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Abstract. We find a combinatorial setting for the coefficients of the Boros-Moll poly-
nomials Pm(a) in terms of partially 2-colored permutations. Using this model, we give
a combinatorial proof of a recurrence relation on the coefficients of Pm(a). This ap-
proach enables us to give a combinatorial interpretation of the log-concavity of Pm(a)
which was conjectured by Moll and confirmed by Kauers and Paule.
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1 Introduction

The main objective of this paper is to present a combinatorial approach to the log-
concavity of the Boros-Moll polynomials. The Boros-Moll polynomials Pm(a) arise in
the evaluation of a quartic integral, see [3–7, 13]. Boros and Moll have shown that for
any a > −1 and any nonnegative integer m,∫ ∞

0

1

(x4 + 2ax2 + 1)m+1
dx =

π

2m+3/2(a+ 1)m+1/2
Pm(a), (1.1)

where

Pm(a) =
∑
j,k

(
2m+ 1

2j

)(
m− j
k

)(
2k + 2j

k + j

)
(a+ 1)j(a− 1)k

23(k+j)
. (1.2)

Boros and Moll also derived a single sum formula for Pm(a):

Pm(a) = 2−2m
∑
k

2k

(
2m− 2k

m− k

)(
m+ k

k

)
(a+ 1)k, (1.3)

which implies that the coefficients of Pm(a) are positive. More precisely, let di(m) be
the coefficient of ai in Pm(a). Then (1.3) gives

di(m) = 2−2m
m∑
k=i

2k

(
2m− 2k

m− k

)(
m+ k

k

)(
k

i

)
. (1.4)

Several proofs of the formula (1.3) can be found in the survey of Amdeberhan and
Moll [2].

Further positivity properties of Pm(a) have been studied recently. Boros and Moll [5]
have shown that the sequence {di(m)}0≤i≤m is unimodal for m ≥ 0. Moll conjectured
that this sequence is log-concave, that is, for m ≥ 2 and 1 ≤ i ≤ m− 1,

d2i (m) ≥ di−1(m)di+1(m). (1.5)

This conjecture has been confirmed by Kauers and Paule [12] based on recurrence
relations. Chen and Xia [10] have proved a stronger property of di(m), called the
ratio monotone property, which implies both the log-concavity and the spiral property.
Moll [14,15] posed a conjecture that is stronger than the log-concavity of Pm(a). This
conjecture has been proved by Chen and Xia [11]. Chen and Gu [8] established the
reverse ultra log-concavity of the Boros-Moll polynomials.

It turns out that the polynomials Pm(a) are closely related to combinatorial struc-
tures. The 2-adic valuation of the numbers i!m!2m+idi(m) has been studied by Amde-
berhan, Manna and Moll [1], and Sun and Moll [16]. By using reluctant functions and
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an extension of Foata’s bijection, Chen, Pang and Qu [9] have found a combinatorial
derivation of the single sum formula (1.3) from the double sum formula (1.2). For the
special case a = 1, we are led to a combinatorial argument for the identity

m∑
k=0

2−2k
(

2k

k

)(
2m− k
m

)
=

m∑
k=0

2−2k
(

2k

k

)(
2m+ 1

2k

)
.

However, this combinatorial approach does not seem to apply to recurrence relations
for di(m) or the log-concavity of Pm(a).

In this paper, we shall consider a variation of the coefficients di(m), that is,

Di(m) =

(
2m

m− i

)
m!i!(m− i)!2idi(m). (1.6)

Then the numbers Di(m) have a combinatorial interpretation in terms of partially
2-colored permutations.

Using this combinatorial setting, we give an explanation of the following recurrence
relation of di(m) derived independently by Kauers and Paule [12] and Moll [14]:

i(i+ 1)di+1(m) = i(2m+ 1)di(m)− (m− i+ 1)(m+ i)di−1(m). (1.7)

The reasoning of the above recurrence relation also implies a simple combinatorial
interpretation of the log-concavity of the Boros-Moll polynomials.

2 A combinatorial setting for Di(m)

In this section, we shall give a combinatorial interpretation of Di(m) by introducing the
structure of partially 2-colored permutations. Throughout this paper, we shall adopt
the notation (x)n for rising factorials, that is, (x)0 = 1 and for n > 0,

(x)n = x(x+ 1) · · · (x+ n− 1).

From the expression (1.4) for di(m), we have

di(m) = 2−2m
m∑
k=i

2k
(
2m− 2k

m− k

)(
m+ k

k

)(
k

i

)

= 2−2m
m−i∑
j=0

2j+i

(
2m− 2i− 2j

m− i− j

)(
m+ i+ j

i+ j

)(
i+ j

i

)
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= 2−2m
m−i∑
j=0

2j+i (2m− 2i− 2j)!

(m− i− j)!(m− i− j)!
· (m+ i+ j)!

(i+ j)!m!
· (i+ j)!

j!i!

= 2−2m
m−i∑
j=0

2j+i 2
2m−2i−2j(m− i− j − 1

2)!

(m− i− j)!
· (m+ i+ j)!

(i+ j)!m!
· (i+ j)!

j!i!
.

