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Abstract. The Boros-Moll polynomials Pm(a) arise in the evaluation of a quartic
integral. It has been conjectured by Boros and Moll that these polynomials are infinitely
log-concave. In this paper, we show that Pm(a) is 2-log-concave for any m ≥ 2. Let
di(m) be the coefficient of ai in Pm(a). We also show that the sequence {i(i+1)(d 2

i (m)−
di−1(m)di+1(m))}1≤i≤m is log-concave.
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1 Introduction

The objective of this paper is to prove the 2-log-concavity of the Boros-Moll polyno-
mials. Recall that a sequence {ai}0≤i≤n of real numbers is said to be unimodal if there
exists an index 0 ≤ j ≤ n such that

a0 ≤ a1 ≤ · · · ≤ aj−1 ≤ aj ≥ aj+1 ≥ · · · ≥ an.

Set a−1 = 0 and an+1 = 0. We say that {ai}0≤i≤n is log-concave if

a2
i − ai+1ai−1 ≥ 0, 1 ≤ i ≤ n.

A polynomial is said to be unimodal (resp., log-concave) if the sequence of its coeffi-
cients is unimodal (resp., log-concave). It is easy to see that for a positive sequence, the
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log-concavity is stronger than the unimodality. For a sequence A = {ai}0≤i≤n, define
the operator L by L(A) = {bi}0≤i≤n, where

bi = a2
i − ai−1ai+1, 0 ≤ i ≤ n. (1.1)

Boros and Moll [8] introduced the notion of infinite log-concavity. We say that the
sequence {ai}0≤i≤n is k-log-concave if the sequence Lj ({ai}0≤i≤n) is log-concave for
every 0 ≤ j ≤ k − 1, and we say that {ai}0≤i≤n is ∞-log-concave if Lk ({ai}0≤i≤n) is
log-concave for any k ≥ 0.

Boros and Moll [8] conjectured that the binomial coefficients
(
n
k

)
are infinitely log-

concave for any n. An generalization of this conjecture was given independently by Fisk
[20], McNamara and Sagan [23], and Stanley, see [9], which states that if a polynomial
a0+a1x+· · ·+anxn has only real zeros, then the polynomial b0+b1x+· · ·+bnxn also has
only real zeros, where bi = a2

i − ai−1ai+1. This conjecture has been proved by Brändén
[9]. While Brändén’s theorem does not directly apply to the Boros-Moll polynomials,
the 2-log-concavity and 3-log-concavity can be recasted in terms of the real rootedness
of certain polynomials derived from the Boros-Moll polynomials, as conjectured by
Brändén. It is worth mentioning that McNamara and Sagan [23] conjectured that for
fixed k, the q-Gaussian coefficients

[
n
k

]
are infinitely q-log-concave. Chen, Wang and

Yang [15] proved the strong q-log-concavity of the q-Narayana numbers Nq(n, k) for
fixed k, which turns out to be equivalent to the 2-fold q-log-concavity of the Gaussian
coefficients.

Recall that Boros and Moll [4–8,24] have studied the following quartic integral and
have shown that for any a > −1 and any nonnegative integer m,∫ ∞

0

1

(x4 + 2ax2 + 1)m+1
dx =

π

2m+3/2(a+ 1)m+1/2
Pm(a),

where

Pm(a) =
∑
j,k

(
2m+ 1

2j

)(
m− j
k

)(
2k + 2j

k + j

)
(a+ 1)j(a− 1)k

23(k+j)
. (1.2)

Using Ramanujan’s Master Theorem, Boros and Moll [7, 24] obtained the following
formula for Pm(a):

Pm(a) = 2−2m
∑
k

2k

(
2m− 2k

m− k

)(
m+ k

k

)
(a+ 1)k, (1.3)

which implies that Pm(a) is a polynomial in a with positive coefficients. Chen, Pang
and Qu [12] gave a combinatorial argument to show that the double sum (1.2) can be
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reduced to the single sum (1.3). Let di(m) be the coefficient of ai of Pm(a), that is,

Pm(a) =
m∑
i=0

di(m)ai. (1.4)

For any m, Pm(a) is called a Boros-Moll polynomial, and the sequence {di(m)}0≤i≤m
is called a Boros-Moll sequence. From (1.3), we know that di(m) can be expressed as

di(m) = 2−2m

m∑
k=i

2k

(
2m− 2k

m− k

)(
m+ k

k

)(
k

i

)
. (1.5)

Several proofs of the above formula can be found in the survey of Amdeberhan and
Moll [2, 3].

Boros and Moll [5] proved that the sequence {di(m)}0≤i≤m is unimodal and the
maximum element appears in the middle. In other words,

d0(m) < d1(m) < · · · < d[m2 ]−1(m) < d[m2 ](m) > d[m2 ]+1(m) > · · · > dm(m).

They also established the unimodality by a different approach [6]. Moll [24] conjec-
tured that the sequence {di(m)}0≤i≤m is log-concave. Kauers and Paule [21] proved
this conjecture based on recurrence relations which were derived by using a computer
algebra approach. Chen, Pang and Qu [13] found a combinatorial proof of the log-
concavity of Pm(a) by introducing the structure of partially 2-colored permutations.
Chen and Gu [11] proved the reverse ultra log-concavity of the sequence {di(m)}0≤i≤m.
Amdeberhan, Manna and Moll [1] studied the 2-adic valuation of an integer sequence
and obtained a combinatorial interpretation of the valuations of the integer sequence
which is related to the Boros-Moll sequences. Chen and Xia [16] showed that the
sequence {di(m)}0≤i≤m satisfies the strongly ratio monotone property which implies
the log-concavity and the spiral property. Furthermore, Chen, Yang and Zhou [18]
proved that if f(x) is a polynomial with nondecreasing and nonnegative coefficients,
then f(1 + x) is ratio monotone. From (1.3), it is easily seen that the coefficients of
Pn(x − 1) are nondecreasing and nonnegative. Hence the polynomials Pn(x) are log-
concave and ratio monotone. Recently, Chen, Wang and Xia [14] introduced the notion
of interlacing log-concavity and proved that the Boros-Moll polynomials possess this
property.

Boros and Moll [8] made the following conjecture.

Conjecture 1.1. The Boros-Moll sequence {di(m)}0≤i≤m is ∞-log-concave.

As shown by Boros and Moll [5], in general, Pm(a) are not polynomials with only real
zeros. Thus the theorem of Brändén [9] does not apply to Pm(a). Nevertheless, Brändén
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[9] made the following conjectures on the real rootedness of polynomials derived from
Pm(a). These conjectures imply the 2-log-concavity and the 3-log-concavity of the
Boros-Moll polynomials.

Conjecture 1.2 (Brändén). For each positive integer m, the polynomial

Qm(x) =
m∑
i=0

di(m)

i!
xi

has only real zeros.

Conjecture 1.3 (Brändén). For each positive integer m, the polynomial

Rm(x) =
m∑
i=0

di(m)

(i+ 2)!
xi

has only real zeros.

Note that Qm(x) = d
dx2 (x2Rm(x)). Hence Qm(x) has only real zeros if Rm(x) does.

This yields that Conjecture 1.3 is stronger than Conjecture 1.2. Based on a result of
of Craven and Csordas [19], it can be seen that Conjecture 1.2 implies that Pm(a) is
2-log-concave and Conjecture 1.3 implies that Pm(a) is 3-log-concave. After this work
was done, Chen, Dou and Yang [10] proved Conjectures 1.2 and 1.3 by showing that
both Qn(x) and Rn(x) form Sturm sequences.

