n).

Proof. We proceed to construct a map Φ from M12,23(n) to M13(n). Let (L1, L2, L3)
be a 3-walk in M12,23(n). We consider the following two cases. If L1 ∩ L3 6= ∅, then
(L1, L2, L3) ∈M13(n). In this case, we define Φ((L1, L2, L3)) = (L1, L2, L3).

Now we may assume that L1 ∩L3 = ∅. We first consider the case that L2 meets L1

before it meets L3. Suppose that P is the first intersection point of L2 and L1. Apply
the usual reflection operation on L1 and L2, and denote the resulting paths by L′1 and
L′2, namely, L′1 consists of the first segment of L1 up to the point P followed by the
last segment of L2 starting from the point P , and L′2 consists of the first segment of L2
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up to the point P followed by the last segment of L1 starting from the point P . Figure
2.1 is an illustration of the reflection.

Let L′3 = L3 and let Φ((L1, L2, L3)) = (L′1, L
′
2, L

′
3). It can be seen that L′1 intersects

L′3. Thus we have (L′1, L
′
2, L

′
3) ∈M13(n).

L1

L2

L3

1
12

2
2

2

3

3
3

Φ−→

L′1

L′2

L′3

qq PP

1
22

1
1

1

3

3
3

Figure 2.1: The reflection principle.

It is not difficult to see that the above procedure is reversible. We are still left with
the case when L2 intersects L3 before meeting L1. This case can be dealt with in the
same manner. Thus we have reached the conclusion that Φ is a bijection.

Combining (2.2), (2.3) and Theorem 2.1, we obtain the following relation

|V (i, j, n)| = |W12|+ |W23|+ |M13| − |U(i, j, n)|. (2.4)

Let W13 be the set of three walks (L1, L2, L3) in U(i, j, n) such that L1 never meets
L3, and define the generating functions for |W12|, |W23| and |W13| by W12(t), W23(t)
and W13(t) respectively. From (2.4) it follows that

|V (i, j, n)| = |W12|+ |W23| − |W13|. (2.5)

Proposition 2.2.
Vi,j(t) = W12(t) +W23(t)−W13(t). (2.6)

The above formula can be viewed as a reduction of the enumeration of 3-vicious
walks to the enumeration of 2-vicious walks. Let N(i, n) be the set of 2-vicious walks
(L1, L2) of length n starting at (0, 0) and (0, 2i) respectively, and denote the corre-
sponding generating function by

Ni(t) =
∞∑
n=0

|N(i, n)|tn.

Bousquet-Mélou [1] and Gessel [9] derived the following formula

Ni(t) =
1

1− 4t
(1−Di(t)). (2.7)
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As pointed out by Gessel [9], the above expression for Ni(2t) can be deduced from the
formula (1.6) for Vi,j(t) by taking the limit j →∞, and by using the identity (1.5).

Using the above expression for Ni(t), we can derive the following formulas for the
generating functions W12(t), W23(t) and W13(t):

W12(t) =
1−Di(2t)

1− 8t
, W23(t) =

1−Dj(2t)

1− 8t
, W13(t) =

1−Di+j(2t)

1− 8t
. (2.8)

Now we see that the formula (1.4) in Theorem 1.1 follows from the above formulas and
the relation (2.6).

We note that Gessel [9] obtained the following identity

Vi,j(t) = Ni(2t) +Nj(2t)−Ni+j(2t), (2.9)

in agreement with the combinatorial statement (2.6) derived from the reflection prin-
ciple.

As to the question of finding a combinatorial interpretation of the generating func-
tion formula (1.4), the reflection principle (Theorem 2.1) along with the combinatorial
interpretations of the formulas for W12(t), W23(t) and W13(t) can be considered as
an answer. Moreover, it is easy to deduce (1.6) from (1.4) by utilizing the identity
(1.5), which can be explained combinatorially in two steps. The first step is to use the
identity

4n =
n∑
k=0

(
2k

k

)(
2n− 2k

n− k

)
, (2.10)

which is equivalent to the identity

∞∑
n=0

(
2n

n

)
tn =

1√
1− 4t

. (2.11)

There are several combinatorial proofs of (2.10), see, for example, Kleitman [14] and
Sved [22]. The second step is to show that

