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f(k)/g(k) is a rational function of k. For similar hypergeometric terms f1(k), . . . , fm(k),
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∑
k fi(k) (1 ≤ i ≤ m) with polynomial coefficients.

When the summands f1(k), . . . , fm(k) contain a parameter x, we further impose the
condition that the coefficients of Fi in the linear relation are x-free. Such linear relations
with x-free coefficients can be used to determine the structure relations for orthogonal
polynomials and to derive recurrence relations for the connection coefficients between
two sequences of orthogonal polynomials. The extended Zeilberger algorithm can be
easily adapted to basic hypergeometric terms. As examples, we use the algorithm
or its q-analogue to establish linear relations among orthogonal polynomials and to
derive recurrence relations with multiple parameters for hypergeometric sums and basic
hypergeometric sums.
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1. Introduction

Based on Gosper’s algorithm, Zeilberger [15,16] developed a powerful method for prov-
ing identities on hypergeometric series and basic hypergeometric series. Let F (n, k) be
a double hypergeometric term, namely, F (n + 1, k)/F (n, k) and F (n, k + 1)/F (n, k)
are both rational functions of n and k. Zeilberger’s algorithm is devised to find a dou-
ble hypergeometric term G(n, k) and polynomials a0(n), a1(n), . . . , am(n) which are
independent of k such that

a0(n)F (n, k) + · · ·+ am(n)F (n+m, k) = G(n, k + 1)−G(n, k). (1.1)

Set

S(n) =
∞∑
k=0

F (n, k).

Summing (1.1) over k, we deduce that

a0(n)S(n) + · · ·+ am(n)S(n+m) = G(n,∞)−G(n, 0). (1.2)

Thus the identity
∞∑
k=0

F (n, k) = f(n) (1.3)

can be justified by verifying that f(n) also satisfies (1.2) and both sides of (1.3) share
the same initial values.

The main idea of this paper is the observation that Zeilberger’s approach can be ex-
tended to a more general telescoping problem. Let f1(k, a, b, . . . , c), . . ., fm(k, a, b, . . . , c)
be m similar hypergeometric terms of k with parameters a, b, . . . , c, namely, the ratios

fi(k, a, b, . . . , c)

fj(k, a, b, . . . , c)
and

fi(k + 1, a, b, . . . , c)

fi(k, a, b, . . . , c)

are all rational functions of k and a, b, . . . , c. Find a hypergeometric term g(k, a, b, . . . , c),
that is, the ratio g(k + 1, a, b, . . . , c)/g(k, a, b, . . . , c) is a rational function of k and
a, b, . . . , c, and polynomial coefficients a1(a, b, . . . , c), a2(a, b, . . . , c), . . ., am(a, b, . . . , c)
which are independent of k such that

a1f1(k) + a2f2(k) + · · ·+ amfm(k) = g(k + 1)− g(k). (1.4)

For brevity, from now on we may omit the parameters a, b, . . . , c and write fi(k) for
fi(k, a, b, . . . , c), ai for ai(a, b, . . . , c), and g(k) for g(k, a, b, . . . , c). Let

Fi =
∑
k

fi(k),
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for 1 ≤ i ≤ m. Once the telescoping relation (1.4) is established, summing over k often
leads to a homogenous relation among the sums Fi,

a1F1 + a2F2 + · · ·+ amFm = 0.

We were informed by one of referees that Paule independently obtained a para-
metric variation of Zeilberger’s algorithm in an unpublished manuscript [11]. Here
is a description of Paule’s algorithm. Given a hypergeometric term f(k) and ratio-
nal functions r1(k), r2(k), . . ., rm(k), find a hypergeometric term g(k) and coefficients
a1, a2, . . . , am which are independent of k such that

a1r1(k)f(k) + a2r2(k)f(k) + · · ·+ amrm(k)f(k) = g(k + 1)− g(k).

Clearly, the above formulation of Paule is equivalent to the general telescoping problem
(1.4) by setting fi(k) = ri(k)f(k).

It should be mentioned that for the purpose of computing the structure relations
for orthogonal polynomials, our algorithm has an additional feature that it requires
the x-free condition on the coefficients a1, . . . , am.