In another direction, Kauers and Paule [21] considered using the approach of recur-
rence relations to prove the 2-log-concavity of Pm(a), and they indicated that there is
little hope to make it work since the recurrence relations are too complicated.

Roughly speaking, the main idea of this paper is to find an intermediate function
f(m, i) so that we can reduce quartic inequalities for the 2-log-concavity to quadratic
inequalities. To be precise, the 2-log-concavity is stated as follows.

Theorem 1.4. The Boros-Moll sequences are 2-log-concave, that is, for 1 ≤ i ≤ m−1,

d 2
i−1(m)− di−2(m)di(m)

d 2
i (m)− di−1(m)di+1(m)

<
d 2
i (m)− di−1(m)di+1(m)

d 2
i+1(m)− di(m)di+2(m)

. (1.6)

The intermediate function f(m, i) is given by

f(m, i) =
(i+ 1)(i+ 2)(m+ i+ 3)2

(m+ 1− i)(m+ 2− i)(m+ i+ 2)2
. (1.7)

Using this intermediate function, we can divide the 2-log-concavity into two quadratic
inequalities, which are stated below.
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Theorem 1.5. For 1 ≤ i ≤ m− 1, we have

(i+ 1)(i+ 2)(m+ i+ 3)2

(m+ 1− i)(m+ 2− i)(m+ i+ 2)2
<
d 2
i (m)− di−1(m)di+1(m)

d 2
i+1(m)− di(m)di+2(m)

. (1.8)

Theorem 1.6. For 1 ≤ i ≤ m− 1, we have

d 2
i−1(m)− di−2(m)di(m)

d 2
i (m)− di−1(m)di+1(m)

<
(i+ 1)(i+ 2)(m+ i+ 3)2

(m+ 1− i)(m+ 2− i)(m+ i+ 2)2
. (1.9)

As will be seen, the 2-log-concavity of Pm(a) implies the log-concavity of a sequence
considered by Moll [22,25].

Theorem 1.7. For m ≥ 2, the sequence {i(i + 1)(d 2
i (m) − di−1(m)di+1(m)}1≤i≤m is

log-concave.

Since log-concavity implies unimodality, the above property leads to another proof
of Moll’s minimum conjecture [25] for {i(i + 1)(d 2

i (m) − di−1(m)di+1(m)}1≤i≤m. By
comparing the first entry with the last entry, we deduce that this sequence attains its

minimum at i = m which equals 2−2mm(m + 1)
(

2m
m

)2
. This conjecture was confirmed

by Chen and Xia [17] by using a result of Chen and Gu [11] and the spiral property of
the Boros-Moll sequences [16].

2 How to guess the intermediate function f (m, i)

In this section, we explain how we found the intermediate function f(m, i). We begin
with a brief review of Kauers and Paule’s approach to proving the log-concavity of the
Boros-Moll polynomials [21], because we need the recurrence relations and an inequality
established by Kauers and Paule. Here are the four recurrence relations

di(m+ 1) =
m+ i

m+ 1
di−1(m) +

(4m+ 2i+ 3)

2(m+ 1)
di(m), 0 ≤ i ≤ m+ 1, (2.1)

di(m+ 1) =
(4m− 2i+ 3)(m+ i+ 1)

2(m+ 1)(m+ 1− i)
di(m)

− i(i+ 1)

(m+ 1)(m+ 1− i)
di+1(m), 0 ≤ i ≤ m, (2.2)

di(m+ 2) =
−4i2 + 8m2 + 24m+ 19

2(m+ 2− i)(m+ 2)
di(m+ 1)
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− (m+ i+ 1)(4m+ 3)(4m+ 5)

4(m+ 2− i)(m+ 1)(m+ 2)
di(m), 0 ≤ i ≤ m+ 1, (2.3)

and for 0 ≤ i ≤ m+ 1,

(m+ 2− i)(m+ i− 1)di−2(m)− (i− 1)(2m+ 1)di−1(m) + i(i− 1)di(m) = 0. (2.4)

These recurrences are derived by Kauers and Paule [21]. In fact, the relations (2.3) and
(2.4) are derived independently by Moll [25] via the WZ-method [26], and the other
two relations (2.1) and (2.2) can be easily deduced from (2.3) and (2.4). Based on the
four recurrence relations, Kauers and Paule [21] proved the following inequality from
which the log-concavity of the Boros-Moll sequences can be deduced.

Theorem 2.1. (Kauers and Paule [21]) Letm, i be integers withm ≥ 2. For 0 < i < m,
we have

di(m+ 1)

di(m)
≥ 4m2 + 7m+ i+ 3

2(m+ 1− i)(m+ 1)
. (2.5)

Chen and Gu [11] showed that {i!di(m)}0≤i≤m is log-concave and the sequence
{di(m)}0≤i≤m is reverse ultra log-concave. They established the following upper bound
for di(m+ 1)/di(m).

Theorem 2.2. (Chen and Gu [11]) Let m, i be integers and m ≥ 2. We have for
0 ≤ i ≤ m,

di(m+ 1)

di(m)
≤ 4m2 + 7m+ 3 + i

√
4m+ 4i2 + 1− 2i2

2(m+ 1)(m+ 1− i)
. (2.6)

Theorems 2.1 and 2.2 are needed in the proofs of Theorems 1.5 and 1.6, and they
are also needed to have a good guess of the intermediate function f(m, i). We start
with an approximation of

d 2
i−1(m)− di−2(m)di(m)

d 2
i (m)− di−1(m)di+1(m)

.

Recall that the following relation was proved by Chen and Gu [11],

lim
m→+∞

d 2
i (m)(

1 + 1
i

) (
1 + 1

m−i

)
di−1(m)di+1(m)

= 1.

This implies that

d 2
i−1(m)− di−2(m)di(m)

d 2
i (m)− di−1(m)di+1(m)

≈
(i+ 1)(m+ 1− i)d 2

i−1(m)

i(m+ 2− i)d 2
i (m)

. (2.7)
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Using the recurrence relation (2.1), we find

d 2
i−1(m)

d 2
i (m)

=
(m+ 1)2d 2

i (m+ 1)

(m+ i)2d 2
i (m)

− (4m+ 2i+ 3)(m+ 1)di(m+ 1)

(m+ i)2di(m)
+

(4m+ 2i+ 3)2

4(m+ i)2
.

(2.8)
On the other hand, by Theorems 2.1 and 2.2, we get

lim
m→+∞

2(m+ 1)(m+ 1− i)di(m+ 1)

(4m2 + 7m+ i+ 3)di(m)
= 1.

It follows that
di(m+ 1)

di(m)
≈ 4m2 + 7m+ i+ 3

2(m+ 1)(m+ 1− i)
. (2.9)

Substituting (2.9) into (2.8) yields

d 2
i−1(m)

d 2
i (m)

≈ i2(i+ 1 +m)2

(m+ 1− i)2(m+ i)2
. (2.10)

Combining (2.7) and (2.10), we deduce that

d 2
i−1(m)− di−2(m)di(m)

d 2
i (m)− di−1(m)di+1(m)

≈ i(i+ 1)(m+ 1 + i)2

(m+ 1− i)(m+ 2− i)(m+ i)2
. (2.11)

It turns out that the above expression is not an intermediate function that we are
looking form. Naturally, we should try to make it a little bigger. The above expression
gives a guideline for a suitable adjustment. Let us consider the shifts of the factors in
the expression (2.11). After a few trials, we find that the function below serves the
purpose as a desired intermediate function

(i+ 1)(i+ 2)(m+ i+ 3)2

(m+ 1− i)(m+ 2− i)(m+ i+ 2)2
, (2.12)

which is the function f(m, i) as given by (1.7).

