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Abstract. Let Bk,i(n) be the number of partitions of n with certain difference condi-
tion and let Ak,i(n) be the number of partitions of n with certain congruence condi-
tion. The Rogers-Ramanujan-Gordon theorem states that Bk,i(n) = Ak,i(n). Lovejoy
obtained an overpartition analogue of the Rogers-Ramanujan-Gordon theorem for the
cases i = 1 and i = k. We find an overpartition analogue of the Rogers-Ramanujan-
Gordon theorem in the general case. Let Dk,i(n) be the number of overpartitions of
n satisfying certain difference condition and Ck,i(n) be the number of overpartitions
of n whose non-overlined parts satisfy certain congruences condition. We show that
Ck,i(n) = Dk,i(n). By using a function introduced by Andrews, we obtain a recurrence
relation which implies that the generating function of Dk,i(n) equals the generating
function of Ck,i(n). We also find a generating function formula of Dk,i(n) by using
Gordon marking representations of overpartitions, which can be considered as an over-
partition analogue of an identity of Andrews for ordinary partitions.
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1 Introduction

In this paper, we obtain the Rogers-Ramanujan-Gordon theorem for overpartitions.
Furthermore, by introducing the Gordon marking of an overpartition, we find a gener-
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ating function formula which can be considered as an overpartition analogue of an iden-
tity of Andrews. Notice that the identity of Andrews implies the Rogers-Ramanujan-
Gordon theorem for ordinary partitions, see Kurşungöz [12].

An overpartition is a partition for which the first occurrence of a part may be
overlined. For example, (7, 7, 6, 5, 2, 1) is an overpartition of 28. There are many
q-series identities that have combinatorial interpretations in terms of overpartitions,
see, for example, Corteel and Lovejoy [8]. Furthermore, overpartitions possess many
analogous properties of ordinary partitions, see Lovejoy [13, 15]. For example, various
overpartition analogues of the Rogers-Ramanujan-Gordon theorem have been obtained
by Corteel and Lovejoy [9], Corteel, Lovejoy and Mallet [10] and Lovejoy [13, 14, 16, 17].

Let us recall that Gordon [11] found the following combinatorial generalization of
the Rogers-Ramanujan identities [18], which has been called the Rogers-Ramanujan-
Gordon theorem, see Andrews [1].

Theorem 1.1 (Rogers-Ramanujan-Gordon) Let Bk,i(n) denote the number of parti-
tions of n for the form b1 + b2 + · · ·+ bs, where bj ≥ bj+1, bj − bj+k−1 ≥ 2 and at most
i−1 of the bj are equal to 1 and 1 ≤ i ≤ k. Let Ak,i(n) denote the number of partitions
of n into parts 6≡ 0,±i(mod 2k + 1). Then for all n ≥ 0,

Ak,i(n) = Bk,i(n).

Lovejoy [13] obtained overpartition analogues of the above Rogers-Ramanujan-
Gordon theorem for i = k and i = 1.

Theorem 1.2 Let Bk(n) denote the number of overpartitions of n of the form y1 +
y2 + · · ·+ ys, such that yj − yj+k−1 ≥ 1 if yj is overlined and yj − yj+k−1 ≥ 2 otherwise.
Let Ak(n) denote the number of overpartitions of n into parts not divisible by k. Then
Ak(n) = Bk(n).

Theorem 1.3 Let Dk(n) denote the number of overpartitions of n of the form z1+z2+
· · · + zs, such that 1 cannot occur as a non-overlined part, and where zj − zj+k−1 ≥ 1
if zj is overlined and zj − zj+k−1 ≥ 2 otherwise. Let Ck(n) denote the number of
overpartitions of n whose non-overlined parts are not congruent to 0,±1 modulo 2k.
Then Ck(n) = Dk(n).

The first result of this paper is to give an overpartition analogue of the Rogers-
Ramanujan-Gordon theorem in the general case.
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Theorem 1.4 For k ≥ i ≥ 1, let Dk,i(n) denote the number of overpartitions of
n of the form d1 + d2 + · · · + ds, such that 1 can occur as a non-overlined part at
most i − 1 times, and where dj − dj+k−1 ≥ 1 if dj is overlined and dj − dj+k−1 ≥ 2
otherwise. For k > i ≥ 1, let Ck,i(n) denote the number of overpartitions of n whose
non-overlined parts are not congruent to 0,±i modulo 2k and let Ck,k(n) denote the
number of overpartitions of n with parts not divisible by k. Then Ck,i(n) = Dk,i(n).

It is clear that Theorem 1.4 contains Theorems 1.2 and 1.3 as special cases for
i = k and i = 1. To be more specific, Bk(n) and Ak(n) in Theorem 1.2 are Dk,k(n)
and Ck,k(n) in Theorem 1.4, Dk(n) and Ck(n) in Theorem 1.3 are Dk,1(n) and Ck,1(n)
in Theorem 1.4.

We will give an algebraic proof of Theorem 1.4 in the next section by showing
that the generating function of Dk,i(n) equals the generating function of Ck,i(n). It is
evident that the generating function of Ck,i(n) equals∑

n≥0

Ck,i(n)qn =
(−q)∞(qi, q2k−i, q2k; q2k)∞

(q)∞
. (1.1)

In fact, we shall prove a stronger result on a refinement of the generating function of
Dk,i(n).

The generating function versions of Theorem 1.1 for k = 2 are the Rogers-Ramanujan
identities ∑

n≥0

qn
2+n

(q)n
=

1

(q2, q3; q5)∞
, (1.2)

and ∑
n≥0

qn
2

(q)n
=

1

(q1, q4; q5)∞
. (1.3)

Note that the left hand sides of (1.2) and (1.3) can be interpreted as the generat-
ing functions for B2,1(n) and B2,2(n) respectively. As a generalization of the Rogers-
Ramanujan identities, Andrews [2] obtained the following theorem.

Theorem 1.5 For k ≥ i ≥ 1,∑
N1≥N2≥···≥Nk−1≥0

qN
2
1+N

2
2+···+N2

k−1+Ni+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

=
(qi, q2k+1−i, q2k+1; q2k+1)∞

(q)∞
. (1.4)

The sum on the left hand side of (1.4) can be viewed as the generating function
for Bk,i(n). Andrews proved that the both sides of (1.4) satisfy the same recurrence
relation.
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While it is easy to give combinatorial interpretations of the left hand sides of (1.2)
and (1.3), it does not seem to be trivial to show that the left hand side of (1.4) is the
generating function for Bk,i(n). Kurşungöz [12] provided a combinatorial explanation
of the left hand side of (1.4) by introducing the notion of the Gordon marking of a
partition. More precisely, he obtained the following formula for the generating function
of Bk,i(m,n), where Bk,i(m,n) denotes the number of partitions enumerated by Bk,i(n)
that have m parts.

Theorem 1.6 For k ≥ i ≥ 1,∑
m,n≥0

Bk,i(m,n)xmqn =
∑

N1≥···≥Nk−1≥0

qN
2
1+N

2
2+···+N2

k−1+Ni+···+Nk−1xN1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

. (1.5)

The second result of this paper is the following formula for the generating function
of the number Dk,i(m,n) of overpartitions enumerated by Dk,i(n) that have m parts.
We shall give a combinatorial proof of this identity by using the Gordon marking
representations of overpartitions.

Theorem 1.7 For k ≥ i ≥ 1, we have

∞∑
n=0

Dk,i(m,n)xmqn

=
∑

N1≥···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+Ni+1+···+Nk−1(−q)N1−1(1 + qNi)xN1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

,

(1.6)

where assume that Nk = 0.

By setting x = 1 in (1.6), we obtain the generating function for Dk,i(n) which is
the left hand side of (1.7). By Theorem 1.4, we are led to the following theorem which
can be seen as an overpartition analogue of Andrews’ identity (1.4).

Theorem 1.8 For k ≥ i ≥ 1,

∑
N1≥···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+Ni+1+···+Nk−1(−q)N1−1(1 + qNi)

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

=
(−q)∞(qi, q2k−i, q2k; q2k)∞

(q)∞
. (1.7)
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It is clear that the generating function for Ck,i(n) equals the right hand side of (1.7).
Hence identity (1.7) can be viewed as the generating function version of Theorem 1.4.
It should be noticed that the approach of Andrews to (1.4) for ordinary partitions does
not seem to apply to the above identity (1.7) for overpartitions.