We remark that equation (1.4) can be solved in more general contexts. Let (F, σ)
be a difference field, i.e., a field F with an automorphism σ : F → F. Let K = {a ∈
F : σ(a) = a} be its constant field. When the field F is a ΠΣ-extension of K, Karr [8]
gave an algorithm to solve the following equation for g ∈ F and a1, . . . , am ∈ K,

a1f1 + · · ·+ amfm = σ(g)− g, (1.5)

where f1, . . . , fm are given elements in F. Schneider [14] considered more general pa-
rameterized linear difference equations and provided a simplified version of Karr’s al-
gorithm.

We also note that Chyzak [5] extended Zeilberger’s algorithm to general holonomic
functions. Let O be an Ore algebra acting on f and ∂1, . . . , ∂m, ∂ ∈ O. Chyzak provided
algorithms to find an element Q ∈ O and x-free coefficients ηi such that

η1∂1f + · · ·+ ηm∂mf = ∂(Qf).

Here the x-free condition corresponds to the usual k-free condition on the coefficients
η1, . . . , ηm.

For the purpose of this paper, we assume that fi(k) are similar hypergeometric
terms. We show that under this assumption Equaiton (1.4) can be solved by using
the same technique as in Zeilberger’s algorithm. Notice that the algorithms of Schnei-
der and Chyzak rely on Abramov’s algorithm. Our algorithm is based on Gosper’s
algorithm.
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As an application of our algorithm, we compute the coefficients of the structure
relations of orthogonal polynomials. For instance, let

Pn(x) =
∑
k

Pn,k(x)

be the hypergeometric representation of the Jacobi polynomials as given in (3.3). Set

f1(k) = Pn,k(x), f2(k) = P ′n+1,k(x), f3(k) = P ′n,k(x), f4(k) = P ′n−1,k(x),

where P ′n,k(x) denotes the derivative of Pn,k(x) with respect to x. The extended Zeil-
berger algorithm enables us to give the structure relation for Pn(x),

Pn(x) = ãnP
′
n+1(x) + b̃nP

′
n(x) + c̃nP

′
n−1(x). (1.6)

Sometimes it is necessary to impose an additional condition that the coefficients
a1, . . . , am in (1.4) are not only independent of k but also independent of some other
parameters such as the variable x. For example, ãn, b̃n and c̃n in (1.6) are required to
be independent of the variable x. Based on this parameter-free property, Chen and
Sun [4] have developed a computer algebra approach to proving identities on Bernoulli
polynomials and Euler polynomials.

It should be mentioned that Koepf and Schmersau [10] have presented two al-
gorithms for deriving the structure relations for orthogonal polynomials by utilizing
variations of Zeilberger’s algorithm. Our extended Zeilberger algorithm serves as a
unification of their algorithms and applies to more general cases. For instance, we are
able to derive relations involving orthogonal polynomials with different parameters.
Moreover, our algorithm can be used to derive recurrence relations for the connection
coefficients between two sequences of orthogonal polynomials.

There are two examples that are worth mentioning. One is an identity due to An-
drews [2] which is used in the evaluation of the Mills-Robbins-Rumsey determinant,
and the other is Jackson’s terminating q-analogue of Dixon’s sum 3φ2. While in theory
one can use Zeilberger’s algorithm and q-Zeilberger’s algorithm to derive recurrence
relations, it is practically difficult to accomplish these tasks. Using the extended algo-
rithm and its q-analogue, we easily find two simple recurrence relations with multiple
parameters.

Let us give a brief review of some notation and terminology. A function t(k) is called
a hypergeometric term if t(k + 1)/t(k) is a rational function of k. A hypergeometric
series is defined by

rFs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ z) =
∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
,

4



where (a)k = a(a + 1) · · · (a + k − 1) is the raising factorial. The q-shifted factorial is
defined by

(a; q)k = (1− a)(1− aq) · · · (1− aqk−1)
and we write

(a1, . . . , am; q)k = (a1; q)k · · · (am; q)k.

A basic hypergeometric series is defined by

rφs

[
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ q; z] =
∞∑
k=0

(a1, · · · , ar; q)k
(b1, · · · bs; q)k

zk

(q; q)k

(
(−1)kq(

k
2)
)s−r+1

.