3 Proof of Theorem 1.5

In this section, we give a proof of Theorem 1.5. The idea goes as follows. We wish to
prove an equivalent form of Theorem 1.5, that is, the difference

(m+ 1− i)(m+ 2− i)(m+ i+ 2)2
(
d 2
i (m)− di−1(m)di+1(m)

)
− (i+ 1)(i+ 2)(m+ i+ 3)2

(
d 2
i+1(m)− di(m)di+2(m)

)
(3.1)
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is positive. As will be seen, in view of the recurrence relations of di(m), (3.1) can be
written as

A(m, i)d
2

i (m+ 1) +B(m, i)di(m+ 1)di(m) + C(m, i)d
2

i (m), (3.2)

where A(m, i), B(m, i) and C(m, i) are given by (3.4), (3.5) and (3.6). To prove
that the quadratic form (3.2) is positive, we consider the quadratic polynomial in
di(m+ 1)/di(m)

A(m, i)
d

2

i (m+ 1)

d 2
i (m)

+B(m, i)
di(m+ 1)

di(m)
+ C(m, i). (3.3)

It will be shown that A(m, i) < 0 for 1 ≤ i ≤ m. Moreover, we shall show that the
above polynomial has distinct real roots x1 and x2. Assume that x1 < x2. If the
relation

x1 <
di(m+ 1)

di(m)
< x2

holds, then the quadratic polynomial (3.3) is positive.

Let

A(m, i) = −(m+ 1)2(m+ 1− i)2D(m, i)

(m+ i)i2(i+ 1)
, (3.4)

B(m, i) =
(i−m− 1)(m+ 1)E(m, i)

(i+m)i2(i+ 1)
, (3.5)

C(m, i) =
F (m, i)

4(i+m)i2(i+ 1)
, (3.6)

∆1(m, i) = B2(m, i)− 4A(m, i)C(m, i)

=
(m+ 1− i)2(m+ 1)2 (4(m+ i)2G(m, i) +H(m, i))

i2(i+m)2(i+ 1)2
, (3.7)

where D(m, i), E(m, i), F (m, i), G(m, i) and H(m, i) are given in the Appendix.

Theorem 3.1. For 1 ≤ i ≤ m− 1 and m ≥ 126, we have

−B(m, i) +
√

∆1(m, i)

2A(m, i)
<
di(m+ 1)

di(m)
<
−B(m, i)−

√
∆1(m, i)

2A(m, i)
. (3.8)

In order to prove Theorem 3.1, it is necessary to show that ∆1(m, i) > 0.

Lemma 3.2. For 1 ≤ i ≤ m− 1 and m ≥ 126, we have ∆1(m, i) > 0.
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Proof. In view of the definition (3.7) of ∆1(m, i) and the fact that H(m, i) is positive,
it suffices to show that G(m, i) > 0 for 1 ≤ i ≤ m − 1. We consider three cases with
respect to the range of i.

Case 1: i3 ≥ 3
7
m2. In this case, we have

m2(2i3 −m2)2 ≥ 0, 56i6m− 24i3m3 ≥ 0, 20i5m2 − 2i2m4 > 0,

and so G(m, i) > 0.

Case 2: m2

10
< i3 < 3

7
m2. In this case, we have

m2(2i3 −m2)2 ≥ m6

49
, 56i6m− 24i3m3 ≥ −18

7
m5, 20i5m2 − 2i2m4 > 0.

Thus, for m ≥ 126,

G(m, i) ≥ m6

49
− 18

7
m5 > 0.

Case 3: 1 ≤ i3 ≤ m2

10
. In this case, we have

m2(2i3 −m2)2 ≥ 16m6

25
, 56i6m− 24i3m3 ≥ −46

25
m5, 20i5m2 − 2i2m4 > −2m16/3.

It follows that

G(m, i) ≥ 16m6

25
− 46

25
m5 − 2m16/3. (3.9)

It is easily checked that the right-hand side of (3.9) is positive for m ≥ 10. This
completes the proof.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We first consider the lower bound of di(m+ 1)/di(m), namely,

di(m+ 1)

di(m)
>
−B(m, i) +

√
∆1(m, i)

2A(m, i)
. (3.10)

From the inequality (2.5) of Kauers and Paule [21], we see that (3.10) is a consequence
of the relation

4m2 + 7m+ i+ 3

2(m+ 1)(m+ 1− i)
>
−B(m, i) +

√
∆1(m, i)

2A(m, i)
. (3.11)

Since A(m, i) < 0 for 1 ≤ i ≤ m, the inequality (3.11) can be rewritten as

A(m, i)
4m2 + 7m+ i+ 3

(m+ 1)(m+ 1− i)
+B(m, i) <

√
∆1(m, i). (3.12)

9



To verify (3.12), we calculate the difference of the squares of both sides. It is easily
checked that

∆1(m, i)−
(
A(m, i)

4m2 + 7m+ i+ 3

(m+ 1)(m+ 1− i)
+B(m, i)

)2

=
(m+ 1− i)2(m+ 1)2K(m, i)

i2(i+m)2(i+ 1)2
,

where K(m, i) is given in the Appendix. It is easy to check that K(m, i) is positive for
1 ≤ i ≤ m− 1. Hence, by Lemma 3.2, we obtain (3.12). This yields (3.10).

It remains to the consider the upper bound of di(m+ 1)/di(m), namely,

di(m+ 1)

di(m)
<
−B(m, i)−

√
∆1(m, i)

2A(m, i)
. (3.13)

By Theorem 2.2 of Chen and Gu [11], we see that (3.13) is a consequence of the
following relation

4m2 + 7m+ i
√

4i2 + 4m+ 1− 2i2 + 3

2(m+ 1)(m+ 1− i)
<
−B(m, i)−

√
∆1(m, i)

2A(m, i)
. (3.14)

Since A(m, i) < 0 for 1 ≤ i ≤ m− 1, (3.14) can be rewritten as

A(m, i)
4m2 + 7m+ i

√
4i2 + 4m+ 1− 2i2 + 3

(m+ 1)(m+ 1− i)
+B(m, i) > −

√
∆1(m, i). (3.15)

As before, we can check (3.15) by computing the difference of the squares of both sides.
It is readily seen that

∆1(m, i)−

(
A(m, i)

4m2 + 7m+ i
√

4i2 + 4m+ 1− 2i2 + 3

(m+ 1)(m+ 1− i)
+B(m, i)

)2

=
(m+ 1− i)2(m+ 1)2L(m, i)

i2(i+m)(i+ 1)2
,

where L(m, i) is given in the Appendix. It is easy to verify that

(2i2m+ 4im2 + 2m3 + i2 + 24m+ 14im+ 13m2 + 6i+ 9)2(4i2 + 4m+ 1)− (−4i3m

− 8i2m2 − 4im3 − 20i2m− 24im2 − 4m3 + 7i2 − 28im− 19m2 + 20i− 20m+ 7)2

=16i6m+ 96i5m2 + 176i4m3 + 128i3m4 + 48i2m5 + 32im6 + 16m7

+ 4i6 + 264i5m+ 972i4m2 + 1088i3m3 + 492i2m4 + 312im5 + 196m6

+ 48i5 + 1456i4m+ 3248i3m2 + 2064i2m3 + 1184im4 + 960m5 + 168i4
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+ 3508i3m+ 4368i2m2 + 2372im3 + 2384m4 + 164i3 + 3876i2m

+ 3036im2 + 3196m3 − 120i2 + 2164im+ 2404m2 − 172i+ 1036m+ 32,

which is positive for 1 ≤ i ≤ m − 1. So we reach the conclusion that L(m, i) > 0.
Therefore, we obtain (3.15) which implies (3.13). In view of (3.10) and (3.13), we
arrive at (3.8). This completes the proof.