The special case of identity (1.7) for i = 1 was derived by Chen, Sang and Shi [7]
by using Andrews’ multiple series transformation [3]. In this case, the left hand side
of (1.7) has a combinatorial interpretation in terms of the generating function of the
number of anti-lecture hall compositions of n with the first entry not exceeding 2k− 2.

The special case of (1.7) for i = k was obtained by Corteel and Lovejoy [8] also
by using Andrews’ multiple series transformation. In this case, the left hand side
of (1.7) has a combinatorial interpretation in terms of the number of overpartitions
whose Frobenius representation has a top row with at most k− 2 Durfee squares in its
associated partition.

However, for 2 ≤ i ≤ k − 1, identity (1.7) does not seem to be a consequence of
Andrews’ multiple series transformation. It should be mentioned that for i = 1, k,
the combinatorial interpretation of the left hand side of (1.7) as a Rogers-Ramanujan-
Gordon theorem for overpartitions as in Theorem 1.4 is different from the interpreta-
tion in terms of anti-lecture hall compositions given in Chen, Sang and Shi [7] or the
Frobenius representations given in Corteel and Lovejoy [8].

This paper is organized as follows. In Section 2, we give an algebraic proof of
Theorem 1.4 by showing that Ck,i(n) and Dk,i(n) satisfy the same recurrence relation.
In Section 3, we introduce the notion of the Gordon marking of an overpartition. To
prove Theorem 1.7, we divide the set of overpartitions enumerated by Dk,i(m,n) into
two subsets. In Section 4, we define the first reduction operation and the first dilation
operation. Based on the these two operations we give the first bijection for the proof of
Theorem 1.7. In Section 5, we introduce the second reduction operation and the second
dilation operation on the Gordon marking representations of overpartitions. Then we
give the second bijection for the proof of Theorem 1.7. In Section 6, we give the third
bijection for the proof of Theorem 1.7. In Section 7, we complete the proof of the
Theorem 1.7.

2 An algebraic proof of Theorem 1.4

In this section, we give an algebraic proof of Theorem 1.4, that is, Ck,i(n) = Dk,i(n) for
any k ≥ i ≥ 1. We shall use a series Hk,i(a;x; q) introduced by Andrews [1, 2], which
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is defined by

Hk,i(a;x; q) =
∞∑
n=0

xknqkn
2+n−inan(1− xiq2ni)(axqn+1)∞(1/a)n

(q)n(xqn)∞
. (2.1)

In his algebraic proof of the Rogers-Ramanujan-Gordon theorem, Andrews used the
function Jk,i(a;x; q) constructed based on Hk,i(a;x; q),

Jk,i(a;x; q) = Hk,i(a;xq; q)− axqHk,i−1(a;xq; q). (2.2)

Lovejoy [15] proved Theorem 1.2 and Theorem 1.3 also by using Jk,i(a;x; q) for
special values of a and x. More precisely, he showed the generating function of
Ak(n) and Ck(n), namely, Ck,k(n) and Ck,1(n), are given by the functions Jk,k(−1; 1; q)
and Jk,1(−1/q; 1; q). As pointed out by Lovejoy, the approach of using the function
Jk,i(a;x; q) does not seem to apply to the general case, since for i 6= 1, k, the func-
tions Jk,i(−1; 1; q) and Jk,i(−1/q; 1; q) do not appear to be expressible as single infinite
products.

We find that for overpartitions the function Hk,i(a;x; q) itself is the right choice to
prove that Ck,i(n) = Dk,i(n) for all k ≥ i ≥ 1. In fact, we shall show that the generating
function of Ck,i(n) can be expressed in terms of Hk,i(a;x; q) for special values of a and
x. To explain the fact that the generating functions of Ck,k(n) and Ck,1(n) can also be
expressed by Jk,k(−1; 1; q) and Jk,1(−1/q; 1; q), we have the observations

Jk,k(−1; 1; q) = Hk,k(−1/q; q; q), (2.3)

and
Jk,1(a;x; q) = Hk,1(a;xq; q). (2.4)

Andrews [1, 4] showed that the generating function of Bk,i(m,n) can be expressed
by Jk,i(a;x; q): ∑

m,n≥0

Bk,i(m,n)xmqn = Jk,i(0;x; q). (2.5)

We shall give the following theorem which involves a refinement of the number Dk,i(n).
Recall that Dk,i(m,n) is the number of overpartitions enumerated by Dk,i(n) with m
parts. As will be seen, once the generating function of Dk,i(m,n) is obtained, it is easy
to derive the generating function of Dk,i(n) by using Jacobi’s triple product identity.

Theorem 2.1 For k ≥ i ≥ 1, we have∑
m,n≥0

Dk,i(m,n)xmqn = Hk,i(−1/q;xq; q). (2.6)
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Proof. We define
Wk,i(x; q) = Hk,i(−1/q;xq; q), (2.7)

and

Wk,i(x; q) =
∞∑

m,n=−∞

Wk,i(m,n)xmqn. (2.8)

By the recurrence relation of Hk,i(a;x; q), one can derive a recurrence relation of
Wk,i(m,n). It is easy to give a combinatorial interpretation of Dk,i(m,n)−Dk,i−1(m,n).
This yields a recurrence relation of Dk,i(m,n) which coincides with a recurrence relation
of Wk,i(m,n).

Recall that Hk,i(a;x; q) satisfies the following recurrence relation, see Andrews [4,
Lemma 7.1],

Hk,i(a;x; q)−Hk,i−1(a;x; q) = xi−1Hk,k−i+1(a;xq; q)− axiqHk,k−i(a;xq; q). (2.9)

Substituting a = −1/q and x = xq into (2.9), we obtain

Wk,i(x; q)−Wk,i−1(x; q) = (xq)iWk,k−i(xq; q) + (xq)i−1Wk,k−i+1(xq; q). (2.10)

Our goal is to prove that Dk,i(m,n) equals Wk,i(m,n). In doing so, we shall show
that Dk,i(m,n) and Wk,i(m,n) satisfy the same recurrence relation with the same
initial values, where Wk,i(m,n) is the coefficient of xmqn in the expansion of Wk,i(x; q),
as given by (2.8).

Clearly, we have the initial values Wk,i(0, 0) = 1 for k ≥ i ≥ 1 and Wk,0(m,n) = 0
for k ≥ 1,m, n ≥ 0. Moreover, we assume that Wk,i(m,n) = 0 if m or n is zero but
not both, and Wk,i(m,n) = 0 if m or n is negative. From (2.10) it is easily seen that

Wk,i(m,n)−Wk,i−1(m,n) = Wk,k−i(m− i, n−m) +Wk,k−i+1(m− i+ 1, n−m), (2.11)

Thus Wk,i(m,n) can be defined by the recurrence relation (2.11) along with the initial
values.

Next we wish to find a recurrence relation of Dk,i(m,n). It can be verified that
Dk,i(m,n) has the initial values Dk,i(0, 0) = 1 for k ≥ i ≥ 1 and Dk,0(m,n) = 0 for
k ≥ 1,m, n ≥ 0. Clearly, if exactly one of m and n is zero, then Dk,i(m,n) = 0. If
one of m and n is negative, then Dk,i(m,n) = 0. Hence Dk,i(m,n) has the same initial
values as Wk,i(m,n). It remains to prove that

Dk,i(m,n)−Dk,i−1(m,n) = Dk,k−i(m− i, n−m) +Dk,k−i+1(m− i+ 1, n−m). (2.12)

From the definition of Dk,i(m,n), one sees that Dk,i(m,n) − Dk,i−1(m,n) equals
the number of overpartitions enumerated by Dk,i(m,n) such that the non-overlined
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part 1 appears exactly i − 1 times. We shall divide the overpartitions enumerated by
Dk,i(m,n)−Dk,i−1(m,n) into two classes so that we can give a combinatorial interpre-
tation of the right hand side of (2.12).

Let S1 be the set of overpartitions enumerated by Dk,i(m,n) − Dk,i−1(m,n) that
contain a part 1, and let S2 be the set of overpartitions enumerated by Dk,i(m,n) −
Dk,i−1(m,n) that do not contain the part 1. We shall show that the number of over-
partitions in S1 equals Dk,k−i(m − i, n − m) and the number of overpartitions in S2

equals Dk,k−i+1(m− i+ 1, n−m).

