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Abstract. We obtain the generating functions for partial matchings avoiding neighbor
alignments and for partial matchings avoiding neighbor alignments and left nestings.
We show that there is a bijection between partial matchings avoiding the three neigh-
bor patterns (neighbor alignments, left nestings and right nestings) and set partitions
avoiding right nestings via an intermediate structure of upper triangular matrices.
Combining our bijection and the bijection given by Dukes and Parviainen between
upper triangular matrices and self-modified ascent sequences, we get a bijection be-
tween partial matchings avoiding the three neighbor patterns and self-modified ascent
sequences.
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1 Introduction

This paper is concerned with the enumeration of partial matchings and set partitions
that avoid certain neighbor patterns. Recall that a partition π of [n] = {1, 2, . . . , n}
can be represented by a diagram with vertices drawn on a horizontal line in increasing
order. For a block B of π, we write the elements of B in increasing order. Suppose
that B = {i1, i2, . . . , ik}. Then we draw an arc from i1 to i2, an arc from i2 to i3, and
so on. Such a diagram is called the linear representation of π.
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A partial matching is a partition for which each block contains at most two elements.
A partial matching is also called a poor partition by Klazar [10], see also [2]. It can
be viewed as an involution on a set. A partition for which each block contains exactly
two elements is called a perfect matching.

A nesting of a partition π is formed by two arcs (i1, j1) and (i2, j2) in the linear
representation such that i1 < i2 < j2 < j1. If we further require that i1 + 1 = i2, then
such a nesting is called a left nesting. Similarly, one can define right nestings. A crossing
is formed by two arcs (i1, j1) and (i2, j2) such that i1 < i2 < j1 < j2. A left crossing
is a crossing formed by two arcs (i1, j1) and (i2, j2) subject to a further condition
i1+1 = i2. Right crossings can be defined in the same way. Moreover, we say that k arcs
(i1, j1), (i2, j2), . . . , (ik, jk) form a k-crossing if i1 < i2 < · · · < ik < j1 < j2 < · · · < jk.
An alignment of a partition π is formed by two arcs (i1, j1) and (i2, j2) such that
i1 < j1 < i2 < j2.

Perfect matchings avoiding certain patterns have been studied in [3, 4, 5, 8, 9,
11, 12, 15]. Left nestings and right nestings were introduced by Stoimenow [16] in
the study of regular linearized chord diagrams, and were further investigated in [1, 5,
7]. In particular, Bousquet-Mélou, Claesson, Dukes and Kitaev [1] considered perfect
matchings avoiding left nestings and right nestings, and found bijections with other
combinatorial objects such as (2 + 2)-free posets.

In this paper, we define a neighbor alignment as an alignment consisting of two arcs
(i1, j1) and (i2, j2) such that j1 + 1 = i2. The aforementioned patterns with neighbor
constraints are called neighbor patterns. An illustration of neighbor patterns is given
in Figure 1.1.

· · · · · ·
i i+ 1 j1 j2

· · · · · ·
i i+ 1 j1 j2

· · · · · ·
i1 i2 j j + 1

· · · · · ·
i1 i2 j j + 1

· · · · · ·
i1 j1 j1 + 1 j2

Figure 1.1: Left crossing, left nesting, right crossing, right nesting and neighbor align-
ment.

Our main results are the generating functions for three classes of partial matchings
avoiding neighbor patterns. Denote the set of partial matchings of [n] by M(n). The
set of partial matchings in M(n) with no neighbor alignments is denoted by P(n),
and the set of partial matchings in P(n) with k arcs is denoted by P(n, k). The set
of partial matchings in P(n) with no left nestings is denoted by Q(n), and the set
of partial matchings in Q(n) with k arcs is denoted by Q(n, k). Moreover, the set of
partial matchings in Q(n) with no right nestings is denoted by R(n), and the set of
partial matchings in R(n) with k arcs is denoted by R(n, k). For 0 ≤ k ≤ bn/2c, we
set

P (n, k) = |P(n, k)|, Q(n, k) = |Q(n, k)|, R(n, k) = |R(n, k)|.

Denote the set of partitions of [n] by Π(n) and denote the set of partitions in Π(n)
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with k blocks by Π(n, k). Note that S(n, k) = |Π(n, k)| is the Stirling number of the
second kind. The set of partitions in Π(n) with no right nestings is denoted by T (n),
and the set of partitions in T (n) with k arcs is denoted by T (n, k). For 0 ≤ k ≤ n− 1,
we set T (n, k) = |T (n, k)|.

We obtain the following generating function formulas for the numbers P (n, k) and
Q(n, k).

Theorem 1.1 We have

∞∑
n=0

bn
2
c∑

k=0

P (n, k)xnyk =
∞∑
n=0

n∏
k=1

(1 + kxy)xn. (1.1)

Theorem 1.2 We have

∞∑
n=0

bn−1
2
c∑

k=0

Q(n− 1, k)xnyk =
∞∑
n=0

xn∏n
k=1(1− kx2y)

. (1.2)

It is clear that when y = 1, the right-hand side of (1.1) reduces to

∞∑
n=0

n∏
k=1

(1 + kx)xn,

which is the generating function of the sequence A124380 in OEIS [13], whose first few
entries are

1, 1, 2, 4, 9, 22, 57, 157, 453, 1368, 4290, . . . .

Thus Theorem 1.1 can be considered as a combinatorial interpretation of the above
generating function.