2. The extended Zeilberger algorithm

Let f1(k), f2(k), . . . , fm(k) be similar hypergeometric terms with parameters a, b, . . . , c.
Recall that two hypergeometric terms f(k) and g(k) are said to be similar if the ratio
f(k)/g(k) is a rational function of k and the parameters. We assume that

f1(k + 1)

f1(k)
=
u(k)

v(k)
, (2.1)

and for i = 1, 2, . . . ,m,
fi(k)

f1(k)
=
pi(k)

Q(k)
, (2.2)

where u(k), v(k), pi(k), Q(k) are polynomials in k and the parameters a, b, . . . , c. Then
we have

fi(k + 1)

fi(k)
=
fi(k + 1)/f1(k + 1)

fi(k)/f1(k)

f1(k + 1)

f1(k)
=
pi(k + 1)Q(k)u(k)

pi(k)Q(k + 1)v(k)

and
fi(k)

fj(k)
=
fi(k)/f1(k)

fj(k)/f1(k)
=
pi(k)

pj(k)

are rational functions of k and a, b, . . . , c. Thus (2.1) and (2.2) are equivalent to the
statement that f1(k), f2(k), . . . , fm(k) are similar hypergeometric terms.

Our aim is to find k-free polynomials a1, . . . , am in the parameters a, b, . . . , c and a
hypergeometric term g(k) with parameters a, b, . . . , c such that

a1f1(k) + a2f2(k) + · · ·+ amfm(k) = g(k + 1)− g(k). (2.3)

Since f1(k), . . . , fm(k) are similar hypergeometric terms, the sum

tk = a1f1(k) + a2f2(k) + · · ·+ amfm(k) (2.4)
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is a also hypergeometric term of k with parameters a, b, . . . , c. Like Zeilberger’s algo-
rithm, we can apply Gosper’s algorithm [7] to find k-free polynomials a1, . . . , am and
a hypergeometric term g(k) such that (2.3) holds. It follows from (2.4) that

tk+1

tk
=

f1(k + 1)

f1(k)

∑m
i=1 aifi(k + 1)/f1(k + 1)∑m

i=1 aifi(k)/f1(k)

=
u(k)Q(k)

v(k)Q(k + 1)

∑m
i=1 aipi(k + 1)∑m
i=1 aipi(k)

.

Suppose that
u(k)Q(k)

v(k)Q(k + 1)
=
a(k)

b(k)

c(k + 1)

c(k)

is a Gosper representation, i.e., a(k), b(k), c(k) are polynomials such that gcd(a(k), b(k+
h)) = 1 for all non-negative integers h. Then a Gosper representation of tk+1/tk is given
by

tk+1

tk
=
a(k)

b(k)

c(k + 1)P (k + 1)

c(k)P (k)
,

where

P (k) =
m∑
i=1

aipi(k). (2.5)

Gosper’s algorithm states that g(k) exists if and only if there exists a polynomial x(k)
such that

a(k)x(k + 1)− b(k − 1)x(k) = c(k)P (k). (2.6)

Moreover, the degree bound d for x(k) can be estimated by a(k) and b(k). Suppose
that

x(k) =
d∑
i=0

cik
i.

By equating coefficients of ki, we obtain a system of linear equations in a1, . . . , am and
c0, c1, . . . , cd. Solving this system of linear equations, we find the coefficients a1, . . . , am
and

g(k) =
b(k − 1)x(k)

c(k)Q(k)
f1(k).

In summary, the extended Zeilberger algorithm can be described by the following
steps. Given m similar hypergeometric terms f1(k), . . . , fm(k), we wish to find k-free
coefficients a1, a2, . . . , am and a hypergeometric term g(k) satisfying (2.3).

Step 1. Compute the rational functions

ri(k) =
fi(k)

f1(k)
and r(k) =

f1(k + 1)

f1(k)
.
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Set Q(k) to be the common denominator of r1(k), . . . , rm(k), set

pi(k) = ri(k)Q(k),

and let P (k) be given by (2.5).

Step 2. Compute a Gosper representation of

r(k)
Q(k)

Q(k + 1)
=
a(k)

b(k)

c(k + 1)

c(k)
.

Step 3. Compute the degree bound d for x(k) and solve Equation (2.6) by the method of
undetermined coefficients to obtain the k-free coefficients a1, . . . , am and the polynomial
x(k).

Step 4. The hypergeometric term g(k) is then given by

g(k) =
b(k − 1)x(k)

c(k)Q(k)
f1(k).

We remark that when d < 0 in Step 3, we should set x(k) = 0 because we need the
solution g(k) = 0 in this case.

Suppose that F (n, k) is a double hypergeometric term. Clearly, the extended Zeil-
berger algorithm reduces to Zeilberger’s algorithm by taking fi(k) = F (n+ i− 1, k).

