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Abstract. Let p(n) denote the number of overpartitions of n. It was conjectured by
Hirschhorn and Sellers that p(40n+35) = 0 (mod 40) for n > 0. Employing 2-dissection
formulas of theta functions due to Ramanujan, and Hirschhorn and Sellers, we obtain a
generating function for p(40n+ 35) modulo 5. Using the (p, k)-parametrization of theta
functions given by Alaca, Alaca and Williams, we prove the congruence p(40n + 35)
0 (mod 5) for n > 0. Combining this congruence and the congruence p(4n + 3)
0 (mod 8) for n > 0 obtained by Hirschhorn and Sellers, and Fortin, Jacob and Mathieu,
we confirm the conjecture of Hirschhorn and Sellers.

1 Introduction

The objective of this paper is to give a proof of a conjecture of Hirschhorn and Sellers
on the number of overpartitons. We shall use the technique of dissections of theta
functions.

Let us begin with some notation and terminology on g¢-series and partitions. We
adopt the common notation

(1.1) (a;0)oo = [ [ (1 = ag"),

n=0
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where |g| < 1, and we write

(1.2) (a1, a2, -, 03 @)oo = (013 @) o0 (A2; @)oo =+ (A} @)oo

Recall that the Ramanujan theta function f(a,b) is defined by

o0

(1.3) fla,b) = Z gD /2pn(n1)/2.

n=—oo

where |ab| < 1. The Jacobi triple product identity can be restated as
(14) f(aa b) = (—(l, _b7 CLb, ab)OO

Here is a special case of (1.3), namely,

o0

(1.5) (=) = f(=¢,=¢") = D> (=1)"¢"®" "V = (g5 ¢)w-

n=—oo

For any positive integer n, we use f, to denote f(—¢"), that is,

(16) RO | (e

The function f,, is related to the generating function of overpartitions. A partition
of a positive integer n is a nonincreasing sequence of positive integers whose sum is
n. An overpartition of n is a partition in which the first occurrence of a number may
be overlined, see Corteel and Lovejoy [CL]. For n > 1, let p(n) denote the number of
overpartitions of n, and we set p(0) = 1. Corteel and Lovejoy [CL] showed that the
generating function for p(n) is given by

(1.7) S B = jf—

Hirschhorn and Sellers [HS-1], and Fortin, Jacob and Mathieu [FJM] obtained the
following Ramanujan-type generating function formulas for p(2n + 1), p(4n + 3), and
p(8n+17):

— . f2f8
(1.8) ;p@ +1)¢" flf
(1.9) Zp (4n 4 3)q f2f4



e 22
(1.10) > p(8n+7)q" =642
1

n=0

The above identities lead to congruences modulo 2, 8 and 64 for the overpartition
function. Mahlburg [M] proved that p(n) is divisible by 64 for almost all n by using
relations between p(n) and the number of representations of n as a sum of squares.
Using the theory of modular forms, Treneer [T] showed that the coefficients of a wide
class of weakly holomorphic modular forms have infinitely many congruence relations
for powers of every prime p other than 2 and 3. In particular, Treneer [T] proved that
p(5m?®n) = 0 (mod 5) for any n that is coprime to m, where m is a prime satisfying
m = —1 (mod 5).
The following conjecture was posed by Hirschhorn and Sellers [HS-1].

Conjecture 1.1. Forn >0,
(1.11) p(40n 4+ 35) =0 (mod 40).

To prove the above conjecture, we derive a generating function for p(40n + 35)
modulo 5 by using 2-dissection formulas for quotients of theta functions given by Ra-
manujan [B], and Hirschhorn and Sellers [HS-2]. Then we use the (p, k)-parametrization
of theta functions due to Alaca, Alaca and Williams [AAW, AW, W] to show that
p(40n + 35) = 0 (mod 5) for n > 0. Combining this congruence and the congruence
p(4n + 3) =0 (mod 8) for n > 0, we confirm the conjecture.