Meanwhile, when y = 1 the right-hand side of (1.2) reduces to

∞∑
n=0

xn∏n
k=1(1− kx2)

,

which is the generating function of the sequence A024428 in OEIS [13], whose first few
entries are

1, 1, 2, 4, 8, 18, 42, 102, 260, 684, 1860, . . . .

This sequence can be expressed in terms of Stirling numbers of the second kind. So
Theorem 1.2 can be considered as another combinatorial interpretation of the above
generating function.

Denote byMm×m(n) the set of m×m upper triangular matrices with nonnegative
integer entries which sum to n. We derive the generating function of the numbers
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R(n+k−1, k) by establishing a bijection between R(n+k−1, k) andM(n−k)×(n−k)(k).
Moreover, by constructing a bijection between M(n−k)×(n−k)(k) and T (n, k), we show
that there is a correspondence between T (n, k) and R(n+k−1, k). Hence by Theorem
1.3 we obtain the generating function formula for the numbers T (n, k) as stated in
Theorem 1.4. Furthermore, it turns out that this generating function coincides with
the generating function for the number of self-modified ascent sequences of length n
with largest element n − k − 1 or the number of 31̄524̄-avoiding permutations on [n]
having n−k right-to-left minima, as derived by Bousquet-Mélou, Claesson, Dukes and
Kitaev [1].

Theorem 1.3 We have

∞∑
n=1

n−1∑
k=0

R(n+ k − 1, k)xnyk =
∞∑
n=1

xn

(1− xy)(
n+1
2 )
. (1.3)

Theorem 1.4 We have

∞∑
n=1

n−1∑
k=0

T (n, k)xnyk =
∞∑
n=1

xn

(1− xy)(
n+1
2 )
. (1.4)

This paper is structured as follows. In Section 2, we give a proof of Theorem 1.1
by deriving a recurrence relation of P (n, k). In Section 3 we prove Theorem 1.2 by
establishing a correspondence between Π(n− k, n− 2k) and Q(n− 1, k). In Section 4,
we present a bijection between R(n+k−1, k) andM(n−k)×(n−k)(k), which leads to the
generating function formula in Theorem 1.3. In Section 5 we give a proof of Theorem
1.4 by constructing a correspondence between R(n+ k − 1, k) and T (n, k).

2 Neighbor alignments

In this section, we give a proof of the generating function formula for the number of
partial matchings avoiding neighbor alignments. If (i, j) is an arc in the diagram of
π, we call i a left-hand endpoint, and call j a right-hand endpoint. A singleton of a
partial matching or a set partition is the only element in a block, which corresponds
to an isolated vertex in its diagram representation. For a block with at least two
elements, the minimum element is called an origin, and the maximum element is called
a destination, and an element in between, if any, is called a transient vertex or simply
a transient. An origin and a destination are also called an opener and a closer by some
authors. We first give a recurrence relation of P (n, k).

Theorem 2.1 For n ≥ 3, and 1 ≤ k ≤ n/2, we have

P (n, k) = P (n− 1, k) + (n− k)P (n− 2, k − 1), (2.1)

with initial values P (1, 0) = 1, P (2, 0) = 1, P (2, 1) = 1.
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Proof. It is clear that the number of partial matchings in P(n, k) such that the element
1 is a singleton equals P (n − 1, k). So it suffices to show that the number of partial
matchings in which 1 is not a singleton equals (n− k)P (n− 2, k − 1). If no confusion
arises, we do not distinguish a partial matching from its diagram representation. For a
partial matching M ∈ P(n, k) in which 1 is not a singleton, we assume that (1, i) is an
arc of M . Deleting the arc (1, i) and the two vertices 1 and i, we are led to a partial
matching in P(n− 2, k − 1).

Conversely, given a partial matching M ∈ P(n − 2, k − 1) with n − 2 vertices, in
order to get a partial matching with k arcs, we can add an arc into M by placing the
left-hand endpoint before the first vertex of M and inserting the right-hand endpoint
at some position of M . Clearly, there are n − 1 possible positions to insert the right-
hand endpoint of the new arc. To ensure that the insertion will not cause any neighbor
alignments, we should not allow the right-hand endpoint of the inserted arc to be placed
before any origin of M . Since there are k− 1 arcs in M , thus there are k− 1 positions
that are forbidden. Hence there are (n− 1)− (k− 1) = n− k choices to insert the new
arc. After relabeling, we get a partial matching in P(n, k). This completes the proof.

As an example, let us consider a partial matching M = {{1, 4}, {2}, {3, 5}, {6}} ∈
P(6, 2). The possible positions for inserting an arc are marked by the symbol ∗ in
Figure 2.1. In the left diagram, the positions before the vertices 1 and 3 are forbidden.
If we choose the position between the vertices 5 and 6 to insert the right-hand endpoint
of the new arc, then the diagram on the right represents the resulting partial matching.

M
1 2 3 4 5 6
∗∗ ∗ ∗ ∗ ∗ =⇒

1 2 3 4 5 6 7 8

Figure 2.1: Possible positions for inserting an arc.

Proof of Theorem 1.1. Let f(n, k) denote the coefficient of xnyk in the expansion of

∞∑
m=1

m∏
i=1

(1 + ixy)xm.

It is not hard to see that f(n, k) equals the coefficient of xkyk in the expansion of

n−k∏
i=1

(1 + ixy).