1 +D(t)

1−D(t)
=
∞∑
n=0

(
2n

n

)
tn. (2.12)

Note that 1+D(t)
1−D(t)

can be written as C(t)
1−tC2(t)

. A combinatorial interpretation of the
identity

C(t)

1− tC2(t)
=
∞∑
n=0

(
2n

n

)
tn

is given by Chen, Li and Shapiro [2] in terms of doubly rooted plane trees and the
butterfly decomposition.
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3 Converging Walks and 2-Watermelons

In this section, we present an approach to computing the number of the 2-vicious
walks by counting pairs of converging walks. A pair of walks is said to be converging
if they never meet until they reach a common ending point. We shall show that
pairs of converging walks can be counted by applying Pólya’s formula for two-chain
watermelons, or 2-watermelons [19]. More specifically, we shall give a decomposition
of a pair of converging walks into 2-watermelons.

Like the definition of M13(n) given in the previous section, we let M12(n), or M12

for short, be the set of 3-walks (L1, L2, L3) in U(i, j, n) such that L1 intersects L2.
Similarly, we can define M23(n), or M23 for short. Then we have the following relations

|M12| = |U(i, j, n)| − |W12|, |M23| = |U(i, j, n)| − |W23|.

From (2.4) it follows that

|V (i, j, n)| = |U(i, j, n)|+ |M13| − |M12| − |M23|.

LetM12(t), M23(t) andM13(t) denote the generating functions for |M12(n)|, |M23(n)|
and |M13(n)|, respectively.

Proposition 3.1. We have

Vi,j(t) = Ui,j(t)−M12(t)−M23(t) +M13(t). (3.1)

It will be shown that M12(t), M13(t) and M23(t) can be computed by using the
following formula for the number of 2-watermelons as derived by Levine [18] and Pólya
[19], see also, Fürlinger and Hofbauer [6], Gessel [7], and Shapiro [21].

Proposition 3.2. The number of 2-watermelons with each walk having n steps is Cn+1.

Using the above formula, one sees that the generating function of the number of
2-watermelons equals C2(t). Note that 2-watermelons of length n correspond to pairs
of converging walks of length n+1 with adjacent starting points. In general, let T (i, n)
be the set of pairs of converging walks (L1, L2) of length n, where L1 starts from (0, 0)
and L2 starts from (0, 2i). Define

Ti(t) =
∑
n≥0

|T (i, n)|tn.

Proposition 3.3. For any i ≥ 1, Ti(t) = Di(t).
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Proof. Let L1 = A0A1 . . . An and L2 = B0B1 . . . Bn, where a walk is represented by
a sequence of points. For 0 ≤ k ≤ i, let jk be the minimum index such that the
difference of the y-coordinates of (Ajk , Bjk) equals to 2i − 2k. It is clear that j0 = 0

and ji = n. We now decompose (L1, L2) into i 2-walks: (L
(1)
1 , L

(1)
2 ), . . . , (L

(i)
1 , L

(i)
2 ),

where L
(k)
1 = Ajk−1

Ajk−1+1 . . . Ajk and L
(k)
2 = Bjk−1

Bjk−1+1 . . . Bjk . Figure 3.1 is an
illustration of the decomposition.

q q q q q q q q qq q q q q q q q qq q q q q q q q q
q q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q qq q q q q q q q q

@@�
�
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��@@��@@��
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@
@
@
@��@

@
@

L1

L2Bj0

Aj0

Bj1

Aj1

Bj2

Aj2
Aj3(Bj3)

Figure 3.1: The decomposition of a pair of converging walks.

Observe that by the choice of jk, the rightmost pair of steps in (L
(k)
1 , L

(k)
2 ) must

be (U,D). Moreover, if we delete this pair of steps, the resulting upper walk can be
lowered by 2i − 2k units without intersecting the lower walk to form a 2-watermelon.
An example is given in Figure 3.2.

q q q qq q q qq q q qq q q qq q q qq q q qq q q qq q q qq q q q

@@��

��@@

L
(1)
1

L
(1)
2

→

q q qq q qq q qq q qq q qq q qq q qq q qq q q

@@��

��@@

q qq qq qq qq qq q

L
(2)
1

L
(2)
2

→ ∅

q q q q qq q q q qq q q q qq q q q q
@@��@@

@@��@@

L
(3)
1

L
(3)
2

→ q q q qq q q qq q q qq q q q
@@��@@

@@��@@

Figure 3.2: From 2-walks to 2-watermelons

By Proposition 3.2, the generating function for the number of 2-walks (L
(k)
1 , L

(k)
2 )

equals D(t) = t · C2(t). This completes the proof.