To conclude this section, we present a proof of Theorem 1.5.

Proof of Theorem 1.5. First we show that the difference (3.1) can be represented in
terms of di(m) and di(m + 1). In view of (2.1), (2.2) and (2.4), we find that for
1 ≤ i ≤ m− 1,

di+1(m) =
(4m− 2i+ 3)(m+ i+ 1)

2i(i+ 1)
di(m)− (m+ 1− i)(m+ 1)

i(i+ 1)
di(m+ 1), (3.16)

di+2(m) =
2m+ 1

i+ 2
di+1(m)− (m− i)(m+ i+ 1)

(i+ 1)(i+ 2)
di(m), (3.17)

di−1(m) =
m+ 1

m+ i
di(m+ 1)− 4m+ 2i+ 3

2(m+ i)
di(m). (3.18)

Applying the above recurrence relations, we get

(m+ 1− i)(m+ 2− i)(m+ i+ 2)2
(
d 2
i (m)− di−1(m)di+1(m)

)
− (i+ 1)(i+ 2)(m+ i+ 3)2

(
d 2
i+1(m)− di(m)di+2(m)

)
= A(m, i)d 2

i (m+ 1) +B(m, i)di(m+ 1)di(m) + C(m, i)d 2
i (m). (3.19)

It is easily verified that Theorem 1.5 holds for 2 ≤ m ≤ 125. By Theorem 3.1, we
conclude that the difference (3.2) is positive for m ≥ 126 and 1 ≤ i ≤ m − 1. This
completes the proof.

4 Proof of Theorem 1.6

In this section, we give a proof of Theorem 1.6. The main steps can be described as
follows. To prove the theorem, we wish to show that the difference

(i+ 1)(i+ 2)(m+ i+ 3)2
(
d 2
i (m)− di−1(m)di+1(m)

)
− (m+ 1− i)(m+ 2− i)(m+ i+ 2)2

(
d 2
i−1(m)− di−2(m)di(m)

)
(4.1)
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is positive for 1 ≤ i ≤ m− 1. By the recurrence relations of di(m), the difference (4.1)
can be restated as

U(m, i)d
2

i (m+ 1) + V (m, i)di(m+ 1)di(m) +W (m, i)d
2

i (m), (4.2)

where U(m, i), V (m, i) and W (m, i) are given by (4.3), (4.4) and (4.5), respectively.
We need to consider five cases for the range of i. The conclusion in each case implies
that (4.2) is positive. Notice that the definition of ∆2(m, i) is given in (4.6), which can
be either positive or negative depending on the range of i.

Case 1: 1 ≤ i <
(

m2

2

)1/3

−m1/3. In this case, ∆2(m, i) can be either nonnegative or

negative. We need to consider the case when ∆2(m, i) is nonnegative. Theorem 4.1 is
established for this purpose.

Case 2:
(

m2

2

)1/3

−m1/3 ≤ i ≤
(

m2

2

)1/3

. In this case, we show that ∆2(m, i) < 0.

Case 3:
(

m2

2

)1/3

< i < m2/3. In this case, ∆2(m, i) can be either nonnegative or

negative. We establish Theorem 4.3 when ∆2(m, i) is nonnegative.

Case 4: m2/3 ≤ i ≤ m− 4. We show that ∆2(m, i) > 0 and give a new lower bound on
the ratio di(m+ 1)/di(m) which implies that (4.2) is positive.

Case 5: m− 3 ≤ i ≤ m− 1. It can be verified (4.2) is positive.

The following notation will be used in the statement of Theorem 4.1. Let

U(m, i) =
(m+ 1)2(m+ 1− i)R(m, i)

i(m+ i)2
, (4.3)

V (m, i) =
(m+ 1)S(m, i)

i(m+ i− 1)(m+ i)2
, (4.4)

W (m, i) =
T (m, i)

4i(m+ i− 1)(m+ i)2
, (4.5)

∆2(m, i) = V 2(m, i)− 4U(m, i)W (m, i) =
(m+ 1)2X(m, i)

i(m+ i)2(m+ i− 1)2
, (4.6)

where R(m, i), S(m, i), T (m, i) and X(m, i) are given in the Appendix. Obviously,
U(m, i) is positive for 1 ≤ i ≤ m− 1.

In Case 1, we obtain the following inequality.

12



Theorem 4.1. If ∆2(m, i) ≥ 0, we have for 1 ≤ i ≤
(

m2

2

)1/3

−m1/3 and m ≥ 15,

di(m+ 1)

di(m)
<
−V (m, i)−

√
∆2(m, i)

2U(m, i)
. (4.7)

Proof. From the inequality (2.6) of Chen and Gu [11], we see that (4.7) can be deduced
from the following relation

4m2 + 7m+ i
√

4i2 + 4m+ 1 + 3− 2i2

2(m+ 1)(m+ 1− i)
<
−V (m, i)−

√
∆2(m, i)

2U(m, i)
. (4.8)

To prove (4.8), let

A1(m, i) = 2(m+ 1)(m+ 1− i),

B1(m, i) = 4m2 + 7m+ 3− 2i2,

C1(m, i) = 4i2 + 4m+ 1.

Clearly, (4.8) can be restated as

D1(m, i) > A1(m, i)
√

∆2(m, i) + 2iU(m, i)
√
C1(m, i), (4.9)

where D1(m, i) is given by

D1(m, i) = − V (m, i)A1(m, i)− 2U(m, i)B1(m, i)

=
2(m+ 1)2(m+ 1− i)(2m+ 1)(i2 − i+m+m2)(m+ 2 + i)2

(i+m)2(i+m− 1)
.

Hence D1(m, i) is positive for 1 ≤ i ≤ m. Since D1(m, i) is positive, the inequality
(4.9) follows from the inequality

D2
1(m, i) >

(
A1(m, i)

√
∆2(m, i) + 2iU(m, i)

√
C1(m, i)

)2

, (4.10)

which can be rewritten as

E1(m, i) > 4iA1(m, i)U(m, i)
√

∆2(m, i)C1(m, i), (4.11)

where E1(m, i) is given by

E1(m, i) = D2
1(m, i)− A2

1(m, i)∆2(m, i)− 4i2U2(m, i)C1(m, i). (4.12)

13



It can be seen that (4.11) is valid if E1(m, i) is positive and the following inequality
holds,

E2
1(m, i) > 16i2A2

1(m, i)U2(m, i)∆2(m, i)C1(m, i). (4.13)

Given the definition (4.12) of E1(m, i), it is easily checked that

E1(m, i) = −8(m+ 1− i)2(m+ 1)4R1(m, i)S1(m, i)

i(m+ i− 1)(m+ i)3
, (4.14)

where R1(m, i) and S1(m, i) are given in the Appendix. Using the expression (4.7)
of E1(m, i), we see that the positivity of E1(m, i) can be derived from the fact that

S1(m, i) is negative for 1 ≤ i ≤
(

m2

2

)1/3

− m1/3 and m ≥ 15. We now proceed to

show that S1(m, i) is negative. For 15 ≤ m ≤ 728, the claim can be directly verified.
Therefore, we may assume that m ≥ 729. By putting the terms of S1(m, i) into groups
as given in the Appendix, it can be seen that the sum in every pair of parentheses is

negative for 1 ≤ i ≤
(

m2

2

)1/3

−m1/3 and m ≥ 729. Moreover, it is easily checked that

8i5m2 − 4i2m4 < −15m11/3i2 + 20m10/3i2 − 8m3i2.