Let λ be an overpartition in S1. So λ has i parts equal to 1 or 1. Removing these
i parts, we obtain an overpartition that contains neither 1 nor 1. Subtracting 1 from
each part of the resulting overpartition, we get an overpartition λ′. More precisely, by
subtracting 1 from r we mean to change r to r − 1. From the definition of Dk,i(m,n),
we find that the parts 1, 1 and 2 occur at most k − 1 times. Notice that the number
of occurrences of 1 and 1 in λ equals i. Thus, 2 appear at most k − i − 1 times in
λ. So after the subtraction, the part 1 appears at most k − i − 1 times in λ′. By the
definition of Dk,i(m,n), we deduce that the resulting overpartition λ′ is enumerated by
Dk,k−i(m− i, n−m). Moreover, it is readily seen that every overpartition enumerated
by Dk,k−i(m− i, n−m) can be constructed by the above procedure.

For an overpartition λ in S2, there are exactly i − 1 parts equal to 1 in λ, so the
part 2 occurs at most k − i times in λ. Removing the i− 1 parts 1 and subtracting 1
from each of the remaining parts, we get an overpartition λ′. It can be seen that the
part 1 appears k− i times in λ′. By the definition of Dk,k−i+1(m− i+1, n−m), we find
that λ′ is enumerated by Dk,k−i+1(m − i + 1, n −m). Conversely, every overpartition
enumerated by Dk,k−i+1(m− i+ 1, n−m) can be constructed from an overpartition λ
in S2.

So we have proved relation (2.12), which implies that Dk,i(m,n) = Wk,i(m,n) for
all k ≥ i ≥ 1, and m,n ≥ 0, since Dk,i(m,n) and Wk,i(m,n) have the same initial
values. Thus the generating function of Dk,i(m,n) equals Wk,i(x; q). This completes
the proof.

We are ready to prove Theorem 1.4. Let us compute the generating function of
Dk,i(n). Setting x = 1 in Theorem 2.1, we obtain that

Hk,i(−1/q; q; q) =
∞∑
n=0

(−1)nqkn
2+kn−in(1− q(2n+1)i)(−qn+1)∞(−q)n

(q)n(qn+1)∞

=
(−q)∞
(q)∞

∞∑
n=0

(−1)nqkn
2+kn−in(1− q(2n+1)i)
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=
(−q)∞
(q)∞

∞∑
n=−∞

(−1)nqkn
2+kn−in.

In view of Jacobi’s triple product identity, we find that∑
n≥0

Dk,i(n)qn =
(qi, q2k−i, q2k; q2k)∞(−q)∞

(q)∞
, (2.13)

which implies that Ck,i(n) = Dk,i(n). This completes the proof of Theorem 1.4.

3 The Gordon marking of an overpartition

In this section, we introduce the notion of the Gordon marking of an overpartition and
give an outline of the proof of the generating function formula for Dk,i(m,n) as stated
in Theorem 1.7. To compute the generating function of Dk,i(m,n), we divide the set
enumerated by Dk,i(m,n) into two classes Uk,i(m,n) and Ik,i(m,n). Let Fk,i(m,n) be
the number of overpartitions in Uk,i(m,n). By two simple bijections we can express
the generating function of Dk,i(m,n) by the generating function of Fk,i(m,n). We shall
give the generating function of Fk,i(m,n) in Theorem 3.3. As will be seen, we need
three bijections to prove Theorem 3.3, which will be presented in Sections 4–6.

Notice that identity (1.4) of Andrews [2] is a generalization of the Rogers-Ramanujan
identity. It is natural to ask whether there is an overpartition analogue of (1.4). The
answer is given in Theorem 1.8. To this end, we shall give a combinatorial treatment
of the generating function of Dk,i(m,n) by introducing the notion of Gordon marking
representations of overpartitions. Observe that the generating function of Dk,i(m,n)
stated in Theorem 1.7 is in the form of the left hand side of (1.4). Thus Theorem 1.8
can be deduced from Theorem 1.7 and Theorem 1.4.

Kurşungöz [12] introduced the notion of the Gordon marking of an ordinary par-
tition and gave a combinatorial interpretation of identity (1.5). A Gordon marking of
an ordinary partition λ is an assignment of positive integers (marks) to parts of λ such
that any two equal parts, as well as any two nearly equal parts j and j+1 are assigned
different marks, and the marks are as small as possible assuming that the marks are
assigned to the parts in increasing order. For example, the Gordon marking of

λ = (1, 1, 2, 3, 4, 4, 5, 5, 6, 6, 8, 9)
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can be expressed as follows

λ =


5

2 4 6

1 4 6 9

1 3 5 8


4

3

2

1

, (3.1)

where the marks are listed outside the brackets, that is, the parts at the bottom are
marked with 1, and the parts immediately next to the bottom line are marked by
2, and so on. The Gordon marking of a partition can be considered as a way to
represent a partition. For this reason, the diagram (3.1) is called the Gordon marking
representation of a partition.

We shall introduce the Gordon marking of an overpartition. In fact, the three
bijections in the proof of Theorem 1.7 are constructed based on Gordon markings of
overpartitions. The Gordon marking of an overpartition can be defined as follows. It is
clear that this notion is an extension of the Gordon marking of an ordinary partition.

Definition 3.1 The Gordon marking of an overpartition λ is an assignment of positive
integers (marks) to parts of λ. We assign the marks to parts in the following order

1 < 1 < 2 < 2 < · · · (3.2)

such that the marks are as small as possible subject to the following conditions. If j + 1
is not a part of λ, then all the parts j, j, and j+ 1 are assigned different integers. If λ
contains an overlined part j + 1, then the smallest mark assigned to a part j or j can
be used as the mark of j + 1 or j + 1.

For example, given an overpartition

λ = (16, 13, 12, 12, 11, 10, 8, 8, 8, 7, 6, 6, 5, 5, 4, 2, 2, 1).

The Gordon marking of λ is

(11, 22, 23, 41, 52, 53, 61, 62, 73, 81, 82, 83, 101, 112, 121, 123, 132, 161),

where the subscripts are the marks. The Gordon marking of λ can also be illustrated
as

λ =

 2 5 7 8 12

2 5 6 8 11 13

1 4 6 8 10 12 16

 3

2

1

, (3.3)
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where the parts in the third row are marked by 1, the parts in the second row are
marked by 2, and the parts in the first row are marked by 3.

It is not hard to see that the Gordon marking of any overpartition is unique. To
compute the generating function of Dk,i(m,n), let Tk,i(m,n) denote the set of overpar-
titions enumerated by Dk,i(m,n). We further classify Tk,i(m,n) by considering whether
the smallest part of an overpartition is overlined element. Keep in mind that the parts
of an overpartition are ordered by (3.2). Let Uk,i(m,n) denote the set of overpartitions
in Tk,i(m,n) for which the smallest part is overlined, and let Ik,i(m,n) denote the set
of overpartitions in Tk,i(m,n) with non-overlined smallest part. Thus we have

Tk,i(m,n) = Uk,i(m,n) ∪ Ik,i(m,n). (3.4)

Let Fk,i(m,n) = |Uk,i(m,n)| and Gk,i(m,n) = |Ik,i(m,n)|. Then we have

Dk,i(m,n) = Fk,i(m,n) +Gk,i(m,n). (3.5)

Below is a relation between Fk,i(m,n) and Gk,i(m,n).

Lemma 3.2 For 2 ≤ i ≤ k, we have

Fk,i−1(m,n) = Gk,i(m,n). (3.6)

For i = 1, we have
Gk,1(m,n) = Fk,k(m,n−m). (3.7)

Proof. For i ≥ 2, there is a simple bijection between Uk,i−1(m,n) and Ik,i(m,n). For
an overpartition λ ∈ Uk,i−1(m,n), we change the smallest part j of λ to a non-overlined
part j. Then we get an overpartition in Ik,i(m,n). Conversely, we can change one of
the smallest part j of an overpartition β ∈ Ik,i(m,n) to an overlined part j to get an
overpartition in Uk,i−1(m,n). Clearly, this map is a bijection. Hence (3.6) holds for
i ≥ 2.