2 The generating function

In this Section, we derive a generating function of p(40n+ 35) modulo 5. We first recall
several 2-dissection formulas for quotients of theta functions due to Ramanujan [B],
Hirschhorn and Sellers [HS-2].

The following relations are consequences of dissection formulas of Ramanujan col-
lected in Entry 25 in Berndt’s book [B, p. 40]. Recall that f,, = (¢™;¢")s as given by
(1.6).

Lemma 2.1. We have

N

21 fi= 2 T
1 f Tifs
(2.2) 2B ER

Y 2

3



and

14
R +4qf4f8‘

Hirschhorn and Sellers [HS-2] established the following 2-dissection formula.

(2.4)

Lemma 2.2. We have

(2.5) s _ fa I3 +q 3 frofao

fi o URfefa
By Lemmas 2.1 and 2.2, we are led to a generating function of p(40n + 35) modulo

5.
Theorem 2.3. We have

e 2122 f1f226 98 74
p(40n + 35)¢" = +3 + 4q + 3¢ 25 + 44®
2 WSty g B A
50 2 r40
(26) +4q3f2 f4 +4q4f2 31 +2q5f22;1 (mOd 5)

1

Proof. Recall that the theta functions ¢(¢) and 1(q) are defined by

(2.7) olg) = flaq)= > ¢~
and
(2.8) W(e) = fla.d) =Y ¢" %

By the Jacobi triple product identity, we find

29 o) = 2
fi1i
and
_fi

2.10) vl =22
Replacing ¢ by —¢ in (2.9) and (2.10), and using the fact that

gy = S
(2.11) (@) = (=6 —0)e = 57



we deduce that

2

(2.12) o(-a) =7
2
and
fif
(2.13) P(—q) = J1/4
f
In view of (1.3), (1.4) and (2.7), we see that
o(q) = Z qn2 _ Z q25n2 +2g Z q25n2+10n + 2q4 Z q25n2+20n
(2.14) = ¢(¢™) +2¢D(¢°) + 24" E(q),
where
(2.15) D(g)= > ¢ =(-¢"~70".0"¢")x
and
(2.16) E(g)= > ¢ =(-¢-4"¢"1¢")

It is easily checked that

[ f5 a0

By the binomial theorem, we see that for any positive integer k,
(2.18) (1-¢")’=01-¢") (mod5),
which implies that

(2.19) ¥"(q) = ¢(¢") (mod 5).

Based on (1.7), (2.9) and (2.19), we have

D ) (—q)" = —= =



0'(q) _ (9(¢®) +2¢D(¢°) +2¢*E(¢°))"
©(q®) ©(q®)

o' (d*) + 399> () D(¢°) + 44°¢* (¢*°) D*(¢)

~—~

+2¢°0(¢*) D*(¢°) + 3¢ 0*(¢®)E(¢°) + ¢" D*(¢°)
+3¢°0*(¢*)D(¢°) E(¢°) + ¢°¢(¢®) D*(¢°) E(¢°)
+44"'D* (@) E(¢°) + 44°0* (¢ E*(¢°) + ¢ (¢®) D(¢") E*(¢°)
+¢''D*(¢°) E*(¢°) + 249 (¢*) E°(¢°)

(2:20) +4¢"D(¢°)E*(¢°) + ¢'°E*(¢°)")  (mod 5),

which yields

imn)(_q)n ¢'(¢°) +3¢9*(¢°) D(9) E(q) + ¢*D*(9) E*(q) (mod 5).

(2.21) = o0

Plugging (2.9) and (2.17) into (2.21), we get
ffafio | 2 fif5

"= fifif + 3q +4q (mod 5)
S BERBRER /2 '

(2.22) > p(5n)(=q)

Replacing ¢ by —¢ in (2.22) and invoking (2.11), we arrive at

e 8 3 6
(2.23) nz:p(5n)q" = g;;o - 3qf5f{10 + ¢ f];?g (mod 5).