It follows that
f(n, k) = f(n− 1, k) + (n− k)f(n− 2, k − 1)
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for n ≥ 3 and k ≥ 1, f(n, 0) = 1 for n ≥ 1, and f(2, 1) = 1. Thus P (n, k) and f(n, k)
satisfy the same recurrence relation with the same initial values. This completes the
proof.

To conclude this section, we give a recurrence relation of the generating function of
P (n, k). Let

fn(y) =

bn
2
c∑

k=0

P (n, k)yk.

Corollary 2.2 For n ≥ 3, we have

fn(y) = fn−1(y) + (n− 1)yfn−2(y)− y2f ′n−2(y), (2.2)

where f1(y) = 1, f2(y) = 1 + y.

3 Neighbor alignments and left nestings

This section is concerned with the generating function for partial matchings avoiding
neighbor alignments and left nestings. More precisely, we establish a bijection between
set partitions and partial matchings avoiding neighbor alignments and left nestings.
As a consequence, we obtain the generating function in Theorem 1.2.

Theorem 3.1 For 0 ≤ k ≤ bn−1
2
c, there exists a bijection between the set Π(n −

k, n − 2k) and the set Q(n − 1, k). Moreover, this bijection transforms the number of
transients of a partition to the number of left crossings of a partial matching.

Proof. For k = 0 the theorem is obvious. We only consider the case k ≥ 1. Let
π ∈ Π(n−k, n− 2k) be a partition of [n−k] with k arcs, we wish to add k− 1 vertices
to π in order to form a partial matching α(π) in Q(n−1, k), that is, a partial matching
on [n−1] avoiding neighbor alignments and left nestings. First, we add a vertex before
each origin, except for the first origin, and relabel the vertices from left to right by
using 1, 2, . . .. Let the resulting partition be denoted by σ.

To transform the partition σ to a partial matching in Q(n − 1, k), we need the
operation of changing a 2-path to a left crossing, see Figure 3.1 for an illustration.
Such a transformation is called a splitting of a 2-path, where a 2-path means two arcs
(i, j) and (j, k) with i < j < k. We shall order the 2-paths of a partition in terms of
their transient vertices.

Assume that there are m 2-paths in σ, that is, there are m transient vertices in
σ. We shall apply the splitting operation m times to get a sequence of partitions
σ = σ(0), σ(1), . . . , σ(m) such that for 1 ≤ i ≤ m, the partition σ(i) is obtained from σ(i−1)

by splitting the smallest 2-path of σ(i−1) and by relabeling the vertices afterwards.
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· · · · · ·
i j k

=⇒ · · · · · ·
i i+ 1 j + 1 k + 1

Figure 3.1: Changing a 2-path to a left crossing.

Let α(π) = σ(m) denote the resulting partition. It is easy to see that α(π) no longer
contains any transient vertex, in other words, α(π) is a partial matching. It is clear
that the splitting operation generates a new origin and a new destination. From the
construction of σ, we see that for 1 ≤ i ≤ m, there is a singleton before each origin
of σ(i), except the first origin and the origins caused by the splitting operation. So we
deduce that in the process of constructing σ(i) from σ(i−1) we do not get any new left
nestings or new neighbor alignments in σ(i).

We claim that there are no left nestings in α(π). To prove this claim, we introduce
a linear order on the set of left nestings of a partition. For a left nesting N consisting
of two arcs (i1, j1) and (i1 + 1, j2) and a left nesting N ′ consisting of two arcs (i′1, j

′
1)

and (i′1 + 1, j′2), we say that N is smaller than N ′ if i1 < i′1. To see that all the left
nestings of σ will disappear in α(π) = σ(m), we start with the smallest left nesting of
σ = σ(0). By the construction of σ, if the smallest left nesting of σ consists of two arcs
(i, j) and (i+ 1, k), then i+ 1 is a transient vertex of σ. Clearly, the vertex i is either
a transient vertex or an origin of σ.

If the vertex i is a transient vertex of σ, then we may assume that the 2-path Vi
containing i as the transient vertex is the t-th (t ≥ 1) 2-path of σ. Note that we
always split the smallest 2-path and the splitting operation does not cause any new
left nestings. We see that after applying the splitting operation t− 1 times, the 2-path
Vi (after relabeling) becomes the smallest 2-path of σ(t−1). One can check that after
we split the smallest 2-path of σ(t−1), the smallest left nesting in σ disappears in σ(t).

If the vertex i is an origin of σ, then we may assume that the 2-path Vi+1 of σ
containing i+ 1 as the transient vertex is the t′-th (t′ ≥ 1) 2-path of σ. After applying
the splitting operation t′ − 1 times, the 2-path Vi+1 (after relabeling) becomes the
smallest 2-path of σ(t′−1). Splitting the smallest 2-path of σ(t′−1), the smallest left
nesting of σ disappears in σ(t′). See Figure 3.2 as an illustration for the above two
cases.

Therefore, the smallest left nesting of σ disappears in some σ(t) (t ≥ 1). If there
still exist left nestings in σ(t), we can repeat the above process for the smallest left
nesting of σ(t). Since the splitting operation does not cause any new left nestings, the
left nestings will disappear at last. Thus the proof of the claim is completed.