For i = 1, we shall show a bijection between Ik,1(m,n) and Uk,k(m,n −m). Sub-
stracting one from each part of overpartition λ in Ik,1(m,n) and changing one of the
smallest parts to an overlined part, we obtain an overpartition in Uk,k(m,n−m). Con-
versely, for an overpartition µ in Uk,k(m,n−m), we can switch the smallest part to a
non-overlined part, and increase each part of µ by one (regardless of the overlines), so
that we can get an overpartition in Ik,1(m,n). So we arrive at (3.7). This completes
the proof.
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By the above lemma, the generating function of Gk,i(m,n) can be obtained from the
generating function of Fk,i(m,n). Moreover, from (3.5) it follows that the generating
function of Dk,i(m,n) can be deduced from Fk,i(m,n). The following theorem gives
the generating function of Fk,i(m,n).

Theorem 3.3 For k ≥ i ≥ 1,

∞∑
n=0

Fk,i(m,n)xmqn

=
∑

N1≥N2≥···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+Ni+1+···+Nk−1(−q)N1−1x

N1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

. (3.8)

To derive the generating function of Fk,i(m,n), we shall further classify the set
Uk,i(m,n). Let λ(r) denote the partition that consists of all r-marked parts of λ. Let
Nr be the number of r-marked parts (i.e. the number of parts in λ(r)), and let nr =
Nr − Nr−1 for any positive integer r. Notice that for any overpartition λ enumerated
by Dk,i(m,n), the parts j, j and j+1 occur at most k−1 times in λ. It follows that the
marks of λ do not exceed k− 1. So we are led to consider the parameters N1, . . . , Nk−1
and n1, . . . , nk−1 as the summation indices when we compute the generating function of
Fk,i(m,n). It also can be seen that N1 ≥ N2 ≥ · · · ≥ Nk−1 ≥ 0 and n1, n2, . . . , nk−1 ≥ 0.
The detailed proof of Theorem 3.3 will be given in the next four sections.

4 The first bijection for the proof of Theorem 1.7

In this section, we classify the set Uk,i(m,n) according to the parameters N1, . . . , Nk−1,

and we give the first bijection for the proof of Theorem 1.7. Let
∑k−1

i=1 Ni = m, and let
UN1,N2,...,Nk−1;i(n) denote the set of overpartitions in Uk,i(m,n) that have Nr r-marked
parts for 1 ≤ r ≤ k − 1. Let PN1,N2,...,Nk−1;i(n) denote the set of overpartitions in
UN1,N2,...,Nk−1;i(n) for which all the 1-marked parts are overlined. Set

UN1,N2,...,Nk−1;i =
⋃
n≥0

UN1,N2,...,Nk−1;i(n), (4.1)

PN1,N2,...,Nk−1;i =
⋃
n≥0

PN1,N2,...,Nk−1;i(n). (4.2)

More precisely, we shall give a bijection for the following relation.
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Theorem 4.1 For k ≥ i ≥ 1, we have∑
λ∈UN1,N2,··· ,Nk−1;i

xl(λ)q|λ| = (−q)N1−1
∑

α∈PN1,N2,··· ,Nk−1;i

xl(α)q|α|, (4.3)

where l(λ) denotes the number of parts of λ.

Before we present the bijection for the above relation, we introduce a reduction oper-
ation based on the Gordon markings, which transforms an overpartition in UN1,N2,...,Nk−1;i(n)
containing at least one non-overlined part with mark 1 to an overpartition in UN1,N2,...,Nk−1;i(n−
1). This reduction operation preserves the number of r-marked parts for r = 1, 2, . . . , k−
1. Since we shall give another reduction operation in the next section, we call the re-
duction operation described below the first reduction operation.

The First Reduction Operation. Let λ = (λ1, . . . , λm) be an overpartition of n
containing at least one non-overlined part with mark 1. Assume that λj is the rightmost
non-overlined part with mark 1. To be more precisely, for a part λj, we write λj = aj
to indicate that λj is an overline part and write λj = aj to indicate that λj is a non-
overline part. Moreover, we say that aj is the underlying part of λj. We consider two
cases.

Case 1. There is a non-overlined part aj + 1 of λ but there is no overlined 1-marked
part aj + 1. First, we change the part λj to a 1-mark part aj. Then we choose the
part aj + 1 with the smallest mark, say r, and replace this r-marked part aj + 1 with a
r-marked part aj. Since in λ r is the smallest mark of the parts aj+1 and the 1-marked
aj is non-overlined, by the definition of the Gordon marking of an overpartition, we
deduce that either r is still the smallest mark of the parts with underlying part aj − 1
or there are no parts with underlying part aj−1. In either case, we may place the new
r-marked part aj in a position with mark r.

If there is a 1-marked overlined part to the right of the aj, we switch it to a non-
overlined part and we can see that the rightmost 1-marked nonoverlined part of the
resulting overpartition is right to λj. If there are no 1-marked parts larger than aj, we
shall do nothing and in this case we can notice that the number of 1-marked overlined
parts in the resulting overpartition is one more than it in λ. In either case, we denote
the resulting overpartition by µ. Clearly, µ is an overpartition of n − 1. Moreover, it
can be seen that µ contains the same number of r-marked parts as λ, for 1 ≤ r ≤ k−1.

Case 2. Either an overlined part aj + 1 is a 1-marked part of λ or there are no parts
with underlying part aj + 1. In either case, we may change the part λj to a 1-marked
overlined part aj − 1.

If there are 1-marked parts larger than aj, then they are all overlined parts because
of the choice of λj. In this case we switch the overlined 1-marked part next to λj
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to a non-overlined part. Let µ denote the resulting overpartition. It is easily seen
that in this case the rightmost non-overlined part in µ is right to the part λj and µ
has the same number of 1-marked overlined parts and the same number of 1-marked
nonoverlined parts as λ.

It remains to consider the case when there are no 1-marked parts larger than aj.
In this case, no operation is needed and we set µ to be the overpartition obtained in
the previous step. It is clear that µ has one more 1-marked overlined parts and one
less 1-marked non-overlined parts than λ.

In either case, one can deduce that µ is an overpartition of n − 1 with the same
number of r-marked parts as λ, for 1 ≤ r ≤ k − 1.

For example, let λ be an overpartition in U7,6,5;1(135) as given below 2 5 7 8 12

2 5 6 8 11 13

1 4 6 8 10 12 15

 3

2

1

.

The part 12 with mark 1 is the λj as in the description of the reduction operation,
since it is the rightmost non-overlined part with mark 1. Notice that 13 is not a 1-
marked part of λ, but 13 is a 2-marked part. By the operation in Case 1, we change
the 1-marked part 12 to a part 12, then we change the 2-marked part 13 to 12 and
place it in a position with mark 2. Then we switch 15 to 15. After the reduction
operation by choose λj to be 1-marked 12, we get an overpartition µ in U7,6,5;1(134) 2 5 7 8 12

2 5 6 8 11 12

1 4 6 8 10 12 15

 3

2

1

.

Let us apply the reduction operation to above overpartition µ. The part 15 is the
rightmost non-overlined part with mark 1 in µ and there are no parts greater than 15.
So we need to apply the operation in Case 2. By changing 15 to 14, we obtain an
overpartition in U7,6,5;1(133) 2 5 7 8 12

2 5 6 8 11 12

1 4 6 8 10 12 14

 3

2

1

.

Indeed, the above reduction operation is reversible. This implies that there is a
bijection for the relation in Theorem 4.1. We shall give the dilation operation as the
inverse of the reduction operation, and we shall call it the first dilation operation. In
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fact, there are two types of dilation operations depending on the choice of the position
where the operation will take place.

The First Dilation Operation. Let λ = (λ1, . . . , λm) be an overpartition in UN1,N2,...,Nk−1;i(n).
For a part λj, we use aj to denote the underlying part of λj.

We proceed to determine the part λj which tells where the dilation operation will
take place. There are two types of the dilation operation. If there are no 1-marked
parts next to the rightmost overlined part λj, then we may choose λj and we shall say
that the operation is of type A. If there is at least one overlined part such that the
next 1-marked part is non-overlined, then we choose the rightmost one to be λj. For
this choice, we say that the dilation operation is of type B. It should be mentioned
that it is possible that we can apply two types of operations to an overpartition. For
each overpartition in UN1,N2,...,Nk−1;i(n), we can apply at least one of the two types of
the dilation operation. As will be seen, in the proof of Theorem 4.1 we need to consider
how to apply the two types of the dilation operation.