According to 2-dissection formulas (2.1), (2.2), (2.3), (2.5) and congruence (2.23), we

obtain

io:p(5n qn :ﬁ( f85 +2 f4f16) ( 20 —4 5f10f40)
n=0

flO f25f126 f2f8 f10f40 f20
_ Jiofao 5f10f80) (fsfgo f4f10f40)
3410 (fgofso T )\ 2h0 T

+ 2f10< f40 +2q5f20f80)

fo \ fiofs fiofao

= fS 20 +2 f4f16f 3 f8f10f40 _3 2 f4f10f40
Rl sl 1315 [ fs 30T
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2 frofio 34° Ris . slsfiofilio e fi fief3

+4q

+4q

fafé 3 fioffs 3 fi fa fs fio
i finfi 9 7 fofinf5 10 f8f40
BT Y P 2NN
fifisfi

2.24 ¢t HAA 1620 d 5).
224 R, MY
Extracting the terms of odd powers of ¢ on both sides of (2.24), we have

— I+l _ filist% fsJiofio a5 fsfs 7f4f10f80

2 P00+ 9)g™ Y =20 e = 0T R = 3 e
(2.25) +2g 7 Frof30.f5 19 n Jifiefio (mod 5).

q
J2f10 f3 fs fa
Dividing both sides of (2.25) by ¢ and replacing ¢* by ¢, we get
R Bl g i
fifafs f3 1 fio [

3f23fgf20+2q3f5f10f40 +2q5f2f8f20 (mod 5)

fi fafro Jif20 fifafio

Employing 2-dissection formulas (2.4), (2.5) and congruence (2.26), we deduce that

= o RIS (14 4hk>< 1 45Aﬁﬁ
2P0 +5)q" =227 ( i 44 s T

hm(kﬁ”wﬁﬁmgQ
/4

Zﬁ(l()n +5)¢" =2

n=0

(2.26) +q

f3f10 3 fs.fa0

I . Iif fof
_3 2J4J10 ( 4 4 8) ( 20 4 5420 40)
2\ e )\ T e

3f2f40 (f&%fZQO+ f4f10f40)
fafro

+

ff 7 f3fsfa

+2q3f10f40 (f8f20 f4f10f40)

fo \2 o CFi et

5f2f8f20 ( 14 f4f8)

+ 4q
faflo \ 2 S8 2
7

+ 2q



= _ f4f8f20 +2 i3 20 +3 f4f8 o f4f10f20

f2 fio 2f8 frofio f2 fto f40 f2 fio
= f;§3§§° < =
227 ~orfiihle wﬁiﬁzg Sﬂfi«fi{f (o )

Extracting the terms of odd powers of ¢ on both sides of (2.27), then dividing by ¢ and
replacing ¢? by ¢, we find that

- W _ LSRR fafsfh . LI fuf3 frofao
20n + 15)¢" =3 - — 2 2
2 200+ 19)" =3 FT - Tt - A el
13 r8
o e o
(2.28) —2 3?1‘]}0;20 3 5f;f 4ff 20 (mod 5).
1 J4J5 1/10
By (2.18), we see that
(2.29) fs=f7 (mod 5).
Substituting (2.29) into (2.28) gives
101 229 77 29
nzop (20n + 15)¢" = 3f48f34 — F —2q f40f18 + 207 f5 18 +qf1f4
(2.30) + 3¢ f3 1t + 3¢ 253 —2q 3f2 +3 h (mod 5).
PR e

Combining 2-dissection formulas (2.3), (2.4) and congruence (2.30), we see that

Zp 20n + 15)¢" =32 2 (i+4qﬁf§‘) L ogf3 £ ( 1y f2f8)
VN 20 PU\ARE TR




29 77 14

3 2 /i fs
I (L B

40 [t 1S 2

20 PN L o e
+4—= +4q ) +3¢° f.
f4 (f214f8 30 24

( 1 f4f8)
+3¢ % \ g T4y

3 r29 p14 414 f4
BRRERL <f-‘214f8+ 1 )

v ( 1 f4f8>
305w  pps H0]

i34 29 4122 fo 110
-2 +2 + 3¢ +q
=ShrE e R T e

98 56 E 74
f55f24+3q RIS +d f51f16+ FaT S
50 8 38

8 s fi f3°
39 +q 3

48
1f4f8 +3 12 19
2

+4q

14

7f4 9f4 10/4 8
+ 4q + 4q 31 +q Pl

(2.31) +2¢'

(mod 5).