We still need to show that there are no neighbor alignments in α(π). To this end, we
define a linear order on neighbor alignments of a partition τ . For a neighbor alignment
A consisting of two arcs (i1, j1) and (j1 + 1, j2) and a neighbor alignment A′ consisting
of two arcs (i′1, j

′
1) and (j′1 + 1, j′2), we say that A is smaller than A′ if i1 < i′1. It is
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· · · · · · · · ·
i i+ 1 j2 j1

=⇒
· · · · · · · · ·
i+ 1 i+ 2 j2 + 1 j1 + 1

· · · · · · · · ·
i i+ 1 j2 j1

=⇒
· · · · · · · · ·
i+ 1 i+ 2 j2 + 1 j1 + 1

Figure 3.2: The disappearing of left nestings.

easily checked that this is a linear order on the set of neighbor alignments of τ .
To see that all the neighbor alignments of σ will disappear in α(π) = σ(m), we start

with the smallest neighbor alignment of σ = σ(0). By the construction of σ, if the
smallest neighbor alignment of σ consists of two arcs (i, j) and (j + 1, k), then j + 1
is a transient vertex of σ. Obviously, the vertex j is either a transient vertex or a
destination of σ.

If the vertex j is a transient vertex of σ, then we assume that the 2-path Vj contain-
ing j is the r-th (r ≥ 1) 2-path of σ. Applying the splitting operation r− 1 times to σ,
we get σ(1), σ(2), . . . , σ(r−1). Now the 2-path Vj (after relabeling) becomes the smallest
2-path of σ(r−1). Moreover, after splitting the smallest 2-path of σ(r−1), the 2-path Vj+1

of σ (after relabeling) becomes the smallest 2-path of σ(r). It can be verified that the
smallest neighbor alignment of σ disappears in σ(r+1).

If the vertex j is a destination of σ, then we assume that the 2-path Vj+1 is the
r′-th (r′ ≥ 1) 2-path of σ. After applying the splitting operation r′ − 1 times to σ, we
obtain σ(1), σ(2), . . . , σ(r′−1), and the 2-path Vj+1 (after relabeling) becomes the smallest
2-path of σ(r′−1). It is easily seen that the smallest neighbor alignment of σ disappears
in σ(r′).

So in either case the smallest neighbor alignment of σ disappears in some σ(t)

(t ≥ 1). If σ(t) still contains any neighbor alignments, then there exist 2-paths in σ(t).
We may repeat the above process with respect to the smallest neighbor alignment in
σ(t). Since there is neither increase of neighbor alignments nor increase of 2-paths at
any step, all the neighbor alignments will disappear eventually. We conclude that there
are no neighbor alignments in α(π).

It remains to show that α(π) ∈ Q(n−1, k) and the number of transients of π equals
the number of left crossings of α(π). It is clear that α(π) has k (k ≥ 1) arcs. It suffices
to show that to construct α(π) from π we get k − 1 more vertices. Recall that π has
n− k vertices and k arcs. Suppose that (i, j) is an arc of π such that i is not the first
origin of π. Clearly, there are k − 1 such arcs. Observe that i is either an origin or a
transient vertex of π. If i is an origin, then a singleton is added before the vertex i in
the construction of σ. If i is a transient vertex, then there is a 2-path Vi containing the
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vertex i. After changing Vi to a left crossing, we get one more vertex. Combining the
above two cases, we see that in the construction of α(π), there are k−1 vertices added.
Thus α(π) ∈ Q(n − 1, k). It is easily verified that the number of transient vertices of
π equals the number of left crossings of α(π).

Conversely, given a partial matching M in Q(n− 1, k), we can recover a partition
α′(M) in Π(n − k, n − 2k). As the first step, we change all the left crossings of M to
2-paths. Suppose that there are m left crossings in M . We aim to construct a sequence
of partitions M = M (0),M (1), . . . ,M (m) such that for 1 ≤ i ≤ m, M (i) is obtained from
M (i−1) by changing a unique left crossing to a 2-path.

Let us define a linear order on the set of left crossings of a given partition. For
a left crossing C consisting of two arcs (i1, j1) and (i1 + 1, j2) and a left crossing C ′

consisting of two arcs (i′1, j
′
1) and (i′1 +1, j′2), we say that C is smaller than C ′ if i1 < i′1.

It is obvious to see that this is a linear order. Assume that the largest left crossing of
M (i−1) is formed by two arcs (i, j1) and (i+1, j2). Set M (i) to be the partition obtained
from M (i−1) by deleting the vertex i+ 1, and transforming the left crossing formed by
(i, j1) and (i + 1, j2) to a 2-path formed by (i, j1 − 1) and (j1 − 1, j2 − 1). Then we
relabel the vertices from left to right with 1, 2, . . ..

From the above procedure, it can be seen that M (m) is a partition without left
crossings. Now we delete the singleton immediately before each origin of M (m), if there
is any, except for the singleton immediately before the first origin. Finally we relabel
the vertices from left to right with 1, 2, . . .. Denote the resulting partition by α′(M).

We continue to show that α′(M) ∈ Π(n−k, n−2k) and the number of left crossings
of M equals the number of transient vertices of α′(M). Apparently there are k arcs
in α′(M). So it suffices to show that there are n− k vertices in α′(M), that is, in the
construction of α′(M), we need to delete k − 1 vertices of M . Suppose that (i, j) is
an arc of M such that i is not the first origin of M . Obviously, there are k − 1 such
arcs. By the assumption, we see that i is not the first vertex of M , hence i− 1 is also
a vertex of M .