Let M(i, n) be the set of intersecting 2-walks (L1, L2) of length n, where L1 and L2
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start from (0, 0), (0, 2i) respectively. Define

Mi(t) =
∑
n≥0

|M(i, n)|tn.

Observe that every pair of intersecting paths (L1, L2) can be decomposed into a
pair of converging paths and a pair of arbitrary paths starting from the same point.
Thus we have the following formula.

Corollary 3.4. For any i ≥ 1,

Mi(t) =
Di(t)

1− 4t
. (3.2)

Notice that

Mi(t) +Ni(t) =
1

1− 4t
. (3.3)

So the formula (2.7) for Ni(t) can be deduced from the above relation (3.3). Moreover,
it is easy to see that M12(t), M23(t) and M13(t) can be computed by using the above
formula (3.2) for Mi(t). So we get

M12(t) =
Di(2t)

1− 8t
, M23(t) =

Dj(2t)

1− 8t
, M13(t) =

Di+j(2t)

1− 8t
, (3.4)

in agreement with (2.8). Substituting (3.4) into (3.1), we obtain Theorem 1.1.

We note that by Proposition 3.3 and the Lagrange inversion formula, we can deduce
that

|T (i, n)| = i

n

(
2n

n− i

)
. (3.5)

So the formula (2.7) implies an explicit expression for |N(i, n)|:

|N(i, n)| = 4n −
n∑
k=i

i

k

(
2k

k − i

)
4n−k. (3.6)

As will be seen in the next section, the set T (i, n) of converging paths are in one-to-
one correspondence with partial Dyck paths which are counted by the ballot numbers.

4 Connection to the Ballot Numbers

In this section, we put the Labelle merging algorithm in a more general setting, and
show that the direct correspondence formulated by Chen, Pang, Qu and Stanley [3]
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leads to a connection between pairs of converging walks and the classical ballot num-
bers.

We shall represent a walk as a sequence of steps rather than points. Let (L1, L2)
be a 2-watermelon of length n, and let L1 = p1p2 · · · pn and L2 = q1q2 · · · qn, where
pi, qi = U or D. Set U ′ = D and D′ = U . Using the direct correspondence in [3], the
watermelon (L1, L2) can be represented by a Dyck path of length 2n+ 2:

Uq1p
′
1q2p

′
2 · · · qnp′nD.

It is not difficult to see that the above map is a bijection. Figure 4.1 gives an illustration.

q q q q q q q qq q q q q q q qq q q q q q q qq q q q q q q qq q q q q q q qq q q q q q q qq q q q q q q q

�
�
�@
@�
�@

@
@�
�

L1

L2
�
�
�@@�

�
�@

@
@ ←→

p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p�
�@�@

@�
�@�

�@�@
@
@

Figure 4.1: From a 2-watermelon to a Dyck path.

Using the above merging algorithm, we may encode a pair of converging walks
(L1, L2) in T (i, n) by a partial Dyck path P in the sense that P does not have to start
from the origin but it ends up with a point on the x-axis. We should note that a partial
Dyck path is usually defined as a lattice path starting from the origin (0, 0) with up
and down steps that does not go below the x-axis. Define P (i, n) to be the set of partial
Dyck paths of length 2n which start from (0, 2i) and never return to the x-axis except
for the final destination. It is well known that the number of partial Dyck paths in
P (i, n) is given by the classical ballot number. The following proposition establishes a
connection between converging walks and partial Dyck paths.

Proposition 4.1. For n ≥ 1, there exists a bijection between T (i, n) and P (i, n).