As will be seen, in some applications it is necessary to require that the coefficients
a1, . . . , am be independent of some parameters, say, the parameter a. For this purpose,
we should express the solutions (a1, . . . , am, g(k)) of equation (2.3) in the following
form,

a1 = v1, . . . , ar = vr,

ar+1 = hr+1(v1, . . . , vr), . . . , am = hm(v1, . . . , vr), (2.7)

g(k) = h(k, v1, . . . , vr)f1(k),

where v1, . . . , vr are variables and hr+1, . . . , hm, h are linear combinations of v1, . . . , vr
with coefficients being rational functions of the parameters a, b, . . . , c. Thus, for r+1 ≤
i ≤ m, the functions hi can be written as

hi = pi(v1, . . . , vr, a, b, . . . , c)/qi(a, b, . . . , c),

where pi, qi are relatively prime polynomials in a, b, . . . , c. Now consider the additional
requirement that a1, a2, . . . , am are independent of the parameter a. This means that
all the coefficients of

pi(v1, . . . , vr, a, b, . . . , c)− aiqi(a, b, . . . , c)
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in a must be zero except for the constant term. This condition gives rise to a system
of linear equations in a1, . . . , am and v1, . . . , vr. Upon solving these equations, we
eventually find a1, a2, . . . , am which are independent of k and the parameter a. The
above version of the extended Zeilberger algorithm is still called the extended Zeilberger
algorithm.

For example, the above algorithm can be used to derive linear relations on Cheby-
shev polynomials of the first kind and their derivatives.

Example 2.1 The Chebyshev polynomials of the first kind Tn(x) are given by

Tn(x) = 2F1

(
−n, n

1
2

∣∣∣∣ 1− x
2

)
, (2.8)

see [9, Section 1.8.2]. We aim to find a structure relation of the form

Tn(x) = αnT
′
n+1(x) + βnT

′
n(x) + γnT

′
n−1(x),

where the coefficients αn, βn, γn do not depend on x. Let

Tn,k(x) =
(−n)k(n)k
(1/2)kk!

(
1− x

2

)k
be the k-th summand in (2.8). We first ignore the x-freeness requirement and ap-
ply the extended Zeilberger algorithm to the four similar hypergeometric terms with
parameters n and x

f1(k) = Tn,k(x), f2(k) = T ′n+1,k(x), f3(k) = T ′n,k(x), f4(k) = T ′n−1,k(x).

We find that

a1 = v1, a2 = v2, a3 = −x(v1 + 2v2(n+ 1))

n
, a4 =

v1 + v2(n+ 1)

n− 1
, (2.9)

and

g(k) =
k(2k − 1)((v1 + 2v2(n+ 1))k − (v1 + 2v2)(n+ 1))

(1− x)(n+ 1− k)(n− 1 + k)n
Tn,k(x). (2.10)

Now we impose the x-freeness condition to get an additional equation

v1 + 2v2(n+ 1) = 0,

which yields

a1 = v1, a2 = − v1
2(n+ 1)

, a3 = 0, a4 =
v1

2(n− 1)
,
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and

g(k) =
k(2k − 1)v1

(x− 1)(n+ 1− k)(n− 1 + k)
Tn,k(x).

It follows that

v1Tn,k(x)− v1
2(n+ 1)

T ′n+1,k(x) +
v1

2(n− 1)
T ′n−1,k(x) = g(k + 1)− g(k).

Summing over k, we deduce that

Tn(x) =
1

2(n+ 1)
T ′n+1(x)− 1

2(n− 1)
T ′n−1(x). (2.11)

3. Hypergeometric series

It is easy to see that the method to derive the relation in Example 2.1 is valid in the
general case. So we can use the extended Zeilberger algorithm to express the derivatives
of orthogonal polynomials in terms of the polynomials themselves, and vice versa.

Let Pn(x) be a sequence of continuous orthogonal polynomials. Let Pn,k(x) be
the k-th summand in the hypergeometric representation of Pn(x) and P ′n,k(x) be the
derivative of Pn,k(x). It is easily seen that P ′n,k(x) is similar to Pn,k(x). This enables
us to derive the structure relations for Pn(x) as given below

σ(x)P ′n(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), (3.1)

and
Pn(x) = ānP

′
n+1(x) + b̄nP

′
n(x) + c̄nP

′
n−1(x), (3.2)

where σ(x) is a polynomials in x of degree less than or equal to 2 and an, bn, cn, ān, b̄n, c̄n
are constants not depending on x. To derive (3.1), we set

f1(k) = σ(x)P ′n,k(x), f2(k) = Pn+1,k(x), f3(k) = Pn,k(x), f4(k) = Pn−1,k(x).