We claim that either the vertex i−1 or the vertex i, but not both, will be deleted in
the construction of α′(M). There are two cases. Case 1. The vertex i−1 is a singleton.
It can be seen that in the construction of α′(M), the vertex i − 1 is deleted. Case 2.
The vertex i − 1 is not a singleton. Since there are neither neighbor alignments nor
left nestings in M , there exists an arc (i− 1, k) of M such that the two arcs (i− 1, k)
and (i, j) form a left crossing of M . In this case, in the construction of α′(M), the left
crossing formed by the arcs (i−1, k) and (i, j) is transformed into a 2-path by deleting
the vertex i. So the claim is proved.

Thus in the construction of α′(M), there are k − 1 vertices deleted from M . This
implies that α′(M) ∈ Π(n−k, n−2k). It is easily seen that the number of left crossings
of M equals the number of transient vertices of α′(M). Moreover, one can check that
the map α′ is the inverse of the map α. Thus the map α is a bijection. This completes
the proof.
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For example, for n = 13 and k = 5, let π = {{1, 5}, {2, 3, 4, 7}, {6, 8}} ∈ Π(8, 3)
be a partition with 8 vertices and 5 arcs. We need to add 4 vertices to π in order to
get a partial matching in Q(12, 5). We first add a singleton before the arc (2, 3) and a
singleton before the arc (6, 8). Then we change the two 2-paths to left crossings from
left to right. An illustration of the above procedure is given in Figure 3.3.

=⇒
1 2 3 4 5 6 7 8 9 10 11 12

=⇒
1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8

=⇒
1 2 3 4 5 6 7 8 9 10

π

Figure 3.3: An illustration of the bijection α.

We are now ready to give a proof of Theorem 1.2.
Proof of Theorem 1.2: Let gn(y) be the generating function for the numbers Q(n−1, k).
From Theorem 3.1 we see that

gn(y) =

bn−1
2
c∑

k=0

Q(n− 1, k)yk =

bn−1
2
c∑

k=0

S(n− k, n− 2k)yk,

where S(n, k) are the Stirling numbers of the second kind. Using the generating func-
tion of the Stirling numbers of the second kind [14]

∑
n≥k

S(n, k)xn =
xk

(1− x)(1− 2x) · · · (1− kx)
,

we obtain that
∞∑
n=1

gn(y)xn =
∞∑
n=1

xn∏n
k=1(1− kx2y)

.

This completes the proof.
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It should be mentioned that the generating function of the numbers

gn(1) =

bn−1
2
c∑

k=0

S(n− k, n− 2k)

can be found in OEIS [13], that is,

∞∑
n=1

gn(1)xn =
∞∑
n=1

xn∏n
k=1(1− kx2)

.

Thus Theorem 1.2 can be viewed as another combinatorial interpretation for the num-
bers gn(1).

To conclude this section, we give a recurrence relation of gn(y). By Theorem 3.1
and the recurrence relation of the Stirling numbers of the second kind

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k),

we have

Q(n, k) = Q(n− 1, k) + (n− 2k − 1)Q(n− 2, k − 1). (3.1)

Note that we can also give a direct combinatorial proof of (3.1) which is similar to the
proof of (2.1) in Theorem 2.1. In view of (3.1), we are led to the following recurrence
relation of gn(y).

Corollary 3.2 For n ≥ 3, we have

gn(y) = gn−1(y) + (n− 2)y · gn−2(y)− 2y2 · g′n−2(y), (3.2)

where g1(y) = 1, g2(y) = 1.

4 Neighbor alignments and left, right nestings

In this section, we prove the formula (1.3) for the bivariate generating function of the
number of partial matchings of [n+ k− 1] with k arcs that avoid neighbor alignments,
left nestings and right nestings. This generating function turns out to be equal to the
generating function for the number of self-modified ascent sequences of length n with
largest element n − k − 1 or the number of 31̄524̄-avoiding permutations on [n] that
have n − k right-to-left minima, as found by Bousquet-Mélou, Claesson, Dukes and
Kitaev [1].

Recall that R(n, k) denotes the set of partial matchings of [n] with k arcs that avoid
neighbor alignments and both left and right nestings, andMm×m(n) denotes the set of
m×m upper triangular matrices with nonnegative integer entries which sum to n. We
shall give a bijection between the set R(n+k−1, k) and the setM(n−k)×(n−k)(k), from
which we can deduce the generating function formula for the numbers R(n+ k− 1, k).
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Theorem 4.1 For 0 ≤ k ≤ n− 1, there is a bijection between the set R(n+ k − 1, k)
and the set M(n−k)×(n−k)(k).

Proof. Let M ∈ R(n+k−1, k) be a partial matching with n+k−1 vertices and k arcs
avoiding left nestings, right nestings and neighbor alignments. We wish to construct
an upper triangular matrix β(M) in M(n−k)×(n−k)(k). Clearly, there are n − k − 1
singletons in M . These singletons divide the vertices of M into n − k intervals, the
first interval is the interval before the first singleton and the (i + 1)-st interval is the
interval between the i-th and (i+1)-st singletons, the (n−k)-th interval is the interval
after the last singleton.

From these n− k intervals, we can construct an (n− k)× (n− k) upper triangular
matrix β(M). For 1 ≤ i ≤ j ≤ n − k, define the (i, j)-entry of β(M) to be the
number of arcs of M starting with a vertex in the i-th interval and ending with a
vertex in the j-th interval. Clearly, for an origin in the i-th interval, the corresponding
destination is in some j-th interval, where j ≥ i. Since there are k arcs in M , we see
that β(M) ∈M(n−k)×(n−k)(k).