It follows that

S1(m, i) < −15m11/3i2 + 20m10/3i2 − 8m3i2 + 36i4m2 + 12i3m3

< (−5m5/3 + 43m4/3)m2i2,

which is negative when m ≥ 729. So we conclude that E1(m, i) > 0 for 1 ≤ i ≤(
m2

2

)1/3

−m1/3 and m ≥ 15.

We now turn to the proof of (4.13). Consider the difference of the squares of both
sides. It is routine to check that

F1(m, i) = E2
1(m, i)− 16i2U2(m, i)A2

1(m, i)∆2(m, i)C1(m, i)

=
−256(m+ 1− i)4(m+ 1)8M2

1 (m, i)N1(m, i)

i2(i+m− 1)2(i+m)6
, (4.15)

where M1(m, i) and N1(m, i) are given in the Appendix. It is now easy to see that

N1(m, i) < 0 for 1 ≤ i <
(

m2

2

)1/3

− m1/3 and m ≥ 15. So we have F1(m, i) > 0 for

1 ≤ i <
(

m2

2

)1/3

−m1/3 and m ≥ 15. Hence the inequality (4.13) holds. This completes

the proof.

For Case 2, the following lemma asserts that ∆2(m, i) is negative.
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Lemma 4.2. For
(

m2

2

)1/3

−m1/3 ≤ i ≤
(

m2

2

)1/3

and m ≥ 50, we have ∆2(m, i) < 0.

Proof. By the definition (4.6) of ∆2(m, i), it suffices to show that X(m, i) is negative

for
(

m2

2

)1/3

−m1/3 ≤ i ≤
(

m2

2

)1/3

and m ≥ 50. For 50 ≤ m ≤ 2743, the lemma can be

directly verified. Hence we may assume that m ≥ 2744. Note that the expression in

every pair of parentheses is negative for
(

m2

2

)1/3

−m1/3 ≤ i ≤
(

m2

2

)1/3

and m ≥ 2744.

On the other hand, it can be checked that

16i7m4 − 16i4m6 + 4im8 = 4im4(2i3 −m2)2 < 58im22/3 ≤ 47m8,

64i8m3 − 24i2m7 + 16i11 + 64i10m+ 96i9m2 ≤ −8i2m7 + 176i9m2 ≤ −5m25/3 + 22m8.

This yields
X(m, i) < −5m25/3 + 69m8,

where X(m, i) is given in the Appendix. But the right-hand side of the above inequality
is negative when m ≥ 2744. This completes the proof.

As will be seen, Theorems 4.2 and 4.3 have the same expression of the lower bound
for di(m + 1)/di(m). This expression will be needed in the proof of Theorem 1.6. It
should be noted that for the case of Theorem 4.2, we shall show that this lower bound
can be derived from the lower bound of Kauers and Paule [21]. Numerical evidence
shows that the bound in Theorem 4.3 seems sharper than the bound of Kauers and
Paule when i is large.

For Case 3, we have the following inequality. It should remarked that in this case
∆2(m, i) can be either positive or negative, and there is no need to specify the range
of i for which ∆2(m, i) is positive.

Theorem 4.3. If ∆2(m, i) ≥ 0, we have for
(

m2

2

)1/3

≤ i ≤ m2/3 and m ≥ 2,

di(m+ 1)

di(m)
>
−V (m, i) +

√
∆2(m, i)

2U(m, i)
. (4.16)

Proof. By the lower bound of di(m+ 1)/di(m), as given in (2.5), we see that (4.16) can
be obtained from the following relation

4m2 + 7m+ i+ 3

2(m+ 1)(m+ 1− i)
>
−V (m, i) +

√
∆2(m, i)

2U(m, i)
, (4.17)

which can be rewritten as

U(m, i)
4m2 + 7m+ i+ 3

(m+ 1)(m+ 1− i)
+ V (m, i) >

√
∆2(m, i). (4.18)
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In order to prove (4.18), we shall show that for
(

m2

2

)1/3

≤ i ≤ m2/3 and m ≥ 2,

U(m, i)
4m2 + 7m+ i+ 3

(m+ 1)(m+ 1− i)
+ V (m, i) > 0. (4.19)

and (
U(m, i)

4m2 + 7m+ i+ 3

(m+ 1)(m+ 1− i)
+ V (m, i)

)2

−∆2(m, i) > 0 (4.20)

We first deal with inequality (4.19). It is easily checked that

U(m, i)
4m2 + 7m+ i+ 3

(m+ 1)(m+ 1− i)
+ V (m, i) =

(m+ 1)P (m, i)

(m+ i)2(m+ i− 1)
,

where P (m, i) is given in the Appendix. Since the sum in every pair of parentheses in

the expression of P (m, i) is nonnegative for
(

m2

2

)1/3

≤ i ≤ m2/3 and m ≥ 2, it follows

that P (m, i) > 0. Thus, we obtain (4.19).

We still need to consider the inequality (4.20). Clearly,(
U(m, i)

4m2 + 7m+ i+ 3

(m+ 1)(m+ 1− i)
+ V (m, i)

)2

−∆2(m, i) =
4(m+ 1)2G1(m, i)H1(m, i)

(m+ i)4(i+m− 1)i
,

where G1(m, i) and H1(m, i) are given in the Appendix. We see that G1(m, i) > 0 and

H1(m, i) > 0 for
(

m2

2

)1/3

≤ i ≤ m2/3 and m ≥ 2. Hence the inequality (4.20) holds.

This completes the proof.

For Case 4, we give a lower bound for di(m+ 1)/di(m) that takes the same form as
the lower bound in Case 3.

Theorem 4.4. For m ≥ 273 and m2/3 ≤ i ≤ m− 4, we have

di(m+ 1)

di(m)
>
−V (m, i) +

√
∆2(m, i)

2U(m, i)
. (4.21)

For the clarity of presentation, we establish two lemmas for the proof of Theorem
4.4. First, we prove that ∆2(m, i) is positive.

Lemma 4.5. For m2/3 ≤ i ≤ m− 1 and m ≥ 19, we have ∆2(m, i) > 0.

Proof. By the definition (4.6) of ∆2(m, i), it suffices to show that X(m, i) is positive
for m2/3 ≤ i ≤ m − 1 and m ≥ 19. By direct computation we find that the lemma
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holds for 19 ≤ m ≤ 132. Moreover, for m ≥ 133 and m2/3 ≤ i ≤ m− 1, it can be seen
that X(m, i) > 0, see the Appendix. This completes the proof.

The proof of Theorem 4.4 is by induction on m. The inductive argument requires
an inequality concerning the desired lower bound. We present this inequality in Lemma
4.6. Let

Y1(m, i) =
(m+ i+ 1)(4m+ 3)(4m+ 5)

4(m+ 2− i)(m+ 1)(m+ 2)
,

Y2(m, i) =
−4i2 + 8m2 + 24m+ 19

2(m+ 2− i)(m+ 2)
,

Y3(m, i) = 2U(m+ 1, i)Y2(m, i) + V (m+ 1, i) =
(m+ 2)Y5(m, i)

(m+ i)i(m+ i+ 1)
,

Y4(m, i) = Y 2
3 (m, i)−∆2(m+ 1, i) =

(m+ 2)2Y6(m, i)

(m+ 1 + i)2i2(m+ i)
,

where the explicit expressions for Y5(m, i) and Y6(m, i) are given in the Appendix. It is
easily seen that Y1(m, i), Y2(m, i), Y3(m, i) and Y4(m, i) are all positive for 1 ≤ i ≤ m−1
and m ≥ 2.