To establish (3.2), we set

f1(k) = Pn,k(x), f2(k) = P ′n+1,k(x), f3(k) = P ′n,k(x), f4(k) = P ′n−1,k(x).

Example 3.1 The monic Jacobi polynomials are given by

Pn(x) =
(a+ 1)n2n

(n+ a+ b+ 1)n
2F1

(
−n, n+ a+ b+ 1

a+ 1

∣∣∣∣ 1− x
2

)
, (3.3)
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see [9, Section 1.8]. Let Pn,k(x) denote the k-th summand. Its derivative with respect
to x equals

P ′n,k(x) = − (a+ 1)n2n

(n+ a+ b+ 1)n

(−n)k(n+ a+ b+ 1)k
2(a+ 1)k(k − 1)!

(
1− x

2

)k−1
.

Consider the similar terms

f1(k) = (1− x2)P ′n,k(x), f2(k) = Pn+1,k(x), f3(k) = Pn,k(x), f4(k) = Pn−1,k(x),

and

f1(k) = Pn,k(x), f2(k) = P ′n+1,k(x), f3(k) = P ′n,k(x), f4(k) = P ′n−1,k(x),

respectively. By the extended Zeilberger algorithm with parameters n and x, we find
that

(1− x2)P ′n(x) = −nPn+1(x) +
2n(a− b)(n+ a+ b+ 1)

(2n+ 2 + a+ b)(2n+ a+ b)
Pn(x)

+
4(n+ b)(a+ n)(n+ a+ b+ 1)(n+ a+ b)n

(2n+ a+ b+ 1)(2n+ a+ b− 1)(2n+ a+ b)2
Pn−1(x).

and

Pn(x) =
1

n+ 1
P ′n+1(x) +

2(a− b)
(2n+ 2 + a+ b)(2n+ a+ b)

P ′n(x)

− 4(n+ b)(a+ n)n

(2n+ a+ b+ 1)(2n+ a+ b− 1)(2n+ a+ b)2
P ′n−1(x).

The following example is concerned with expressing orthogonal polynomials with
shifted parameters in terms of the original polynomials and their derivatives.

Example 3.2 Let

P (a, b)
n (x) =

(a+ 1)n2n

(n+ a+ b+ 1)n
2F1

(
−n, n+ a+ b+ 1

a+ 1

∣∣∣∣ 1− x
2

)
be the Jacobi polynomials as in Example 3.1. By applying the extended Zeilberger
algorithm to f1(k) = P

(a+1, b)
n,k (x) (f1(k) = P

(a, b+1)
n,k (x), respectively) and

f2(k) = P
(a, b)
n+1,k

′(x), f3(k) = P
(a, b)
n,k

′(x), f4(k) = P
(a, b)
n−1,k

′(x),

we are led to the known relations

P (a+1, b)
n (x) =

1

n+ 1
P

(a, b)
n+1

′(x) +
2(a+ 1 + n)

(2n+ 2 + a+ b)(2n+ a+ b+ 1)
P (a, b)
n

′(x)
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and

P (a, b+1)
n (x) =

1

n+ 1
P

(a, b)
n+1

′(x)− 2(b+ 1 + n)

(2n+ 2 + a+ b)(2n+ a+ b+ 1)
P (a, b)
n

′(x),

which are due to Koepf and Schmersau [10]. Moreover, we can deduce the following
relations which seem to be new,

P (a+1, b−1)
n (x) =

1

n+ 1
P

(a, b)
n+1

′(x) +
4(a+ 1 + n)

(2n+ 2 + a+ b)(2n+ a+ b)
P (a, b)
n

′(x)

+
4(a+ 1 + n)(a+ n)n

(2n+ a+ b− 1)(2n+ a+ b+ 1)(2n+ a+ b)2
P

(a, b)
n−1

′(x),

and

P (a−1, b+1)
n (x) =

1

n+ 1
P

(a, b)
n+1

′(x)− 4(b+ 1 + n)

(2n+ 2 + a+ b)(2n+ a+ b)
P (a, b)
n

′(x)

+
4(b+ 1 + n)(b+ n)n

(2n+ a+ b− 1)(2n+ a+ b+ 1)(2n+ a+ b)2
P

(a, b)
n−1

′(x).