Case 1: There are two parts of the same mark with underlying parts aj and aj − 1, we
denote this same mark by r. It should be noticed that there are no 1-marked parts with
underlying part aj + 1 because of the choice of λj. We change λj to a non-overlined
part aj and replace the r-marked part aj by an r-marked part aj + 1.

If there are 1-marked parts with underlying parts greater than aj, we consider the
leftmost one, which must be non-overlined, and we change this non-overlined part to
an 1-marked overlined part. Denote the resulting overpartition by µ. Clearly, the
rightmost 1-marked overlined part to the left of a non-overlined part in µ must be to
the left of λj in λ. Moreover, µ has the same number of 1-marked overlined parts and
the same number of 1-marked non-overlined parts as λ.

We now turn to the case when there are no 1-marked parts with underlying parts
greater than aj. In this case no operation is required and we denote the overpartition
obtained so far by µ. Notice that µ has one less 1-marked overlined parts and one more
1-marked non-overlined parts than λ.

In either case, one can deduce that µ is an overpartition in UN1,N2,...,Nk−1;i(n + 1)
with the same number of r-marked parts as λ, for 1 ≤ r ≤ k − 1.

Case 2: There are no two parts with underlying parts aj and aj−1 that have the same
mark. We see that there is no 1-marked part with underlying part aj + 1 because of
the choice of λj. We change λj to a non-overlined part aj with mark 1. We denote
by r the largest mark of the parts equal to aj, and replace the r-marked non-overlined
part aj with an r-marked non-overlined part aj + 1. Since r is the largest mark of the
parts equal to aj and aj + 1 is not a 1-marked part of λ, we see that aj + 1 cannot be
a part with a mark not exceeding r. So we may place the new part equal to aj + 1 in
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a position of mark r.

If there is a 1-marked non-overlined part next to λj, we switch this non-overlined
part to an overlined part. Let µ denote the resulting overpartition. It is easily seen
that in this case µ has the same number of 1-marked overlined parts and the same
number of 1-marked non-overlined parts as λ.

We still need to consider the case when there are no parts next to λj, In this case,
we just denote the resulting overpartition by µ. Clearly, µ has one more 1-marked
non-overlined parts and one less 1-marked overlined parts than λ.

In either case, we see that µ is an overpartition in UN1,N2,...,Nk−1;i(n + 1) with the
same number of r-marked parts as λ, for 1 ≤ r ≤ k − 1.

It is easily checked that the first reduction operation is the inverse of the first
dilation operation. More precisely, we have the following property.

Theorem 4.2 The dilation operation of Type A is the inverse of the reduction opera-
tion which increases the number of overlined parts in λ, whereas the dilation operation
of Type B is the inverse of the reduction operation which preserves the number of over-
lined parts in λ.

We are now ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1. Based on the reduction operation, we shall establish a bijection
ϕ between UN1,N2,...,Nk−1;i and PN1,N2,...,Nk−1;i × DN1 , where DN1 denotes the set of or-
dinary partitions with distinct parts such that each part is less than N1. Let λ be an
overpartition in UN1,N2,...,Nk−1;i. We shall give a procedure to construct ϕ(λ), which is
a pair (α, β), where α is an overpartition in PN1,N2,...,Nk−1;i and β is a partition in DN1 .

Step 1. Set α = λ, β = φ and t = 1. If there are no non-overlined 1-marked parts in
α, go to Step 3; Otherwise, go to Step 2.

Step 2. If the largest 1-marked part of α is overlined, then apply the first reduction
operation on α. If there are still non-overlined 1-marked parts in α, then set t to t+ 1
and repeat this step; Otherwise, go to Step 3.

If the largest 1-marked part of α is non-overlined, then add t to β as a new part
and apply the first reduction operation on α. Reset t to 1 and repeat this step if there
are still non-overlined 1-marked parts in α; Otherwise, go to Step 3.

Step 3. Set ϕ(λ) = (α, β).

Evidently, α is an overpartition in PN1,N2,...,Nk−1;i and |λ| = |α|+ |β|. It remains to
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prove that the parts of β are less than N1. Let

λ
(1)
1 < λ

(1)
2 < · · · < λ

(1)
N1

denote the 1-marked parts of λ. Moreover, suppose that there are s non-overlined
1-marked parts of λ, which are denoted by

λ
(1)
i1
< λ

(1)
i2
< · · · < λ

(1)
is
.

Examining Step 2 of the above procedure, we see that after applying the operation in
Step 2 to the rightmost non-overlined part such that it is the largest 1-marked part
of α, the number of non-overlined part decreases by one. So we find that for each
non-overlined 1-marked part λ

(1)
it

, we can iterate Step 2 N1 − it + 1 times in order to
decrease the number of non-overlined parts by one and add N1 − it + 1 to β as a new
part. Hence we deduce that β = (N1− i1 + 1, N1− i2 + 1, . . . , N1− is + 1). Recall that
the smallest 1-marked part of an overpartition in UN1,N2,...,Nk−1;i is always overlined. It
follows that N1 − it + 1 < N1, for 1 ≤ t ≤ s. So β is a partition in DN1 .

Next we give a brief description of the inverse of ϕ. The detailed proof is omitted
because it is a straightforward verification.

Let α be an overpartition in PN1,N2,...Nk;i and β = (β1, β2, · · · , βs) be a partition
with distinct parts and β1 ≤ N1− 1. We shall give a procedure to construct ϕ−1(α, β),
which is an overpatition λ in UN1,N2,...Nk;i.

Step 1. Set λ = α. Let s be the number of parts in β.

Step 2. For t from 1 to s, apply the dilation operation of type A to λ. Then the dilation
operation of type B will be applied βt − 1 times to λ. Now we get an overpartion λ in
UN1,N2,...Nk;i. It can be checked that λ

(1)
N1−β1 , . . . , λ

(1)
N1−βs are the non-overlined 1-marked

parts of λ.

To prove that ϕ−1(ϕ(λ)) = λ, we need the fact that the first reduction operation
and the first dilation operation are inverses of each other. This completes the proof.

To demonstrate the above bijection we give an example. Let λ be the overpartition
as given in (3.3), that is,

λ =

 2 5 7 8 12

2 5 6 8 11 13

1 4 6 8 10 12 16

 3

2

1

.

First we set α = λ, β = φ and t = 1. Notice that the greatest 1-marked part of α is
non-overlined. So we let β = (1) and set t = 1. Applying the first reduction operation,
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we have

α =

 2 5 7 8 12

2 5 6 8 11 13

1 4 6 8 10 12 15

 3

2

1

.

Since the greatest non-overlined 1-marked part is 12 which is not the greatest 1-marked
part, we apply the first reduction operation on α and let t = 2. Then we get

α =

 2 5 7 8 12

2 5 6 8 11 12

1 4 6 8 10 12 15

 3

2

1

.

Now the rightmost non-overlined 1-marked part is 15 and it is the greatest 1-marked
part. So we apply the reduction operation and let β = (2, 1). Now we should reset
t = 1. Then we get

α =

 2 5 7 8 12

2 5 6 8 11 12

1 4 6 8 10 12 14

 3

2

1

.

In order to get an overpartition with no non-overlined 1-marked parts, we still need to
apply the reduction operation 6 times. The details are omitted. Finally, we obtain

α =

 2 5 6 8 12

2 4 6 8 10 12

1 4 6 7 10 11 13

 3

2

1

, (4.4)

and β = (6, 3, 1). Thus we have constructed a pair (α, β), where α is an overpartition
such that all 1-marked parts overlined, β is partition in D7. Moreover, we have |λ| =
|α|+ |β|.