Conversely, given an upper triangular matrix T ∈M(n−k)×(n−k)(k), we can recover
the linear representation of a partial matching β′(T ) in R(n+ k− 1, k). For 1 ≤ i, j ≤
n − k, let ti,j denote the (i, j)-entry of T . Let ri and sj denote the i-th row sum and
the j-th column sum of T respectively.

The partial matching β′(T ) is constructed as follows. First, we draw n − k − 1
singletons on a line to form n−k intervals. Then we need to determine the origins and
the destinations in each interval. For 1 ≤ i ≤ n−k, we put ri origins and si destinations
in the i-th interval, where all the destinations are placed after all the origins. So there
are (n− k− 1) + 2k = n+ k− 1 vertices. Next, we label the vertices from left to right
by 1, 2, . . . , n+ k − 1.

Finally, we should match the k origins and the k destinations to form k arcs. For
1 ≤ i ≤ n − k, for the ri origins in the i-th interval, their corresponding destinations
are determined as follows. As the initial step, for each j (i ≤ j ≤ n − k), we choose
the first ti,j available destinations (i.e., the destinations that have not been matched)
in the j-th interval. It is easy to check that there are ti,i + ti,i+1 + · · · + ti,n−k = ri
destinations that have been chosen so far. Then we match these ri destinations with
the ri origins in the i-th interval to form an ri-crossing. This construction ensures that
there are neither left nestings nor right nestings in β′(T ). Furthermore, the positions of
singletons guarantee that there are no neighbor alignments in β′(T ). Therefore β′(T )
is a partial matching in R(n+ k − 1, k). Moreover, it is easy to see that the map β′ is
the inverse of the map β. Thus β is a bijection. This completes the proof.

For example, for n = 10 and k = 6, let

M = {{1, 6}, {2, 7}, {3}, {4, 8}, {5, 14}, {9}, {10, 11}, {12}, {13, 15}},
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which belongs to R(15, 6). The three singletons 3, 9, 12 divide the vertices into 4 inter-
vals, namely, {1, 2}, {4, 5, 6, 7, 8}, {10, 11}, {13, 14, 15}. According to the construction
of β(M), we have

β(M) =


0 2 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 . (4.1)

Conversely, given the upper triangular matrix in (4.1), we can recover a partial match-
ing. First, use three singletons to form four intervals. Assign two origins in the first
interval, all their corresponding destinations are in the second interval. Similarly, assign
two origins in the second interval, their corresponding destinations are in the second
and the fourth interval, and so on. The construction of the corresponding partial
matching is illustrated in Figure 4.1.

=⇒
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

=⇒
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

=⇒
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4.1: An illustration of the bijection β.

We now turn to the proof of Theorem 1.3.
Proof of Theorem 1.3. Denote by C(k,

(
n−k+1

2

)
) the set of compositions of k into

(
n−k+1

2

)
parts. Since there are

(
n−k+1

2

)
positions (i, j) of an (n− k)× (n− k) matrix such that

i ≤ j, there is a one-to-one correspondence between the set M(n−k)×(n−k)(k) and the
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set C(k,
(
n−k+1

2

)
). Note that

|C(k,
(
n− k + 1

2

)
)| =

(
k +

(
n−k+1

2

)
− 1

k

)
=

((n−k
2

)
+ n− 1

k

)
.

By Theorem 4.1, we obtain

R(n+ k − 1, k) = |R(n+ k − 1, k)| = |M(n−k)×(n−k)(k)| =
((n−k

2

)
+ n− 1

k

)
.

On the other hand, the coefficient of xn in

∞∑
k=1

xk

(1− xy)(
k+1
2 )

equals
n∑

k=1

((k
2

)
+ n− 1

n− k

)
yn−k =

n−1∑
k=0

((n−k
2

)
+ n− 1

k

)
yk.

Therefore we have

∞∑
n=1

n−1∑
k=0

R(n+ k − 1, k)xnyk =
∞∑
n=1

n−1∑
k=0

((n−k
2

)
+ n− 1

k

)
xnyk

=
∞∑
n=1

xn

(1− xy)(
n+1
2 )
. (4.2)

This completes the proof.

The above generating function formula (4.2) suggests a connection between self-
modified ascent sequences and partial matchings avoiding neighbor alignments, left
and right nestings. Dukes and Parviainen [6] give a bijection from ascent sequences
to a special type of upper triangular matrices, which specializes to a correspondence
between the set of self-modified ascent sequences of length n with largest element k−1
and the set of k × k upper triangular matrices with nonnegative integer entries which
sum to n such that there are no zeros on the diagonal. It is clear that such matrices
correspond to general k× k upper triangular matrices with nonnegative integer entries
which sum to n− k. In view of the bijection β in Theorem 4.1, we see that there is a
one-to-one correspondence between the setMk×k(n−k) and the setR(2n−k−1, n−k).
Thus we have the following theorem.

Theorem 4.2 There is a bijection between the set of self-modified ascent sequences
of length n with largest element k − 1 and the set R(2n − k − 1, n − k) of partial
matchings of [2n − k − 1] with n − k arcs avoiding left nestings, right nestings and
neighbor alignments.
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5 Partitions with no right nestings

In this section, we give a bijection between partitions avoiding right nestings and
partial matching avoiding neighbor alignments, left nestings and right nestings. More
precisely, we shall construct a bijection between the set T (n, k) of partitions of [n] with
k arcs but with no right nestings and the set R(n + k − 1, k) of partial matchings of
[n+ k − 1] with k arcs that avoid neighbor alignments, left and right nestings.