Lemma 4.6. For m2/3 ≤ i ≤ m− 4 and m ≥ 273, we have

−V (m, i) +
√

∆2(m, i)

2U(m, i)
>

Y1(m, i)

Y2(m, i)− −V (m+1,i)+
√

∆2(m+1,i)

2U(m+1,i)

. (4.22)

Proof. Let us rewrite (4.22) as

−V (m, i) +
√

∆2(m, i)

2U(m, i)
>

2U(m+ 1, i)Y1(m, i)

Y3(m, i)−
√

∆2(m+ 1, i)
. (4.23)

Since Y3(m, i) > 0 and Y4(m, i) > 0 for m2/3 ≤ i ≤ m− 4 and m ≥ 273, the inequality
(4.23) follows from the inequality

V (m, i)
√

∆2(m+ 1, i) + Y3

√
∆2(m, i) > Z1(m, i) +

√
∆2(m, i)∆2(m+ 1, i), (4.24)

where Z1(m, i) is given by

Z1(m, i) = 4U(m, i)U(m+ 1, i)Y1(m, i) + V (m, i)Y3(m, i). (4.25)

Clearly, Z1(m, i) < 0 for m2/3 ≤ i ≤ m − 4 and m ≥ 273. To prove (4.24), we shall
show that the following three inequalities hold,

Z1(m, i) +
√

∆2(m, i)∆2(m+ 1, i) < 0, (4.26)
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V (m, i)
√

∆2(m+ 1, i) + Y3(m, i)
√

∆2(m, i) < 0 (4.27)

and (
V (m, i)

√
∆2(m+ 1, i) + Y3(m, i)

√
∆2(m, i)

)2

<
(
Z1(m, i) +

√
∆2(m, i)∆2(m+ 1, i)

)2

. (4.28)

We first consider inequality (4.26). Let

Z2(m, i) = ∆2(m, i)∆2(m+ 1, i)− Z2
1(m, i). (4.29)

Employing the same argument as in the proofs of Lemmas 3.2, 4.2 and 4.5, we find
that Z2(m, i) < 0 for m2/3 ≤ i ≤ m − 4 and m ≥ 273. The detailed verification is
omitted since the expansion of Z2(m, i) is a little lengthy. Thus we obtain (4.26) since
both Z1(m, i) and Z2(m, i) are negative for m2/3 ≤ i ≤ m− 4 and m ≥ 273.

We now turn to the proof of (4.27). Note that V (m, i) < 0 for 1 ≤ i ≤ m− 1. Let

Z3(m, i) = Y 2
3 (m, i)∆2(m, i)− V 2(m, i)∆2(m+ 1, i). (4.30)

It is not difficult to show that Z3(m, i) < 0 for m2/3 ≤ i ≤ m − 4 and m ≥ 273.
The detailed proof is omitted as before. Since Z3(m, i) and V (m, i) are negative and
Y3(m, i) and ∆2(m, i) are positive for m2/3 ≤ i ≤ m − 4 and m ≥ 273, we arrive at
(4.27).

It remains to prove (4.28), which can be restated as

Z4(m, i) > Z5(m, i)
√

∆2(m, i)∆2(m+ 1, i), (4.31)

where Z4(m, i) and Z5(m, i) are given by

Z4(m, i) = V 2(m, i)∆2(m+ 1, i) + Y 2
3 (m, i)∆2(m, i)

− Z2
1(m, i)−∆2(m, i)∆2(m+ 1, i), (4.32)

Z5(m, i) = 2Z1(m, i)− 2V (m, i)Y3(m, i). (4.33)

Using the same argument as in the proofs of Lemmas 3.2, 4.2 and 4.5, we can deduce
that Z4(m, i) and Z5(m, i) are positive for m2/3 ≤ i ≤ m− 4 and m ≥ 273. Therefore,
(4.31) is a consequence of the fact that

Z6(m, i) = Z2
5(m, i)∆2(m, i)∆2(m+ 1, i)− Z2

4(m, i) (4.34)

is positive for m2/3 ≤ i ≤ m− 4 and m ≥ 273, which is not difficult to prove although
Z6(m, i) is rather tedious. This completes the proof.
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We are now in a position to prove Theorem 4.4.

Proof of Theorem 4.4. We proceed by induction on m. It is easy to check that the
theorem holds for m = 273. We assume that the theorem is true for n ≥ 273, that is,

di(n+ 1) ≥
−V (n, i) +

√
∆2(n, i)

2U(n, i)
di(n), n2/3 ≤ i ≤ n− 4. (4.35)

We aim to show that (4.21) holds for m = n+ 1, that is,

di(n+ 2) ≥
−V (n+ 1, i) +

√
∆2(n+ 1, i)

2U(n+ 1, i)
di(n+ 1), (n+ 1)2/3 ≤ i ≤ n− 3. (4.36)

In view of Lemma 4.6 and inequality (4.35), we find

di(n+ 1) >
Y1(n, i)

Y2(n, i)− −V (n+1,i)+
√

∆2(n+1,i)

2U(n+1,i)

di(n).

It follows that for n2/3 ≤ i ≤ n− 4,

Y2(n, i)di(n+ 1)− Y1(n, i)di(n) >
−V (n+ 1, i) +

√
∆2(n+ 1, i)

2U(n+ 1, i)
di(n+ 1). (4.37)

By the recurrence relation (2.3), the left hand side of (4.37) equals di(n+ 2). Thus we
have verified (4.36) for (n+ 1)2/3 ≤ i ≤ n− 4. It is still necessary to show that (4.36)
is true for i = n− 3, that is,

dn−3(n+ 2) >
−V (n+ 1, n− 3) +

√
∆2(n+ 1, n− 3)

2U(n+ 1, n− 3)
dn−3(n+ 1). (4.38)

Let

f(n) = 256n11 − 4608n10 + 36544n9 − 177920n8 + 572592n7 − 1218432n6

+ 1573768n5 − 940352n4 − 66903n3 − 65525n2 − 3657n− 963.

By the expression (1.5) of di(m), we have

dn−3(n+ 2)

dn−3(n+ 1)
=

(2n+ 5)(16n4 + 80n3 + 180n2 + 240n+ 189)(2n− 1)

10(n+ 2)(45 + 72n+ 68n2 + 48n3 + 16n4)

>
12− 65n+ 14n2 + 3108n4 − 3041n3 − 1020n5 + 136n6 + 16n7

10(n+ 2)(2n− 3)(1 + 2n+ 33n2 + 4n4 − 16n3)

+
(n− 1)

√
(n− 3)f(n)

10(n+ 2)(2n− 3)(1 + 2n+ 33n2 + 4n4 − 16n3)
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=
−V (n+ 1, n− 3) +

√
∆2(n+ 1, n− 3)

2U(n+ 1, n− 3)
.

Hence the proof is complete by induction.

Finally, we are ready to complete the proof of Theorem 1.6.

Proof of Theorem 1.6. For 2 ≤ m ≤ 272, the theorem can be easily verified. So we may
assume that m ≥ 273. The difference (4.1) can be represented in terms of di(m + 1)
and di(m). From (2.4) it follows that

di−2(m) =
(i− 1)(2m+ 1)

(m+ 2− i)(m+ i− 1)
di−1(m)− i(i− 1)

(m+ 2− i)(m+ i− 1)
di(m). (4.39)

Using recurrence relations (3.16), (3.18) and (4.39), we find that

(i+ 1)(i+ 2)(m+ i+ 3)2
(
d 2
i (m)− di−1(m)di+1(m)

)
− (m+ 1− i)(m+ 2− i)(m+ i+ 2)2

(
d 2
i−1(m)− di−2(m)di(m)

)
= U(m, i)d 2

i (m+ 1) + V (m, i)di(m+ 1)di(m) +W (m, i)d 2
i (m). (4.40)

Hence the theorem says that (4.2) is positive. If ∆2(m, i) < 0, it is obvious that (4.2)
is positive since U(m, i) > 0 for 1 ≤ i ≤ m− 1. We now assume that ∆2(m, i) ≥ 0.