5 The second bijection for the proof of Theorem

1.7

In this section, we introduce a class of overpartitions in PN1,N2,...,Nk−1;i, which will be
denoted by QN1,N2,...,Nk−1;i. We aim to relate the generating function of PN1,N2,...,Nk−1;i

to that of QN1,N2,...,Nk−1;i. To define the set QN1,N2,...,Nk−1;i, we observe that for any
λ ∈ PN1,N2,...,Nk−1;i(n) and for any 1 ≤ t ≤ n, we have

ft(λ) + ft(λ) + ft+1(λ) ≤ k − 1, (5.1)
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where ft(λ) denotes the number of occurrences of t in λ. We define the setQN1,N2,...,Nk−1;i

as the set of overparitions λ in PN1,N2,...,Nk−1;i for which the equality holds in (5.1),
namely,

ft(λ) + ft(λ) + ft+1(λ) = k − 1 (5.2)

for any positive integer t which is smaller than the greatest (k − 1)-marked part. It
should be mentioned that Bressoud [5, 6] obtained a generalization of the Rogers-
Ramanujan identities by considering ordinary partitions λ that satisfy the equality in
(5.2), namely,

ft(λ) + ft+1(λ) = k − 1. (5.3)

Set
QN1,N2,...,Nk−1;i =

⋃
n≥0

QN1,N2,...,Nk−1;i(n).

The following theorem establishes a relation between the generating function of
PN1,N2,...,Nk−1;i and the generating function of QN1,N2,...,Nk−1;i.

Theorem 5.1 For N1 ≥ N2 ≥ · · · ≥ Nk−1 ≥ 0, we have∑
α∈PN1,N2,...,Nk−1;i

xl(α)q|α| =
1

(q)Nk−1

∑
γ∈QN1,N2,...,Nk−1;i

xl(γ)q|γ|. (5.4)

To prove the above theorem, we shall give a bijection based on a reduction oper-
ation and a dilation operation which are called the second reduction and the second
dilation. The second reduction transforms an overpartition α in PN1,N2,...,Nk−1;i(n) \
QN1,N2,...,Nk−1;i(n) to an overpartition in PN1,N2,...,Nk−1;i(n− 1). More precisely, this op-
eration requires the choice of a (k − 1)-marked part αj whose underlying part is t
satisfying one of the following two conditions

1. There are no parts with underlying part t− 1;

2. There is a part with underlying part t− 1 and

ft−2(α) + ft−2(α) + ft−1(α) < k − 1. (5.5)

By the definitions of PN1,N2,...,Nk−1;i(n) and QN1,N2,...,Nk−1;i(n−1), it is not difficult to
see that for any α in PN1,N2,...,Nk−1;i(n)\QN1,N2,...,Nk−1;i(n), there exists a (k−1)-marked
part αj satisfying one of the above conditions.
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The Second Reduction Operation. Let α = (α1, . . . , αm) be an overpartition in
PN1,N2,...,Nk−1;i(n) \QN1,N2,...,Nk−1;i(n). Let αj be a (k− 1)-marked part with underlying
part t satisfying one of the above conditions.

If αj satisfies Condition 1, that is, there are no parts with underlying part t − 1,
then there is an overlined part t since t is the underlying part of αj. We replace t with
a 1-marked overlined part t− 1.

If αj satisfies Condition 2, write (5.5) as

k−1∑
l=1

(ft−2(α
(l)) + ft−2(α

(l)) + ft−1(α
(l))) < k − 1, (5.6)

where α(l) is the overpartition consisting of the l-marked parts of α. So we can find
the smallest mark r ≥ 2 such that t is a part of mark r and

r∑
l=1

(ft−2(α
(l)) + ft−2(α

(l)) + ft−1(α
(l))) < r. (5.7)

Replace the r-marked part t with an r-marked part t− 1.

It can be seen that in either case we obtain the Gordon marking representation of
an overpartition in PN1,N2,...,Nk−1;i(n− 1).

For example, let α be an overpartition in P7,6,5;1(126) as given below

α =

 2 4 6 8 12

2 4 6 8 10 12

1 4 6 7 10 11 13

 3

2

1

.

Choosing αj to be the 3-marked part 4, we see that the 1-marked part 4 satisfies Con-
dition 1. Then we can replace 4 with a 1-marked 3 to transform α to an overpartition
in P7,6,5;1(125):  2 4 6 8 12

2 4 6 8 10 12

1 3 6 7 10 11 13

 3

2

1

.

For the above overpartition, choosing the same αj as before, we see that the 3-
marked part 4 satisfies Condition 2. We further apply the reduction in this case.
Clearly, 2 is the smallest mark satisfying Condition (5.7). So we can replace the 2-
marked part 4 with a 2-marked part 3 to form an overpartition in P7,6,5;1(124): 2 4 6 8 12

2 3 6 8 10 12

1 3 6 7 10 11 13

 3

2

1

.
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The second dilation transforms an overpartition α in PN1,N2,...,Nk−1;i(n) to an over-
partition in PN1,N2,...,Nk−1;i(n − 1) \ QN1,N2,...,Nk−1;i(n − 1). To be more specific, the
operation starts with a choice of a (k− 1)-marked part αj subject to one of the follow-
ing conditions:

1. The underlying part t of αj satisfies

ft(α) + ft(α) + ft+1(α) < k − 1; (5.8)

2. The underlying part t of αj satisfies that

ft(α) + ft(α) + ft+1(α) = k − 1. (5.9)

Moreover, we have

ft+1(α) + ft+1(α) + ft+2(α) < k − 1. (5.10)

It is easily seen that relation (5.10) holds for the largest (k − 1)-marked part αj of
α with underlying part t. This implies there exists at least one (k − 1)-marked part
αj satisfying one of the above two conditions. Our goal is to find a part of α with
underlying part t− 1 or t and we shall increase this underlying part by one.

The Second Dilation Operation. Let α = (α1, . . . , αm) be an overpartition in
PN1,N2,...,Nk−1;i(n). Let αj be a (k − 1)-marked part with underlying part t for which
one of the above two conditions holds.

We first consider the case when Condition 1 holds. Since t is the underlying part
of αj and ft(α) < k− 1, we deduce that there exists a part with underlying part t− 1.
So we may assume that r is the largest mark of a part with underlying part t − 1. If
r = 1, we replace the 1-marked overlined part t− 1 with an 1-marked overlined part t.
If r > 1, we replace this r-marked non-overline part t− 1 with an r-marked part t.

We now consider the case when Condition 2 holds. In this case, we observe that
there is no k− 1-marked part with underlying part t+ 1. Moreover, if (5.10) holds for
k = 2, then we replace αj with a 1-marked part t+ 1. If (5.10) holds for k > 2, then
we replace αj with a (k − 1)-marked part t+ 1.

In either case, we obtain the Gordon marking representation of an overpartition in
PN1,N2,...,Nk−1;i(n) \QN1,N2,...,Nk−1;i(n).

It can be checked that the second reduction operation is the inverse of the second
dilation operation. We are now ready to give a bijective proof of Theorem 5.1.

Proof of Theorem 5.1. Using the reduction operation, we shall establish a bijection
ψ between PN1,N2,...,Nk−1;i and QN1,N2,...,Nk−1;i × RNk−1

, where RNk−1
denotes the set of
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ordinary partitions with at mostNk−1 parts. Let α be an overpartition in PN1,N2,...,Nk−1;i.
Assume that

α
(k−1)
1 < α

(k−1)
2 < . . . < α

(k−1)
Nk−1

are the (k − 1)-marked parts of α.

Let us describe the procedure to construct ψ(α) by successively applying the second
reduction operation. Keep in mind that ψ(α) is a pair (γ, δ), where γ is an overpartition
in QN1,N2,...,Nk−1;i and δ is a partition in RNk−1

such that |α| = |γ|+ |δ|.

As discussed before, there always exists a (k − 1)-marked part αj which satisfies
either Condition 1 or Condition 2 in the second reduction operation. We choose the
smallest (k−1)-marked part which satisfies either Condition 1 or Condition 2. Assume

that it is the l-th (k− 1)-marked part of α, denoted α
(k−1)
l . Notice that after applying

reduction operation by choosing αj to be α
(k−1)
l , the (l+1)-th (k−1)-marked part α

(k−1)
l+1

remains unchanged and it satisfies the Condition 1 or Condition 2. So can continue to
apply the reduction operation by choosing αj to be α

(k−1)
l+1 . Moreover, we can iterate

this process with respect to the following (k−1)-marked parts α
(k−1)
l , α

(k−1)
l+1 , . . . , α

(k−1)
Nk−1

to get an overpartition in QN1,N2,...,Nk−1;i. Meanwhile, during the above process we
obtain an ordinary partition with at most Nk−1 parts.