In fact, we only need to establish a correspondence between the set T (n, k) and the
setM(n−k)×(n−k)(k). Combining the bijection β in Section 4 between upper triangular
matrices and partial matchings without left, right nestings and neighbor alignments, we
obtain a bijection between the set T (n, k) and the set R(n+ k− 1, k). In the previous
section we have computed the generating function for the numbers R(n+ k− 1, k). So
we are led to the same generating function formula for T (n, k) as stated in Theorem
1.4.

Theorem 5.1 For 0 ≤ k ≤ n−1, there exists a bijection between the set R(n+k−1, k)
and the set T (n, k). Moreover, this bijection transforms the number of left crossings of
a partial matching to the number of transient vertices of a partition.

Proof. It is clear that the theorem holds for k = 0. We only consider the case k ≥ 1.
Let M ∈ R(n+k−1, k), namely, M is a partial matching of [n+k−1] with k arcs but
without left nestings, right nestings and neighbor alignments. We wish to construct a
partition γ(M) ∈ T (n, k). We first use the bijection β in Section 4 to transform M to
an upper triangular matrix T = β(M) which is in M(n−k)×(n−k)(k). Using the matrix
T we can construct a partition γ(M) ∈ T (n, k).

The construction of a partition γ(M) from T can be described as follows. We start
with n − k empty intervals by putting down n − k − 1 singletons on a line. Then we
determine the left-hand and right-hand endpoints in each interval so that all the arcs
can be determined by the endpoints.

To achieve this goal, we define a k-path as a sequence of k arcs of the form
(v1, v2), (v2, v3), . . . , (vk, vk+1), where v1 < v2 < · · · < vk+1. Let ri denote the i-th
row sum of T , and let ti,j denote the (i, j)-entry of T . For 1 ≤ i ≤ n − k, we shall
construct an ri-path Pi consists of (v1, v2), (v2, v3), . . . , (vri , vri+1) such that the ori-
gin v1 of Pi is in the i-th interval and the right-hand endpoints v2, . . . , vri+1 of Pi are
determined by the entries in the i-th row of T .

First, we put the origin v1 of Pi immediately before the leftmost right-hand endpoint
that has been constructed in the i-th interval. If there are no right-hand endpoints in
the i-th interval, we place v1 before the i-th singleton. For i ≤ j ≤ n− k, we assign ti,j
right-hand endpoints to the j-th interval.

After the origin v1 is determined, we continue to determine the position of the
right-hand endpoint v2 of Pi. We observe that v2 must be in the m-th interval, where
m = min{j : i ≤ j ≤ n − k, ti,j 6= 0}. Furthermore, we claim that there is a unique
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position for v2 in the m-th interval such that the insertion of the arc (v1, v2) does not
cause any right nestings. We consider two cases.

Case 1. There are no right-hand endpoints to the right of v1 in the m-th interval.
In this case, we put the right-hand endpoint v2 of Pi immediately before the m-th
singleton. Then we relabel the resulting partition.

Case 2. There are t (t ≥ 1) right-hand endpoints u1, u2, . . . , ut to the right of v1
in the m-th interval. The strategy of finding the position of v2 can be described as
follows. We begin with the position immediately to the left of u1. If v2 can be placed
in this position without causing any right nestings, then this is the position we are
looking for. Otherwise, we consider the position immediately before u2 as the second
candidate.

Like the case for u1, if putting v2 immediately before u2 does not cause any right
nestings, then it is the desired choice. Otherwise, we consider the position immediately
before u3 as the third candidate. Repeating this process until we find the position of
v2 such that inserting (v1, v2) creates no right nestings.

To see that the above process will terminate at some point, we assume that v2
cannot be placed immediately before ur (1 ≤ r ≤ t), and we assume that putting v2
immediately after ur also yields a right nesting. Then this right nesting caused by
putting v2 immediately after ur must be formed by the arc (v1, v2) and the arc whose
right-hand endpoint is immediately after ur. This means that there is a right-hand
endpoint after ur. Since the number of right-hand endpoints in every interval is finite,
we conclude that there always exists a position such that inserting the arc (v1, v2) does
not cause any right nestings in the construction of the ri-path Pi based on the matrix
T .

Once the origin v1 of Pi is determined, we need to show that there exists a position
to put the right-hand endpoint v2 of Pi such that the insertion of the arc (v1, v2) does
not cause any right nestings. Furthermore, we also need the choice for the position of
v2 is unique. Assume that we have found a position immediately before the vertex uk1
(1 ≤ k1 ≤ t) such that no right nestings will be formed after the insertion of the arc
(v1, v2). It can be checked that all the positions to the right of uk1 cannot be chosen
for the insertion of (v1, v2).

To the contrary, assume that the position immediately after the vertex uk2 is a
possible choice, where 1 ≤ uk1 < uk2 ≤ t. We now proceed to find a right nesting that
leads to a contradiction. If v2 can be put immediately before uk1 , then the arc (v1, v2)
and the arc e1 = (l1, uk1) form a crossing, that is, v1 < l1; On the other hand, if v2 can
be placed immediately after uk2 , then (v1, v2) and e2 = (l2, uk2) form a crossing as well,
that is, l2 < v1. This implies that l2 < l1. So the arcs e1 and e2 form a nesting.