The extended Zeilberger algorithm can also be employed to compute the connec-
tion coefficients of two sequences of orthogonal polynomials. Ronveaux [13] developed
an approach to the computation of recurrence relations for the connection coefficients
by utilizing structure relations of orthogonal polynomials. The extended Zeilberger
algorithm can be directly used to serve this purpose. As an example, let us consid-
er the connection coefficients of two sequences of Meixner polynomials with different
parameters.

Example 3.3 Let M
(γ, µ)
n (x) be the monic Meixner polynomials defined by

M (γ, µ)
n (x) = (γ)n

(
µ

µ− 1

)n
2F1

(
−n,−x

γ

∣∣∣∣ 1− 1

µ

)
,

see [9, p. 45]. We wish to find a recurrence relation for the connection coefficients Cm(n)
defined by

M (γ, µ)
n (x) =

n∑
m=0

Cm(n)M (δ, ν)
m (x). (3.4)

To this end, we first find a difference operator which eliminates M
(γ, µ)
n (x). This task

can be accomplished by applying the extended Zeilberger algorithm to the similar terms

f1(k) = M
(γ, µ)
n,k (x), f2(k) = M

(γ, µ)
n,k (x+ 1), and f3(k) = M

(γ, µ)
n,k (x− 1),

11



where

M
(γ, µ)
n,k (x) = (γ)n

(
µ

µ− 1

)n
(−n)k(−x)k

(γ)kk!

(
1− 1

µ

)k
.

From the telescoping relation generated by the extended Zeilberger algorithm, we de-
duce that

(xµ+ µγ + x− n+ nµ)M (γ, µ)
n (x)− µ(γ + x)M (γ, µ)

n (x+ 1)− xM (γ, µ)
n (x− 1) = 0.

Let

Sm(x) = (xµ+ µγ + x− n+ nµ)M (δ, ν)
m (x)− µ(γ + x)M (δ, ν)

m (x+ 1)− xM (δ, ν)
m (x− 1).

It follows from (3.4) that
n∑

m=0

Cm(n)Sm(x) = 0. (3.5)

Suppose that we can express Sm(x) in terms of a suitable basis {Bm(x)}, namely,

Sm(x) = amBm+1(x) + bmBm(x) + cmBm−1(x), (3.6)

where am, bm and cm are independent of x. Substituting (3.6) into (3.5), by the linear
independence of Bm(x), we see that the coefficients of Bm(x) are all zeros. This implies
that

am−1Cm−1(n) + bmCm(n) + cm+1Cm+1(n) = 0. (3.7)

It remains to find the polynomials Bm(x) in order to determine the coefficients am, bm
and cm. In view of relation (3.6), we assume that Bm(x) is a hypergeometric term that
is similar to Sm(x) so that we can solve the equation

Sm(x)− amBm+1(x)− bmBm(x)− cmBm−1(x) = 0

by using the extended Zeilberger algorithm. In fact, we may choose

Bm(x) = ∆(M (δ, ν)
m (x)) = M (δ, ν)

m (x+ 1)−M (δ, ν)
m (x).

It is easily checked that Bm(x) satisfies (3.6) and the corresponding coefficients are
given by

am =
(µ− 1)(n−m)

m+ 1
, cm =

(ν − µ)(δ +m− 1)mν

(1− ν)2
,

bm =
−νµm−mµ+ 2mν + νµγ − νn+ νδ − ν + µ− νµδ − µγ + νnµ

1− ν
.

So we obtain a recurrence relation (3.7) for the connection coefficients Cm(n).
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In general, we can use the following procedure to derive a recurrence relation
for the connection coefficients of two sequences of orthogonal polynomials Pn(x) and
Qn(x). We first derive a linear differential or difference operator Ln which annihi-
lates Pn(x), i.e., LnPn(x) = 0. Then we try to find a suitable basis Bm(x) for the
space of polynomials such that LnQm(x) can be expressed as a linear combination of
Bm−r(x), Bm−r+1(x), . . . , Bm+r(x) for a fixed integer r, say,

LnQm(x) =
r∑

i=−r

aiBm−r(x).

We may consider Qm(x), Q′m(x), and ∆Qm(x) as a choice of Bm(x). Let Cm(n) be the
connection coefficients between Pn(x) and Qn(x) defined by

Pn(x) =
n∑

m=0

Cm(n)Qm(x).