Extracting the terms of odd powers of ¢ on both sides of (2.31), then dividing by ¢ and
replacing ¢® by ¢, we obtain (2.6). This completes the proof. ]

3 Proof of Conjecture 1.1

In this section, we use the (p, k)-parametrization of theta functions given by Alaca,
Alaca and Williams [AAW, AW, W] to represent the generating function of p(40n+35)
modulo 5 as a linear combination of functions in p and k, where p and k are defined in
terms of the theta function ¢(q) as given by

©*(q) — ¥*(¢%)

pi=plq) = 252

and
. 9% (q°)
(3.1) k:=k(q) = Q)



see Alaca, Alaca and Williams [AAW]. Williams [W] proved that

I3 1517
3.2 p=2 :
32 1A
We have the following congruence.
Theorem 3.1. Forn > 0,
(3.3) p(40n +35) =0 (mod 5).

Proof. The following representations of qi f1, qflz fo and q% f1 in terms of p and k are

due to Alaca and Williams [AW],

(34) g7 f = 275p7 (1= ) (14 p)o(1+2p)5 (2 +p)5h?,
(35) g2 fp =273p1= (1 —p)i(1+p)i2(1+2p)5(2+ p)ik?
and

(36) g6 fa = 27P°ps (1= p) (1 +p)7 (1 +2p)5 (2 +p) 2 k7.

Substituting (3.4), (3.5) and (3.6) into (2.6), we find that

\/§p7/8(1 + 2p)21/8(2 +p)21/8
16¢7/3(1 = p)°(1 + p)*Vk

(3.7)  29) " p(40n + 35)"

n=0

F(p,k) (mod 5),

where F(p, k) is given by
F(p, k) = 5k'°(524288 + 6029312p + 88735744p> + 840761344p°

+ 5072977920p* + 22470361088p° + 75791417344p°
+196034666496p" + 392385622016p° 4 610286094336p°
+ 731633712128p'° + 663209854464p'! + 441020946176p"2
+ 204189055872p" 4 59086163776p™* + 8129694944p*°
+ 138932400p'® + 2477318p"" — 16585772p"®

(3.8) + 33708184p'" + 19661p>°).

By (3.4) and (3.5), we have

32 VP4 2p)? 52 + p)?
P 16¢73(1—p)S(1+p)VE

(3.9)

10



Hence (3.7) can be rewritten as

e 22
(3.10) 29 " p(40n + 35)¢" = 2:F(p, k) (mod 5),

n=0 1

where F'(p, k) is defined by (3.8). Clearly, 13 is a formal power series in ¢ with integer

7
coefficients. By (3.1) and (3.2), we see that p and k are also formal power series in ¢

with integer coefficients. It can be seen that the coefficients of F'(p, k) are divisible by

5. So we reach the assertion that p(40n 4 35) = 0 (mod 5) for n > 0. O
To complete the proof of Conjecture 1.1, we recall that Hirschhorn and Sellers

[HS-1], and Fortin, Jacob and Mathieu [FJM] independently derived the congruence

(3.11) p(A4n+3) =0 (mod 8),
for n > 0. This yields

(3.12) p(40n +35) =0 (mod 8),

for n > 0. Combining (3.12) and the congruence p(40n + 35) = 0 (mod 5) for n > 0,
we come to the conclusion that p(40n + 35) = 0 (mod 40) for n > 0. O
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