It follows that

m!i!(m− i)!2idi(m) = (m− i)!

m−i∑
j=0

(
1

2

)j (m− i− j − 1
2)!

(m− i− j)!
· (m+ i+ j)!

j!
,

=
m−i∑
j=0

(
m− i

j

)(
1

2

)j (1

2

)
m−i−j

(m+ i+ j)!,

which yields

Di(m) =

(
2m

m− i

)m−i∑
j=0

(
m− i

j

)(
1

2

)j (1

2

)
m−i−j

(m+ i+ j)!. (2.1)

We proceed to give a combinatorial interpretation of Di(m) according to the expres-
sion (2.1). It is well known that (x)n equals the generating function for permutations
on [n] with respect to the number of cycles. Let σ be a permutation on [n]. The weight
of σ is defined as xk, where k is the number of cycles in σ. So (x)n is the weighted
count of permutations on [n].

Suppose that (A,B,C) is a composition of [2m] = {1, 2, . . . , 2m}, namely, any A,
B and C are disjoint and A ∪ B ∪ C = [2m], where A, B and C are allowed to be
empty. A permutation on [2m] associated with a composition (A,B,C) of [2m] is called
a partially 2-colored permutation on [2m] if it can be written as (π|σ), where π is a
permutation on A ∪ B and σ is a permutation on C. We assume that the elements in
A are white, the elements in B are black and written in boldface, while the elements
in C are uncolored.

Moreover, we need to use two different representations for the permutations π and
σ in a partially 2-colored permutation (π|σ). To be precise, we shall write π in the
one-line notation in the form of a sequence. For example, 5, 7, 8, 2, 1, 6, 4, 3 is the one-
line representation of a permutation. On the other hand, we shall express σ in terms
of the cycle decomposition. For instance, the permutation in the above example has
cycle decomposition (1, 5)(2, 7, 4)(3, 8)(6).

Let Di(m) denote the set of all partially 2-colored permutations (π|σ) on [2m] such
that the 2-colored permutation π has m+ i black elements. For example, consider the
partially 2-colored permutation

(2,12, 8,11,5,9,7, 1,4,3|(6, 10))
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in D2(6). Then we have A = {1, 8}, B = {2, 3, 4, 5, 7, 9, 11, 12}, and C = {6, 10}. From
the definition, we see that for a partially 2-colored permutation (π|σ) in Di(m), we
have |A ∪ C| = m− i.

We are now ready to give a combinatorial interpretation of Di(m). With respect to
the weight a partially 2-colored permutation (π|σ) in Di(m), we impose the following
rules:

(1) An element in A is given a weight 1
2
;

(2) A cycle in σ is given a weight 1
2
.

The weight (π|σ) is defined as the product of the weights of the white elements and
the cycles. In light of the above weight assignment, Di(m) can be viewed as a weighted
count of partially 2-colored permutations. The weight of a set S means to be the sum
of weights of its elements, and is denoted by w(S).

Theorem 2.1. For m ≥ 1, Di(m) equals the weight of Di(m).

Proof. Given a composition (A,B,C) of [2m] such that |B| = m+i and |A∪C| = m−i.
Assume that there are j elements in A. It is clear that there are m− i− j elements in
C. Now, there are

(
2m
m−i

)
ways to distribute 2m elements into B and A∪C. Moreover,

there are
(
m−i
j

)
ways to distribute m− i elements into A and C.

Consider partially 2-colored permutations in Di(m) associated with composition
(A,B,C) of [2m]. Since |A ∪ B| = m + i + j, the sum of weights of permutations on
A ∪B equals (

1

2

)j

· (m+ i+ j)!.

The weighted sum of permutations on C equals
(
1
2

)
m−i−j . This completes the proof.

3 Combinatorial proof of the recurrence relation

Using the interpretation of Di(m) in terms of partially 2-colors permutation, we give
a combinatorial proof for the following recurrence relation of the coefficients di(m) of
the Boros-Moll polynomials

i(i+ 1)di+1(m) = i(2m+ 1)di(m)− (m− i+ 1)(m+ i)di−1(m). (3.1)

This recurrence was independently derived by Kauers, Paule [12] and Moll [14].
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Utilizing (1.6), the recurrence relation (3.1) can be restated as

1

2
(m+ i+ 1)Di+1(m) + 2(m− i+ 1)Di−1(m) = (2m+ 1)Di(m). (3.2)

To give a combinatorial proof of (3.2), we need to introduce some notation. Let
Ai(m) (resp. Bi(m) and Ci(m)) denote the set of all partially 2-colored permutations
(π|σ) in Di(m) such that exactly one element in A (resp. B and C) is underlined.
Obviously, the four sets Ai(m), Bi(m), Ci(m) and Di(m) are disjoint. For example,

(2,12, 8,11,5,9,7, 1,4,3|(6, 10))

is an underlined partially 2-colored permutation belonging to B2(6). By definition and
Theorem 2.1, we have

(m+ i)Di(m) = w(Bi(m)), (3.3)

(m− i)Di(m) = w(Ai(m) ∪ Ci(m)). (3.4)