Then we are led to a recurrence relation for Cm(n) as given by

r∑
i=−r

am−iCm−i(n) = 0.

Let F (n, k) be a hypergeometric term with parameters a, b, . . . , c. In Zeilberger’s
algorithm, we only shift the variable n. While in the extended Zeilberger algorithm,
the shifts of other parameters are allowed so that one may expect simpler recurrence
relations. For example, we consider the following identity due to Andrews [1,2], which
was used in the evaluation of the Mills-Robbins-Rumsey determinant.

Example 3.4 For n ≥ 0, we have

5F4

(
−2n− 1, x+ 2n+ 2, x− z + 1

2
, x+ n+ 1, z + n+ 1

x+1
2
, x+2

2
, 2z + 2n+ 2, 2x− 2z + 1

∣∣∣∣∣ 1
)

= 0. (3.8)

Let f(n, x, z) be the sum on the left hand side. The extended Zeilberger algorithm
gives the following recurrence relation

f(n, x, z) = c1f(n− 1, x, z) + c2f(n− 1, x+ 1, z + 1),

where

c1 =
n(2z + 2n+ 1)(2n+ 2z − x)(n+ 3z − 2x)

(x+ 1 + 2n)(2n+ 1 + z)(2x+ 1− 2z + 2n)(−x+ 6z + 8n)
,

c2 =
(2z − x)nP (x, z, n)

(x+ 1)(x+ 1 + 2n)(2n+ 1 + z)(2x+ 1− 2z + 2n)(−x+ 6z + 8n)
,
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and

P (x, z, n) = 2x3 − 8nx2 − 12zx2 − x2 + zx− 4n2x− 3nx+ 14nzx− x
+ 18z2x+ 8n+ 49nz + 98n2z + 6z + 12z2 + 43n2 + 60n3 + 42nz2.

Hence (3.8) is valid since it holds for n = 0.

4. q-Hypergeometric series

The extended Zeilberger algorithm can be readily adapted to basic hypergeometric
terms tk with parameters a, b, . . . , c, that is, the ratio tk+1/tk is a rational function of
qk and the parameters. Let f1(k), f2(k), . . . , fm(k) be similar q-hypergeometric terms,
namely, fi(k)/fj(k) and fi(k+ 1)/fi(k) are rational functions of qk and the parameters
for 1 ≤ i, j ≤ m. The objective of the q-analogue of the extended Zeilberger algorithm,
called the extended q-Zeilberger algorithm, is to find a q-hypergeometric term g(k) and
k-free polynomial coefficients a1, a2, . . . , am such that

a1f1(k) + a2f2(k) + · · ·+ amfm(k) = g(k + 1)− g(k). (4.1)

The detailed description of the extended q-Zeilberger algorithm is similar to that of
the ordinary case, hence it is omitted. We shall give two examples to demonstrate
how to use the extended q-Zeilberger algorithm to compute the structure relations for
q-orthogonal polynomials.

Example 4.1 The discrete q-Hermite polynomials are given by

Hn(x) = q(
n
2) 2φ1

[
q−n, x−1

0

∣∣∣∣∣ q;−qx
]
.

Let

Hn,k(x) = q(
n
2) (q−n; q)k(x

−1; q)k
(q; q)k

(−qx)k

be the k-th summand, and let Dq denote the q-difference operator, that is,

Dqf(x) =
f(xq)− f(x)

(q − 1)x
.

By applying the extended q-Zeilberger algorithm to the similar terms

xDqHn,k(x), DqHn+1,k(x), DqHn,k(x), DqHn−1,k(x),
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we obtain

xDqHn(x) =
1− qn

1− qn+1
DqHn+1(x) + qn−2(1− qn)DqHn−1(x).

Using the similar terms

DqHn,k(x), Hn+1,k(x), Hn,k(x), Hn−1,k(x),

the extended q-Zeilberger algorithm gives the relation

DqHn(x) =
1− qn

1− q
Hn−1(x).

Example 4.2 The q-Laguerre polynomials are defined by

L(α)
n (x) =

1

(q; q)n
2φ1

[
q−n,−x

0

∣∣∣∣∣ q; qn+α+1

]
.

It is known that

DqL
(α)
n (x) = −q

(α+1)

1− q
L
(α+1)
n−1 (xq),

see [9, Section 3.21]. This relation can be easily verified by using the extended q-
Zeilberger algorithm. Notice that the right hand side of the above identity involves
shifts of three parameters n, α and x. By choosing other shifts of parameters, we obtain
the following identity

DqL
(α)
n (x) =

1

(1 + x)(q − 1)
(L(α+1)

n (x)− L(α)
n (x)). (4.2)

The right hand side involves only the shift of the parameter α, where we do not require
the coefficients to be x-free.