Proof. Given a pair of converging walks (L1, L2) in T (i, n), let L1 = p1p2 · · · pn and
L2 = q1q2 · · · qn, where pi, qi = U or D. Then (L1, L2) can be represented by a partial
Dyck path P of length 2n starting from (0, 2i):

P = q1p
′
1q2p

′
2 · · · qnp′n.

Clearly, P returns to the x-axis at the ending point and never touches the x-axis before
the ending point, that is, P ∈ P (i, n). It is easy to check that the above correspondence
is a bijection. Figure 4.2 is an illustration.
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Figure 4.2: From a pair of converging walks to a partial Dyck path

It is easy to see that there is a one-to-one correspondence between P (i, n) and the
set of Dyck paths of length 2n + 2i with 2i returns to the x-axis, which implies the
same formula for |P (i, n)| as the formula (3.5) for |T (i, n)|, see Deutsch [4]. On the
other hand, |P (i, n)| can be expressed as the classical ballot number b(n+ i− 1, n− i),
where

b(n, i) =

(
n+ i

i

)
−
(
n+ i

i− 1

)
=
n+ 1− i
n+ 1 + i

(
n+ i+ 1

i

)
,

see, for example, Riordan [20].

5 4-Vicious Walkers

In this section, we present a reflection principle for 4-vicious walks that leads to a
reduction from 4-vicious walks to 2-vicious walks. We first give some definitions. Let
U(i, j, k, n) be the set of 4-walks (L1, L2, L3, L4) of length n, where L1, L2, L3 and L4

start from (0, 0), (0, 2i), (0, 2i+2j) and (0, 2i+2j+2k) respectively. Let V (i, j, k, n) be
the set of 4-vicious walks (L1, L2, L3, L4) in U(i, j, k, n). Define the generating function
Vi,j,k(t) by

Vi,j,k(t) =
∑
n≥0

|V (i, j, k, n)|tn.

The following formula for |V (i, j, k, n)| is a consequence of Gessel’s theorem [9].
Let v(i, n) denote the number of 2-vicious walks in N(i, n) as given by the generating
function (2.7). Recall that an explicit formula for v(i, n) is given by (3.6).

Theorem 5.1. For any i, j, k ≥ 1, we have

|V (i, j, k, n)| = v(i, n)v(k, n)− v(i+ j, n)v(j + k, n) + v(i+ j + k, n)v(j, n). (5.1)
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In order to give a combinatorial interpretation of the above formula (5.1), we shall
establish a reflection principle for certain classes of 4-vicious walks. For 1 ≤ r < s ≤
4, we use Wrs(n), or Wrs for short, to denote the set of 4-walks (L1, L2, L3, L4) in
U(i, j, k, n) such that Lr and Ls are nonintersecting. Similarly, for 1 ≤ r < s ≤ 4, we
use Mrs(n), or Mrs for short, to denote the set of 4-walks (L1, L2, L3, L4) in U(i, j, k, n)
such that Lr and Ls are intersecting. Clearly, the set V (i, j, k, n) of 4-vicious walks of
length n can be expressed as W12 ∩W23 ∩W34. It is also clear that

|W12 ∩W23 ∩W34| = |W12 ∩W34| − |W12 ∩M23 ∩W34|. (5.2)

Note that it is easy to find a formula for |W12 ∩ W34| based on the number of
2-vicious walks. To compute |W12 ∩M23 ∩W34|, we may use the following reflection
principle.

Theorem 5.2. There exists a bijection between the set W13 ∩W24 and the set (W14 ∩
W23) ∪ (W12 ∩M23 ∩W34).

Proof. We proceed to construct a map ψ from W13∩W24 to (W14∩W23)∪ (W12∩M23∩
W34). Let (L1, L2, L3, L4) be a 4-walk in W13 ∩W24. We have the following situations.

(1) L1 ∩ L2 = ∅, L2 ∩ L3 6= ∅ and L3 ∩ L4 = ∅. Evidently, (L1, L2, L3, L4) ∈ W12 ∩
M23 ∩W34. In this case, no operation is needed for ψ, that is, ψ((L1, L2, L3, L4)) =
(L1, L2, L3, L4).

(2) L1∩L4 = ∅ and L2∩L3 = ∅. So we have (L1, L2, L3, L4) ∈ W14∩W23. In this case,
we simply do nothing as in Case (1).