We now give a detailed description of the bijection ψ which consists of the following
steps.

Step 1. Set δ = φ and t = 0. We choose the smallest (k− 1)-marked part α
(k−1)
l which

satisfies either Condition 1 or Condition 2. If l = 1 and the number of parts with
underlying part 1 is less than i, go to Step 2; Otherwise, set v = l and go to Step 3.

Step 2. Recall that by the definition of PN1,N2,...,Nk−1;i, i is the maximum number of
occurrences of 1 and 1 in α. There are two cases. If 1 ≤ i ≤ k − 1, we repeatedly
apply the reduction operation to α by choosing αj to be α

(k−1)
1 until α becomes an

overpartition containing an overlined part 1 and i− 1 non-overlined parts 1. If i = k,
we repeatedly apply the reduction operation to α by choosing αj to be α

(k−1)
1 until

α becomes an overpartition containing an overlined part 1 and k − 2 non-overlined
parts 1. In either case, let t be the number of the reduction operations that have been
applied, and add t to δ as a new part. Set v = 2 and go to Step 3.

Step 3. For each s from v to Nk−1, we repeatedly apply the second reduction opera-

tions by choosing the (k − 1)-marked part αj to be α
(k−1)
s until α

(k−1)
s satisfies neither

Condition 1 nor Condition 2. After each reduction we reset the resulting overpartition
back to α. Let t be the number of reductions that have been applied. Add t to δ as a
new part.

Step 4. Let γ = α and set ψ(α) = (γ, δ).
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It can be seen that γ is an overpartition in QN1,N2,...,Nk−1;i. Meanwhile, there are
Nk−1 − l + 1 parts in δ. This implies that δ is a partition in RNk−1

. Moreover we have
|α| = |γ|+ |δ|. An example is given after the proof.

Here is an outline of the inverse of ψ. Let γ be an overpartition in QN1,N2,...Nk−1;i

and δ be a partition with m parts, where m ≤ Nk−1. Express the parts of δ as

δ1 ≥ · · · ≥ δm.

The following is a procedure to construct ψ−1(γ, δ), which is an overpartition α in
PN1,N2,...Nk−1;i.

Step 1. Let α = γ.

Step 2. For t from 1 to m, apply the dilation operation δt times by choosing αj to be

γ
(k−1)
Nk−1−t+1.

Step 3. Set ψ−1(γ, δ) = α.

It can be verified that the map ψ−1(γ, δ) is indeed the inverse of ψ. The details are
omitted. So we have completed the proof of Theorem 5.1.

We conclude this section with an example to demonstrate the above bijection. For
k = 4 and i = 1, let α be an overpartition in P7,6,5;1(128) as given by (4.4), namely,

α =

 2 5 6 8 12

2 4 6 8 10 12

2 4 6 7 10 11 13

 3

2

1

.

We apply the second reduction operation by choosing αj to be the 3-marked part

α
(3)
1 = 2. Then α is mapped to an overpartition containing a part 1 and no parts 1.

Note that i = 1. Thus we cannot further apply the reduction by choosing αj to be

α
(3)
1 . Then we get δ = (1) and α is an overpartition in P7,6,5;1(127):

α =

 2 5 6 8 12

2 4 6 8 10 12

1 4 6 7 10 11 13

 3

2

1

.

Next we choose αj to be α
(3)
2 . Then we can apply reduction three times to change

the 3-marked part 5 to the 3-marked part 4, change the 1-marked part 4 to the 1-
marked part 3, and change the 2-marked part 4 to the 2-marked part 3. After that
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α
(3)
2 no longer satisfies Condition 1 or Condition 2. Then we add 3 to δ as a new part

to get δ = (3, 1) and α becomes an overpartition in P7,6,5;1(124): 2 4 6 8 12

2 3 6 8 10 12

1 3 6 7 10 11 13

 3

2

1

.

We continue to consider α
(3)
3 = 6 as a choice of αj. We can apply reduction three

times so that α becomes an overpartition in P7,6,5;1(121) as given below: 2 4 5 8 12

2 3 5 8 10 12

1 3 5 7 10 11 13

 3

2

1

.

Then add 3 as a new part to δ and get δ = (3, 3, 1).

For the remaining 3-marked parts 8 we can apply the reduction three times by
choosing αj = 8. Finally, for the 3-marked part 12, we can apply the reduction seven
times by choosing αj = 12. Thus we get δ = (7, 3, 3, 3, 1). In the mean time, α is
mapped to an overpartition in Q7,6,5;1(111) as given by

γ =

 2 4 5 7 9

2 3 5 7 8 12

1 3 5 6 8 11 13

 3

2

1

.

6 The third bijection for the proof of Theorem 1.7

In this section, we give the third bijection for the proof of Theorem 1.7, which is
between QN1,...,Nk−1;i and QN1−1,...,Nk−1−1;i. By this correspondence, we can derive a
recurrence relation on QN1,...,Nk−1;i, which yields the generating function of QN1,...,Nk−1;i

as stated in the following theorem.

Theorem 6.1 For k ≥ 2 and 1 ≤ i ≤ k, we have

∑
γ∈QN1,...,Nk−1;i

xl(γ)q|γ| =
q

(N1+1)N1
2

+N2
2+···+N2

k−1+Ni+1+···+Nk−1xN1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1

. (6.1)

In order to prove the above theorem by induction, we need the following bijection.
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Theorem 6.2 For Nk−1 > 0, there is a bijection between QN1,...,Nk−1;i(n) and QN1−1,...,Nk−1−1;i(n−
N1 − 2N2 − · · · − 2Nk−1 + i− 1). In terms of generating functions, we have∑

γ∈QN1,...,Nk−1;i

q|γ| = qN1+2N2+...+2Nk−1−i+1
∑

γ∈QN1−1,...,Nk−1−1;i

q|γ|. (6.2)

Proof. Assume that Nk−1 > 0. We will give a bijection χ between QN1,...,Nk−1;i(n)
with and QN1−1,...,Nk−1−1;i(n−N1 − 2N2 − · · · − 2Nk−1 + i− 1). Let γ be an overpar-
tition in QN1,...,Nk−1;i(n). We proceed to construct χ(γ), which is an overpartition µ in
QN1−1,...,Nk−1−1;i(n−N1 − 2N2 − · · · − 2Nk−1 + i− 1).

The idea of this bijection goes as follows. For each 1-marked part γj with underlying
part aj, we shall allocate a part with underlying part aj subject to certain conditions.
Then we increase this part by 1. Furthermore, for each 1-marked part, we remove
the smallest part of each row in the Gordon marking representation of the resulting
overpartition, and subtract 2 from the other parts. Here are the detailed description.

Step 1. Let µ = γ.

Step 2. For i from N1 to 1, let t be the underlying part of µ
(1)
i .

If there are two parts of the same mark but with distinct underlying parts t − 1
and t, we denote this mark by r. Then we change the r-marked part with underlying
part t to an r-marked part with underlying part t+ 1;

Otherwise, we find the greatest mark r, such that there is an r-marked part with
underlying part t. If r = 1, replace the 1-marked overlined part t of µ with an 1-marked
part t+ 1. If r > 1, replace the r-marked part t with an r-marked part t+ 1. Clearly,
the sum of the parts of µ becomes n+N1.

Step 3. Delete µ
(1)
1 , . . . , µ

(k−1)
1 and subtract 2 from each part of µ.

From the definition of QN−1,...,Nk−1;i, the smallest part of each row is 1 or 2. Clearly,
after Step 2 there are i − 1 parts equal to 1 and k − i parts equal to 2 in µ. So after
Step 3 the sum of parts of µ equals

n+N1−(i−1)−2(k−i)−2(N1+· · ·+Nk−1−(k−1)) = n−N1−2N2−· · ·−2Nk−1+i−1.

Step 4. Let χ(λ) = µ.

It can be seen that after the above process we obtain the Gordon marking of an
overpartition in QN1−1,...,Nk−1−1;i(n−N1 − 2N2 − · · · − 2Nk−1 + i− 1).