As the last example of this paper, we consider a q-series identity due to Jackson.
In view of the terminating condition of the q-Zeilberger algorithm, there exists a re-
currence relation for the summation on the left hand side. However, the q-Zeilberger
algorithm, which was implemented by Koepf [3] and Riese [12], did not seem to be
practically efficient to deliver a recurrence relation. Our algorithm gives a recurrence
relation with multiple parameters.

Example 4.3 Jackson’s terminating q-analogue of Dixon’s sum reads

3φ2

[
q−2n, b, c

q1−2n/b, q1−2n/c

∣∣∣∣∣ q; q2−nbc
]

=
(b, c; q)n(q, bc; q)2n
(q, bc; q)n(b, c; q)2n

, (4.3)
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see [6, p. 237]. Let f(n, b, c) be the sum on the left hand side and

Fn,k(b, c) =
(q−2n; q)k(b; q)k(c; q)k

(q; q)k(q1−2n/b; q)k(q1−2n/c; q)k

(
q2−n

bc

)k
be the k-th summand. By applying the extended q-Zeilberger algorithm to the terms

Fn,k(b, c), Fn−1,k(bq, c), Fn−1,k(b, cq), Fn−1,k(bq, cq),

we deduce that

f(n, b, c) = α1f(n− 1, bq, c) + α2f(n− 1, b, cq) + α3f(n− 1, bq, cq), (4.4)

where

α1 = −(q + cqn)(c2q2n − q)(−q + cqn)(bq2nc− q)
qn(cq2n − q)(cq2n − q2)(−c+ b)c

,

α2 =
(q2nb2 − q)(q + qnb)(−q + qnb)(bq2nc− q)

(−c+ b)qn(bq2n − q)(bq2n − q2)b
,

and

α3 = −(cqnb− 1)(−q + cqnb)

bcqn
.

Then (4.3) can be justified by verifying that the right hand side satisfies the same
recurrence relation since the identity holds for n = 0.
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[3] H. Böing and W. Koepf, Algorithms for q-hypergeometric summation in computer
algebra, J. Symbolic Comput. 28 (1999) 777–799.

[4] W.Y.C. Chen and L.H. Sun, Extended Zeilberger’s algorithm for identities on
Bernoulli and Euler polynomials, J. Number Theory 129 (2009) 2111–2132.

16



[5] F. Chyzak, An extension of Zeilberger’s fast algorithm to general holonomic func-
tions, Discrete Math. 317 (2000) 115–134.

[6] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University
Press, Cambridge, 1990.

[7] R.W. Gosper, Jr., Decision procedure for indefinite hypergeometric summation,
Proc. Natl. Acad. Sci. USA 75(1) (1978) 40–42.

[8] M. Karr, Summation in finite terms, J. ACM 28 (1981) 305–350.

[9] R. Koekoek and R.F. Swarttouwu, The Askey-scheme of hypergeometric orthog-
onal polynomials and its q-analogue, preprint, 1998.

[10] W. Koepf and D. Schmersau, Representations of orthogonal polynomials, J. Com-
put. Appl. Math. 90 (1998) 57–94.

[11] P. Paule, Contiguous relations and creative telescoping, preprint, 2005.

[12] P. Paule and A. Riese, A Mathematica q-analogue of Zeilberger’s algorithm based
on an algebraically motivated approach to q-hypergeometric telescoping, in Special
Functions, q-Series and Related Topics, Fields Inst. Commun., 14, 1997, pp. 179–
210.

[13] A. Ronveaux, Orthogonal polynomials: connection and linearization coefficients,
In: Proceedings of the International Workshop on Orthogonal Polynomials in
Mathematical Physics, M. Alfaro et al. Eds., 1996, pp. 131–142.

[14] C. Schneider, Solving parameterized linear difference equations in terms of indef-
inite nested sums and products, J. Difference Equ. Appl. 11 (2005) 799–821.

[15] H.S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (or-
dinary and “q”) multisum/integral identities, Invent. Math. 108 (1992) 575–633.

[16] D. Zeilberger, The method of creative telescoping, J. Symbolic Comput. 11 (1991)
195–204.

17