Proof. From (3.3) and (3.4), we know that

(m+ i+ 1)Di+1(m) = w(Bi+1(m)), (3.5)

(m− i+ 1)Di−1(m) = w(Ai−1(m) ∪ Ci−1(m)). (3.6)

On the other hand, we have

(2m+ 1)Di(m) = w(Ai(m) ∪ Bi(m) ∪ Ci(m) ∪ Di(m)). (3.7)

First, we claim that
1

2
w(Bi+1(m)) = w(Ai(m)). (3.8)

Given (π|σ) ∈ Bi+1(m) with underlying composition (A,B,C), where |B| = m+ i+ 1
and |A∪C| = m−i−1, by changing the underlined black element in π to an underlined
white element, we obtain an underlined partially 2-colored permutation in Ai(m).
Clearly, this operation yields a bijection between Bi+1(m) and Ai(m). Since the weight
of a white element equals 1/2, we obtain (3.8). Substituting i with i − 1 in (3.8), we
get

w(Bi(m)) = 2w(Ai−1(m)). (3.9)

Hence (3.2) simplifies to the following relation

2w(Ci−1(m)) = w(Ci(m) ∪ Di(m)). (3.10)
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Assume that (π|σ) ∈ Ci−1(m) is a partially 2-colored permutation with underlying
composition (A,B,C), that is, |B| = m + i − 1, |A ∪ C| = m − i + 1, and σ is a
permutation with an underlined element. Suppose that σ has cycle decomposition
C0, C1, . . . , Cr, where C0 contains the underlined element. Without loss of generality,
we may always write C0 as (i1i2 · · · ik). Given (π|σ) ∈ Ci−1(m), we define

∆(π|σ) = {∆1,∆2, . . . ,∆k},

where

∆1 = (π, i1|(i2, i3, . . . , ik)C1C2 · · ·Cr),

∆2 = (π, i1, i2|(i3, . . . , ik)C1C2 · · ·Cr),

· · ·
∆k−1 = (π, i1, i2, . . . , ik−1|(ik)C1C2 · · ·Cr),

∆k = (π, i1, i2, . . . , ik−1, ik|C1C2 · · ·Cr).

For 1 ≤ j ≤ k − 1, we have ∆j ∈ Ci(m) and

w(∆j) =
1

2j−1w(π|σ). (3.11)

Moreover, we see that ∆k ∈ Di(m) and

w(∆k) =
1

2k−2w(π|σ). (3.12)

Conversely, any partially colored permutation in Ci(m) ∪ Di(m) can be obtained from
a partially colored permutation in Ci−1(m) by applying the above operation ∆. Thus,
we deduce that

∆(Ci−1(m)) = Ci(m) ∪ Di(m), (3.13)

where ∆ acts on the partially colored permutations in Ci−1(m). Since

k−1∑
j=1

1

2j−1 +
1

2k−2 = 2,

combining (3.11), (3.12) and (3.13) we obtain (3.2). This completes the proof.

4 Combinatorial proof of the log-concavity

In this section, we shall use the structure of partially 2-colored permutations to give a
combinatorial reasoning of the following relation

(m+ i+ 1)Di+1(m) · (m− i+ 1)Di−1(m) < (m+ i)(m− i+ 1)D2
i (m), (4.1)
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which implies the log-concavity of the Boros-Moll polynomials. We shall follow the
notation introduced in the previous section.

Proof. From (3.5) and (3.6), we see that

(m+ i+ 1)Di+1(m) · (m− i+ 1)Di−1(m)

= w(Bi+1(m)) · w(Ai−1(m) ∪ Ci−1(m))

= w(Bi+1(m)) · w(Ai−1(m)) + w(Bi+1(m)) · w(Ci−1(m)). (4.2)

Meanwhile, in view of (3.3) and (3.4), we find

(m+ i)(m− i+ 1)D2
i (m)

= w(Bi(m)) · w(Ai(m) ∪ Ci(m) ∪ Di(m))

= w(Bi(m)) · w(Ai(m)) + w(Bi(m)) · w(Ci(m) ∪ Di(m)). (4.3)

Hence (4.1) can be recast as

w(Bi+1(m)) · w(Ai−1(m)) + w(Bi+1(m)) · w(Ci−1(m))

< w(Bi(m)) · w(Ai(m)) + w(Bi(m)) · w(Ci(m) ∪ Di(m)). (4.4)

Invoking (3.8) and (3.9), we obtain

w(Bi+1(m)) · w(Ai−1(m)) = w(Bi(m)) · w(Ai(m)). (4.5)

Using (4.5) and the fact that

2w(Ci−1(m)) = w(Ci(m) ∪ Di(m))

as given by (3.10), (4.4) simplifies to

1

2
w(Bi+1(m)) < w(Bi(m)). (4.6)

Applying(3.8), (4.6) is equivalent to the relation

w(Ai(m)) < w(Bi(m)), (4.7)

which can be easily deduced from (3.3) and (3.4), since for 1 ≤ i ≤ m− 1,

w(Ai(m)) ≤ w(Ai(m) ∪ Ci(m)) = (m− i)Di(m) < (m+ i)Di(m) = w(Bi(m)). (4.8)

This completes the proof.
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