In fact, based on the nesting formed by e1 and e2 it can be seen that there exists a
right nesting formed by two arcs with right-hand endpoints between uk1 and uk2 in the
construction of the ri-path Pi. To this end, let us consider the distance between uk1
and uk2 . If uk1 + 1 = uk2 , then e1 and e2 form a right nesting. If uk1 + 2 = uk2 , namely,
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there is a vertex uk1+1 between uk1 and uk2 , then the arc with right-hand endpoint
uk1+1 forms a right nesting with e1 or e2. We now turn to the case that there are at
least two vertices between uk1 and uk2 . Assume that e3 = (l3, uk1+1) is the arc with
right-hand endpoint uk1+1, and e4 = (l4, uk2−1) is the arc with right-hand endpoint
uk2−1. Since at each step of the insertion process no right nestings are formed, e3 and
e1 = (l1, uk1) form a crossing, that is, l1 < l3. Moreover, e4 and e2 = (l2, uk2) form a
crossing, namely, l4 < l2. Thus we deduce that e3 and e4 form a nesting as well, and
the distance between the right-hand endpoints of e3 and e4 is shorter than the distance
between the right-hand endpoints of e1 and e2. See Figure 5.1 for an illustration.

· · · · · · · · · · · · · · ·
l4 l2 l1 l3 uk1

uk1+1 uk2−1 uk2

e1 e2e3 e4

Figure 5.1: The uniqueness of inserting an arc.

Iterating the above process to reduce the distance between the vertex uk1+1 and the
vertex uk2−1, we eventually find a right nesting, which is a contradiction. This implies
that there is a unique position for v2 such that the insertion of the arc (v1, v2) causes
no right nestings in the construction of the ri-path Pi based on the matrix T .

Using the same process for the arc (v2, v3), we see that there is a unique posi-
tion for v3 such that the insertion (v2, v3) does not cause any right nestings. By
iteration, we find that we can construct a unique ri-path Pi by inserting the arcs
(v1, v2), (v2, v3), . . . , (vri , vri+1).

Since Pi has ri + 1 vertices, after we construct n − k paths P1, P2, . . . , Pn−k based
on the matrix T , we obtain a partition τ with each Pi representing a block. Clearly
τ has (r1 + 1) + · · · + (rn−k + 1) + (n − k − 1) = 2n − k − 1 vertices. Moreover,
since no right nestings are formed in the construction of Pi for each i, we see that
τ has no right nestings. Finally, delete the n − k − 1 singletons immediately before
each origin of τ , except for the first origin. Denote the resulting partition by γ(M).
Thus γ(M) ∈ T (n, k) is a partition of [n] with k arcs but without right nestings.
Furthermore, it is easily seen that the number of left crossings of M equals∑

ri: ri>0

(ri − 1),

which is also the number of transient vertices of γ(M).
Conversely, for k ≥ 1, given a partition π ∈ T (n, k) with k arcs that has no right

nestings, we can recover a partial matching γ′(π) in R(n + k − 1, k). It is clear that
we should add k − 1 vertices to π. The construction can be described as follows.
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First, we add a singleton before each origin of π except the first origin. Let π′

denote the resulting partition. Since the partition π has n− k blocks and the number
of singletons added to π equals the number of non-singleton blocks of π minus one,
we deduce that π′ has n − k − 1 singletons which divide the vertices of π′ into n − k
intervals.

From these n − k intervals and the arcs of π′, it is easy to construct an upper
triangular matrix T ′ in M(n−k)×(n−k)(k). Note that in each interval, there is at most
one origin of π′. The entries of the upper triangular matrix T ′ can be determined as
follows. For 1 ≤ i ≤ j ≤ n− k, if there is an r-path P corresponding to a block of π′

whose origin is in the i-th interval, then we set the (i, j)-entry of T ′ to be the number of
right-hand endpoints of P which are in the j-th interval. Otherwise, set the (i, j)-entry
of T ′ to be zero. It is evident that T ′ ∈M(n−k)×(n−k)(k).

Finally, set γ′(π) = β(T ′). Recall that the map β in Section 4 is a bijection between
the setM(n−k)×(n−k)(k) and the set R(n+k−1, k). Thus γ′(π) is a partial matching in
R(n+ k − 1, k). Furthermore, it can be checked that the number of transient vertices
of π equals to ∑

r′i: r
′
i>0

(r′i − 1), (5.1)

where r′i is the i-th row sum of T ′. It can be verified that (5.1) is also the number
of left crossings in γ′(π). Thus the number of transient vertices of π is equal to the
number of left crossings in γ′(π).

It is routine to check that the map γ′ is the inverse of the map γ. Hence γ is a
bijection. This completes the proof.

Figure 5.2 gives an example of a partial matching M without left, right nestings and
neighbor alignments. It also demonstrates the procedure to construct a partition γ(M)
without right nestings. There are two singletons in M which create three intervals. For
the origins in the first interval, their corresponding destinations are in the second and
the third interval, and so on. The upper triangular matrix T corresponding to M is

T =

 0 2 1
0 2 2
0 0 1

 .

Using the upper triangular matrix T , one can construct γ(M). The first row of T
corresponds to a 3-path of γ(M), whose origin is in the first interval and the three
right-hand endpoints are in the second and the third interval, and so on.

To conclude, we remark that in general the number of partitions of [n] avoiding
right crossings is not equal to the number of partitions of [n] avoiding right nestings.
It would be interesting to find the generating function for the number of partitions of
[n] avoiding right crossings.
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Figure 5.2: An illustration of the bijection γ.
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