Recall the five cases for the range of i as given before. Case 1: 1 ≤ i <
(

m2

2

)1/3

−

m1/3. By Theorem 4.1, we see that (4.2) is positive. Case 2:
(

m2

2

)1/3

−m1/3 ≤ i ≤(
m2

2

)1/3

. Note that in this case, by Lemma 4.2, we have ∆2(m, i) < 0, which belongs

to the case that we have already considered before. Case 3:
(

m2

2

)1/3

< i < m2/3. It

follows from Theorem 4.3 that (4.2) is positive. Case 4: m2/3 ≤ i ≤ m− 4. The lower
bound given in Theorem 4.4 ensures that (4.2) is positive. It remains to consider the
case when i = m− 3, m− 2, m− 1. Here we only verify the statement for i = m− 3.
The other two cases can be justified analogously. By (1.5), we see that

U(m,m− 3)d 2
m−3(m+ 1) + V (m,m− 3)dm−3(m+ 1)dm−3(m)

+W (m,m− 3)d 2
m−3(m) =

(m+ 1)2(m− 2)g(m)

9216(2m+ 1)2(2m− 1)2(2m− 3)2
2−2m

(
2m+ 2

m+ 1

)2

,

where g(m) is given by

g(m) = 2048m12 − 10240m11 + 16512m10 − 3456m9 − 35232m8 + 99120m7 + 44488m6
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− 375620m5 + 431652m4 − 182601m3 + 7362m2 + 13797m− 2430,

which is positive for m ≥ 273. This completes the proof.

To conclude this paper, we show that the 2-log-concavity of the Boros-Moll polyno-
mials implies the log-concavity of the sequence {i(i+1)(d2

i (m)−di−1(m)di+1(m))}1≤i≤m,
as stated in Theorem 1.7.

Clearly, for i ≥ 2, we have

i(i+ 1)

(i− 1)(i+ 2)
> 1. (4.41)

By Theorem 1.4 and the inequality (4.41), we obtain that for 2 ≤ i ≤ m− 1,

d2
i−1(m)− di−2(m)di(m)

d2
i (m)− di−1(m)di+1(m)

<
i(i+ 1)

(i− 1)(i+ 2)

d2
i (m)− di−1(m)di+1(m)

d2
i+1(m)− di(m)di+2(m)

.

Replacing i by i+ 1, we find that for 1 ≤ i ≤ m− 2,

d2
i (m)− di−1(m)di+1(m)

d2
i+1(m)− di(m)di+2(m)

<
(i+ 1)(i+ 2)

i(i+ 3)

(
d2
i+1(m)− di(m)di+2(m)

)(
d2
i+2(m)− di+1(m)di+3(m)

) ,
which can be written as

i(i+ 1) (d2
i (m)− di−1(m)di+1(m))

(i+ 1)(i+ 2)
(
d2
i+1(m)− di(m)di+2(m)

) < (i+ 1)(i+ 2)
(
d2
i+1(m)− di(m)di+2(m)

)
(i+ 2)(i+ 3)

(
d2
i+2(m)− di+1(m)di+3(m)

) .
Thus the sequence {i(i+ 1)(d2

i (m)− di−1(m)di+1(m))}1≤i≤m is log-concave.
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Appendix

In the statement of Theorem 3.1, the polynomials D(m, i), E(m, i), F (m, i), G(m, i)
and H(m, i) are are given by

D(m, i) = 6m2i+ 2m2i2 + 21mi+ 14mi2 + 4mi3 + 10i

+ 17i2 + 10i3 + 2i4 + 2m3 + 12m2 + 18m,

E(m, i) = 4i2(i2 − 2m2)(i+m)2 + 2(i+m)(10i4 − 4m4 − 9im3 − 27i2m2 − 4i3m)

+ 27i4 − 55i3m− 175i2m2 − 139im3 − 62m4 − 16i3 − 155i2m

− 229im2 − 162m3 − 60i2 − 142im− 162m2 − 30i− 54m,

F (m, i) = 32i2m2(i−m)(i+m)3 + 16m(4i4 + 10i3m− 14i2m2 − 3im3 − 2m4)(i+m)2

+ 2(i+m)(−152m5 − 250im4 − 377i2m3 + 111i3m2 + 181i4m+ 15i5)

+ 168i5 + 694i4m− 280i3m2 − 2052i2m3 − 2160im4 − 1106m5 + 273i4

− i3m− 1809i2m2 − 2831im3 − 1968m4 + 18i3 − 898i2m− 1936im2

− 1836m3 − 207i2 − 663im− 864m2 − 90i− 162m,

G(m, i) = m2(2i3 −m2)2 + (56i6m− 24i3m3) + (20i5m2 − 2i2m4)

+ 4i8 + 8i7m+ 40i7 + 169i6 + 166i5m+ 70i4m2,

H(m, i) = 1588i7 + 4440i6m+ 4768i5m2 + 2148i4m3 + 324i3m4 + 144i2m5

+ 104im6 + 52m7 + 2345i6 + 6666i5m+ 6991i4m2 + 3624i3m3 + 1567i2m4

+ 646im5 + 289m6 + 2418i5 + 7232i4m+ 8044i3m2 + 5340i2m3 + 2234im4

+ 892m5 + 1903i4 + 5810i3m+ 7225i2m2 + 4104im3 + 1618m4 + 1086i3

+ 3332i2m+ 3470im2 + 1608m3 + 321i2 + 914im+ 657m2.

In the proof of Theorem 3.1, the polynomials K(m, i) and L(m, i) are given by

K(m, i) = 4(2i4 + 4i3m+ 2i2m2 + 10i3 + 14i2m+ 6im2 + 2m3 + 17i2 + 21im+ 12m2

+ 10i+ 18m)(2i3m2 + 2i2m3 − 2i5 − 2i4m− 9i4 + 2i3m+ 16i2m2 + 6im3

+m4 − 7i3 + 23i2m+ 23im2 + 9m3 + 12i2 + 16im+ 20m2 + 8i+ 8m),

L(m, i) = 2(2i4 + 4i3m+ 2i2m2 + 10i3 + 14i2m+ 6im2 + 2m3 + 17i2
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+ 21im+ 12m2 + 10i+ 18m)
(
− 4i3m− 8i2m2 − 4im3 − 20i2m

− 24im2 − 4m3 + 7i2 − 28im− 19m2 + 20i− 20m+ 7

+ (2i2m+ 4im2 + 2m3 + i2 + 24m+ 14im+ 13m2 + 6i+ 9)
√

4i2 + 4m+ 1
)
.