We now consider the inverse of χ. Let µ ∈ QN1−1,...,Nk−1−1;i(n). The following is
a procedure to construct χ−1(µ), which is a partition γ in QN1−1,...,Nk−1−1;i(n + N1 +
2N2 + . . .+ 2Nk−1 − i+ 1).
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Step 1. Let γ = µ.

Step 2. Increase each part of γ by 2.

Step 3. If i = 1, we add 1-marked part 2, a 2-marked part 2, . . ., and a (k− 1)-marked
part 2 to γ as new parts. If i ≥ 2, we add a 1-marked part 1, . . ., an (i − 1)-marked
part 1, an i-marked part 2, . . ., and a (k− 1)-marked part 2 to γ as new parts. Now γ
contains N1 + 1 parts with 1-marked.

Step 4. For j from 1 to N1 + 1, let t be the underlying part of γ
(1)
j .

If t+ 1 is a part of γ or there are no parts with underlying part t + 1, then we
replace the overlined 1-marked part t with a 1-marked part t− 1;

If t+ 1 is not a part of γ but t+ 1 is a part of γ, then we choose the smallest mark
r of parts with underlying part t + 1, and replace this r-marked part t + 1 with an
r-marked part t.

Step 5. Set χ−1(µ) = γ.

It can be verified that after the above steps we get the Gordon marking of an
overpartition in QN1−1,...,Nk−1−1;i(n+N1 + 2N2 + . . .+ 2Nk−1 − i+ 1).

It is routine to check that the map χ−1 is the inverse of χ.

Here we give an example of the above bijection. Let γ =
(1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 14, 14, 15, 17, 17, 17)
in Q10,9,8,6,6;1(311). Set µ = γ. Below is the Gordon marking representation of µ

2 4 6 8 10 12

2 4 5 7 9 11

2 3 5 7 9 11 15 17

1 3 5 7 8 10 11 14 17

1 3 5 6 8 9 11 13 14 17


5

4

3

2

1

, (6.3)

where the parts in boldface are those we should move to the right in Step 2. After Step
2, µ is changed to

2 4 6 8 10 12

2 4 6 7 9 11

2 4 5 7 9 11 15 18

2 3 5 7 9 10 12 14 17

1 3 5 7 8 10 11 14 15 17


5

4

3

2

1

.
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Deleting the parts µ
(1)
1 , . . . , µ

(5)
1 and subtracting 2 from the other parts of µ, we get

2 4 6 8 10

2 4 5 7 9

2 3 5 7 9 13 16

1 3 5 7 8 10 12 15

1 3 5 6 8 9 12 13 15


5

4

3

2

1

, (6.4)

which is the Gordon marking representation of an overpartition in Q9,8,7,5,5;1(254). It
can be checked that the above process is reversible.

The proof of Theorem 6.1. We use induction on k. For k = 2 and i = 1, the generating
function of QN1;1 is ∑

λ∈QN1;1

q|λ| = q
(N1+1)N1

2 .

For k = 2 and i = 2, the generating function of QN1;2 is∑
λ∈QN1;2

q|λ| = q
(N1+1)N1

2 .

So Theorem 6.1 holds for k = 2. Assume that it holds for k − 1, that is,

∑
λ∈QN1,...,Nk−2;i

q|λ| =
q

(N1+1)N1
2

+N2
2+···+N2

k−2+Ni+1+···+Nk−2

(q)N1−N2(q)N2−N3 · · · (q)Nk−3−Nk−2

.

We proceed to show that it holds for QN1,...,Nk−1;i.

If Nk−1 = 0, by the definitions of QN1,...,Nk−2,0;i and PN1,...,Nk−2;i, we find that

QN1,...,Nk−2,0;i = PN1,...,Nk−2;i.

In view of Theorem 5.1, the generating function of QN1,...,Nk−2,0;i equals

∑
λ∈QN1,...,Nk−2,0;i

q|λ| =
1

(q)Nk−2

× q
(N1+1)N1

2
+N2

2+···+N2
k−2+Ni+1+···+Nk−2

(q)N1−N2(q)N2−N3 · · · (q)Nk−3−Nk−2

. (6.5)

If Nk−1 > 0, applying Theorem 6.2 Nk−1 times, we obtain that∑
λ∈QN1,...,Nk−1;i

q|λ|
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= q
(2N1−Nk−1+1)Nk−1

2
+(2N2−Nk−1+1)Nk−1+···+(Nk−1+1)Nk−1−Nk−1i+Nk−1

×
∑

λ∈QN1−Nk−1,...,Nk−2−Nk−1,0;i

q|λ|. (6.6)

Combining (6.5) and (6.6), we have for 1 ≤ i ≤ k − 1∑
λ∈QN1,...,Nk−1;i

q|λ|

= q
(2N1−Nk−1+1)Nk−1

2
+(2N2−Nk−1+1)Nk−1+···+(Nk−1+1)Nk−1−Nk−1i+Nk−1

×
∑

λ∈QN1−Nk−1,...,Nk−2−Nk−1,0;i

q|λ|

=
q

(N1+1)N1
2

+N2
2+···+N2

k−1+Ni+1+···+Nk−1

(q)N1−N2(q)N2−N3 · · · (q)Nk−2−Nk−1

.

Since for any overpartition in QN1,...,Nk−1;i the smallest 1-marked part is overlined,
the non-overlined 1 can occur at most k − 2 times. This implies that QN1,...,Nk−1;k =
QN1,...,Nk−1;k−1. we have proved that identity (6.1) holds for 1 ≤ i ≤ k, that is, Theorem
6.1 holds for k. This completes the proof.

7 Proof of Theorem 1.7

In this section, we finish the proof of Theorem 1.7. Using the three bijections given in
the previous sections, we can derive the generating function of Fk,i(m,n) as stated in
Theorem 3.3. Then we compute the generating function of Gk,i(m,n) which leads to
the generating function of Dk,i(m,n). We first give the proof of Theorem 3.3.

Proof of Theorem 3.3. By Theorems 4.1, 5.1, and 6.1, we find that the generating
function of Fk,i(m,n) equals

∞∑
n=0

Fk,i(m,n)xmqn

=
∑

N1≥N2≥···≥Nk−1≥0

(−q)N1−1

(q)Nk−1

∑
λ∈QN1,...,Nk−1;i

xN1+···+Nk−1q|λ|

=
∑

N1≥N2≥···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+Ni+1+···+Nk−1(−q)N1−1x

N1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

,
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as claimed.

Given the relation between Fk,i(m,n) and Gk,i(m,n) as stated in Lemma 3.2, we
can derive the generating function of Gk,i(m,n).

Theorem 7.1 For k ≥ i ≥ 1,

∞∑
n=0

Gk,i(m,n)xmqn

=
∑

N1≥N2≥···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+Ni+···+Nk−1(−q)N1−1x

N1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

. (7.1)

Proof. From relation (3.6), we deduce that for 2 ≤ i ≤ k,∑
m,n≥0

Gk,i(m,n)xmqn

=
∑
m,n≥0

Fk,i−1(m,n)xmqn

=
∑

N1≥N2≥···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+Ni+···+Nk−1(−q)N1−1x

N1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

. (7.2)

For i = 1, from (3.7) it follows that∑
m,n≥0

Gk,1(m,n)xmqn =
∑
m,n≥0

Fk,k(m,n)(xq)mqn.

Using the generating function of Fk,k(m,n), we obtain∑
m,n≥0

Gk,1(m,n)xmqn

=
∑

N1≥N2≥···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+N1+···+Nk−1(−q)N1−1x

N1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

. (7.3)

Observe that the above formulas (7.2) for i > 1 and (7.3) for i = 1 take the same form
(7.1) as in the theorem. This completes the proof.

We are now ready to finish the proof of Theorem 1.7.
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Proof of Theorem 1.7. By the generating functions of Gk,i(m,n) and Fk,i(m,n) and
relation (3.5), we find that∑
m,n≥0

Dk,i(m,n)xmqn

=
∑
m,n≥0

Fk,i(m,n)xmqn +
∑
m,n≥0

Gk,i(m,n)xmqn

=
∑

N1≥N2≥···≥Nk−1≥0

q
(N1+1)N1

2
+N2

2+···+N2
k−1+Ni+1+···+Nk−1(−q)N1−1(1 + qNi)xN1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

.

This completes the proof of Theorem 1.7.
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