(3) L2 ∩ L3 6= ∅, either L1 ∩ L2 6= ∅ or L3 ∩ L4 6= ∅, L2 meets L3 before it meets L1

(when L1 ∩ L2 = ∅, we naturally assume that L2 meets L3 before it meets L1), L3

meets L2 before it meets L4 (when L3 ∩ L4 = ∅, we naturally assume that L3 meets
L2 before it meets L4). In this case, we apply the usual reflection operation on L2 and
L3, and denote the resulting paths by L′2 and L′3, respectively. Let L′1 = L1, L′4 = L4

and let ψ((L1, L2, L3, L4)) = (L′1, L
′
2, L

′
3, L

′
4). It is easy to see that (L′1, L

′
2, L

′
3, L

′
4) ∈

W12 ∩M23 ∩W34.

(4) L1 ∩ L4 = ∅, L2 ∩ L3 6= ∅, L1 ∩ L2 6= ∅, and L2 meets L1 before it meets L3.

(5) L1 ∩ L4 6= ∅, L2 ∩ L3 6= ∅, L2 meets L1 before it meets L3, and L3 meets L2 before
it meets L4.

(6) L1 ∩ L4 6= ∅, L2 ∩ L3 = ∅.

In Cases (4), (5) and (6), we apply the usual reflection operation on L1 and L2,
and denote the resulting paths by L′1 and L′2, respectively. Let L′3 = L3, L′4 = L4 and
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Figure 5.1: The action of ψ on a 4-walk in Case (4).

let ψ((L1, L2, L3, L4)) = (L′1, L
′
2, L

′
3, L

′
4). Then we have (L′1, L

′
2, L

′
3, L

′
4) ∈ W14 ∩W23.

Figure 5.1 is an illustration of the reflection operation on (L1, L2, L3, L4) in Case (4).

(7) L1 ∩ L2 = ∅, L1 ∩ L4 = ∅, L2 ∩ L3 6= ∅, L3 ∩ L4 6= ∅, and L3 meets L4 before it
meets L2.

(8) L1 ∩ L2 6= ∅, L1 ∩ L4 = ∅, L2 ∩ L3 6= ∅, L3 ∩ L4 6= ∅, L3 meets L4 before it meets
L2, and L2 meets L3 before it meets L1.

(9) L1 ∩ L4 6= ∅, L2 ∩ L3 6= ∅, L3 meets L4 before it meets L2.

In Cases (7), (8) and (9), we use the usual reflection operation on L3 and L4, and
denote the resulting paths by L′3 and L′4, respectively. Let L′1 = L1, L′2 = L2 and
let ψ((L1, L2, L3, L4)) = (L′1, L

′
2, L

′
3, L

′
4). It is easy to check that (L′1, L

′
2, L

′
3, L

′
4) ∈

W14 ∩W23.

It is not difficult to see that the above procedure is reversible. Thus we have reached
the assertion that ψ is a bijection.

Using the above reflection principle, we can give a combinatorial proof of Theorem
5.1. In view of the bijection in Theorem 5.2, we find that

|W12 ∩M23 ∩W34| = |W13 ∩W24| − |W14 ∩W23|. (5.3)

Substituting (5.3) into (5.2), we deduce that

|W12 ∩W23 ∩W34| = |W12 ∩W34| − |W13 ∩W24|+ |W14 ∩W23|. (5.4)

It is evident that a 4-walk in W12∩W34 corresponds to a pair of 2-vicious walks (V1, V2),
where V1 is a 2-vicious walk (L1, L2) of length n, with L1 and L2 starting from (0, 0)
and (0, 2i) respectively, and V2 is a 2-vicious walk (L3, L4) of length n, with L3 and L4

starting from (0, 2i+ 2j) and (0, 2i+ 2j + 2k) respectively. Consequently,

|W12 ∩W34| = v(i, n)v(k, n).

Similarly, we have
|W13 ∩W24| = v(i+ j, n)v(j + k, n),
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and
|W14 ∩W23| = v(i+ j + k, n) · v(j, n).

Hence we arrive at (5.1). This completes the proof.

It would be interesting to find a general reflection principle for r-vicious walks for
r > 4.
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