In the statement of Theorem 4.1, the polynomials R(m, i), S(m, i), T (m, i) and
X(m, i) are given by

R(m, i) = 2i2m2 + 4mi3 + 6im2 + 14mi2 + 2i4 + 10i3

+ 21mi+ 17i2 + 2m3 + 12m2 + 18m+ 10i,

S(m, i) = 4i2(i2 − 2m2)(i+m)3 + 2(8i4 − 4i3m− 21i2m2 − 9im3 − 4m4)(i+m)2

+ (i+m)(−54m4 − 121im3 − 99i2m2 − 41i3m+ 7i4)− 41i4

− 98i3m− 187i2m2 − 262im3 − 100m4 − 41i3 − 51i2m

− 106im2 + 25i2 + 45im+ 108m2 + 30i+ 54m,

T (m, i) = 32i2m2(i+m)4 + 16m(4i4 + 18i3m+ 18i2m2 + 7im3 + 2m4)(i+m)2

+ 2(i+m)(120m5 + 414im4 + 601i2m3 + 523i3m2 + 199i4m+ 15i5)

+ 132i5 + 850i4m+ 1912i3m2 + 2652i2m3 + 2084im4 + 562m5 + 153i4

+ 417i3m+ 983i2m2 + 1307im3 + 300m4 − 48i3 − 328i2m

− 248im2 − 432m3 − 177i2 − 405im− 540m2 − 90i− 162m,

X(m, i) = 16i7m4 − 16i4m6 + 4im8 + 64i8m3 − 24i2m7 + 16i11 + 64i10m+ 96i9m2

+ (128i10 + 448i9m+ 624i8m2 + 448i7m3 + 160i6m4 − 100i3m6)

+ (372i9 + 1280i8m+ 1868i7m2 + 1256i6m3 + 128i5m4 − 240i4m5)

+ (340i8 + 1712i7m+ 2520i6m2 + 620i5m3 − 1132i4m4 − 1096i3m5

− 528i2m6) + (3692i2m− 52im7 − 16m8 − 523i7 − 2i6m− 509i5m2

− 2584i4m3 − 3749i3m4 − 2910i2m5 − 635im6 − 176m7 − 1416i6

− 5048i3m3 − 5940i2m4 − 1810im5 − 656m6 − 586i5 − 3890i4m

− 3588i2m3 − 667im4 − 688m5 + 1240i4 + 1054i3m+ 2274i2m2

+ 3216im3 + 1104m4 + 1221i3 + 2896im2 + 2160m3 − 3550i5m

− 4508i4m2 − 268i2 − 2525i3m2 + 488im− 432m2 − 524i− 1296m).
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In the proof of Theorem 4.1, the polynomials R1(m, i), S1(m, i), M1(m, i) and
N1(m, i) are given by

R1(m, i) =2i2m2 + 4mi3 + 6im2 + 14mi2 + 2i4

+ 10i3 + 21mi+ 17i2 + 2m3 + 12m2 + 18m+ 10i,

S1(m, i) =8i5m2 − 4i2m4 + 36i4m2 + 12i3m3 + (16i6m− 4m5) + (8i7 − 2im4)

+ (32i6 + 52i5m+ 30i5 + 88i4m+ 66i3m2 − 28i2m3 − 6im4)

+ (36m− 27i4 + 55i3m− 65i2m2 − 23im3 − 24m4 − 56i3

− 101i2m− 9im2 − 32m3 − 9i2 − 20im+ 24m2 + 22i),

M1(m, i) =2i4 + 4i3m+ 2i2m2 + 10i3 + 14i2m+ 6im2

+ 2m3 + 17i2 + 21im+ 12m2 + 10i+ 18m,

N1(m, i) =4i10m− 40i8m3 − 96i7m4 − 128i6m5 − 128i5m6 − 88i4m7 − 32i3m8 − 4i2m9

+ i10 + 12i9m− 92i8m2 − 400i7m3 − 774i6m4 − 1100i5m5 − 1072i4m6

− 592i3m7 − 171i2m8 − 32im9 − 4m10 + 6i9 − 58i8m− 556i7m2 − 1602i6m3

− 3236i5m4 − 4334i4m5 − 3204i3m6 − 1270i2m7 − 322im8 − 48m9 − 3i8

− 351i7m− 1487i6m2 − 4194i5m3 − 7663i4m4 − 7213i3m5 − 3519i2m6

− 1122im7 − 208m8 − 87i7 − 695i6m− 2422i5m2 − 5984i4m3 − 6495i3m4

− 3165i2m5 − 1272im6 − 336m7 − 161i6 − 399i5m− 1212i4m2 − 107i3m3

+ 2447i2m4 + 1012im5 + 104m6 + 87i5 + 839i4m+ 3175i3m2 + 6101i2m3

+ 2902im4 + 816m5 + 377i4 + 1388i3m+ 3137i2m2 + 862im3 + 432m4

+ 32i3 − 20i2m− 1308im2 − 432m3 − 252i2 − 720im− 324m2.

In the proof of Theorem 4.3, the polynomials P (m, i), G1(m, i) and H1(m, i) are
given by

P (m, i) = 4i6 + (4i3m3 − 2m5) + (38i3m2 − 9m4) + (14i2m3 − 11m3) + 12i5m

+ 18i5 + 44i4m+ (21i4 − 10i3) + 60i3m+ (35i2m− 21im) + 12i4m2

+ (64i2m2 − 10m2 − 22m) + 16im3 + (34im2 − 27i2 − 6i),

G1(m, i) = 2i4 + 4i3m+ 2i2m2 + 10i3 + 14i2m+ 6im2
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+ 2m3 + 17i2 + 21im+ 12m2 + 10i+ 18m,

H1(m, i) = 2i7 + 4i6m+ 7i6 + 11i5m+ 8i4m2 + 14i3m3 + 15i2m4 + 3i4

+ (7im5 − 4i4m3) + (2m6 − 2i3m4) + 7i5 + 34i4m+ 68i3m2 + 58i2m3

+ (29im4 − 10i2m) + (12m5 − 12m3) + (61i3m− 14i2 − 40im)

+ (63i2m2 − 25im2 − 18m2) + 21im3 + 16m4 − 5i3.

In the proof of Lemma 4.6, the polynomials Y5(m, i) and Y6(m, i) are given by

Y5(m, i) = 4i2(2m2 − i2)(i+m)2 + 2(i+m)(4m4 + 7im3 + 31i2m2 + 4i3m− 12i4)

− 35i4 + 59i3m+ 199i2m2 + 151im3 + 82m4 + 16i3 + 181i2m+ 321im2

+ 282m3 + 70i2 + 294im+ 368m2 + 106i+ 160m,

Y6(m, i) = (2i4 + 4i3m+ 2i2m2 + 14i3 + 18i2m+ 6im2 + 2m3 + 33i2 + 33im+ 18m2

+ 37i+ 48m+ 32)
(
32i2m2(m− i)(i+m)2 + 16m(i+m)(2m4 + im3

+ 16i2m2 − 11i3m− 4i4)− 30i5 − 394i4m− 110i3m2 + 762i2m3 + 300im4

+ 368m5 − 168i4 − 338i3m+ 1154i2m2 + 558im3 + 1538m4 + 1028i2m

− 141i3 + 631im2 + 2882m3 + 391i2 + 639im+ 2480m2 + 260i+ 800m
)
.

In the proof of Lemma 4.5, we need to check that for m ≥ 133 and m2/3 ≤ i ≤ m−1,
X(m, i) > 0. Indeed, we have

X(m, i) ≥ 16i11 + 64i10m+ 96i9m2 + 40i8m3 + 24(i8m3 − i2m7) + 16(i7m4 − i4m6)

+ 128i10 + (448i9m− 176m7) + 624i8m2 + (292i7m3 − 240i4m5 − 52im7)

+ (116i6m4 − 100i3m6 − 16m8) + (1868i7m2 − 1132i4m4 − 635im6)

+ 1096(i6m3 − i3m5) + (160m2/3 − 2910)i2m5 + (620m2/3 − 2584)i5m3

+ (128m4/3 − 3749)i3m4 + (4m− 528)m6i2 + (340m2/3 − 523)i7 + 1712i7m

+ (2520i6m2 − 2i6m− 509i5m2) + 372i9 + 1280i8m− 22928m6 − 11944m5

≥ 96m8 − 22928m6 − 11944m5,

which is positive for m ≥ 133.
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