Acta Arith. 163 (2014), no. 1, 59-69

Proof of a Conjecture of Hirschhorn and Sellers on Overpartitions

William Y. C. Chen^a and Ernest X. W. Xia^b

^aCenter for Applied Mathematics Tianjin University, Tianjin 300072, P. R. China

^bDepartment of Mathematics Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China emails: chenyc@tju.edu.cn, ernestxwxia@163.com

Abstract. Let $\bar{p}(n)$ denote the number of overpartitions of n. It was conjectured by Hirschhorn and Sellers that $\bar{p}(40n+35) \equiv 0 \pmod{40}$ for $n \geq 0$. Employing 2-dissection formulas of theta functions due to Ramanujan, and Hirschhorn and Sellers, we obtain a generating function for $\bar{p}(40n+35)$ modulo 5. Using the (p,k)-parametrization of theta functions given by Alaca, Alaca and Williams, we prove the congruence $\bar{p}(40n+35) \equiv 0 \pmod{5}$ for $n \geq 0$. Combining this congruence and the congruence $\bar{p}(4n+3) \equiv 0 \pmod{8}$ for $n \geq 0$ obtained by Hirschhorn and Sellers, and Fortin, Jacob and Mathieu, we confirm the conjecture of Hirschhorn and Sellers.

1 Introduction

The objective of this paper is to give a proof of a conjecture of Hirschhorn and Sellers on the number of overpartitons. We shall use the technique of dissections of theta functions.

Let us begin with some notation and terminology on q-series and partitions. We adopt the common notation

(1.1)
$$(a;q)_{\infty} = \prod_{n=0}^{\infty} (1 - aq^n),$$

²⁰¹⁰ Mathematics Subject Classification: Primary 11P83; Secondary 05A17.

Key words and phrases: overpartition, congruence, theta function, dissection formula, (p, k)-parametrization.

where |q| < 1, and we write

$$(1.2) (a_1, a_2, \dots, a_n; q)_{\infty} = (a_1; q)_{\infty} (a_2; q)_{\infty} \cdots (a_n; q)_{\infty}.$$

Recall that the Ramanujan theta function f(a, b) is defined by

(1.3)
$$f(a,b) = \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2},$$

where |ab| < 1. The Jacobi triple product identity can be restated as

$$f(a,b) = (-a, -b, ab; ab)_{\infty}.$$

Here is a special case of (1.3), namely,

(1.5)
$$f(-q) = f(-q, -q^2) = \sum_{n=-\infty}^{\infty} (-1)^n q^{n(3n-1)/2} = (q; q)_{\infty}.$$

For any positive integer n, we use f_n to denote $f(-q^n)$, that is,

(1.6)
$$f_n = (q^n; q^n)_{\infty} = \prod_{k=1}^{\infty} (1 - q^{nk}).$$

The function f_n is related to the generating function of overpartitions. A partition of a positive integer n is a nonincreasing sequence of positive integers whose sum is n. An overpartition of n is a partition in which the first occurrence of a number may be overlined, see Corteel and Lovejoy [CL]. For $n \geq 1$, let $\bar{p}(n)$ denote the number of overpartitions of n, and we set $\bar{p}(0) = 1$. Corteel and Lovejoy [CL] showed that the generating function for $\bar{p}(n)$ is given by

(1.7)
$$\sum_{n=0}^{\infty} \bar{p}(n)q^n = \frac{f_2}{f_1^2}.$$

Hirschhorn and Sellers [HS-1], and Fortin, Jacob and Mathieu [FJM] obtained the following Ramanujan-type generating function formulas for $\bar{p}(2n+1)$, $\bar{p}(4n+3)$, and $\bar{p}(8n+7)$:

(1.8)
$$\sum_{n=0}^{\infty} \bar{p}(2n+1)q^n = 2\frac{f_2^2 f_8^2}{f_1^4 f_4},$$

(1.9)
$$\sum_{n=0}^{\infty} \bar{p}(4n+3)q^n = 8\frac{f_2f_4^6}{f_1^8},$$

(1.10)
$$\sum_{n=0}^{\infty} \bar{p}(8n+7)q^n = 64\frac{f_2^{22}}{f_1^{23}}.$$

The above identities lead to congruences modulo 2, 8 and 64 for the overpartition function. Mahlburg [M] proved that $\bar{p}(n)$ is divisible by 64 for almost all n by using relations between $\bar{p}(n)$ and the number of representations of n as a sum of squares. Using the theory of modular forms, Treneer [T] showed that the coefficients of a wide class of weakly holomorphic modular forms have infinitely many congruence relations for powers of every prime p other than 2 and 3. In particular, Treneer [T] proved that $\bar{p}(5m^3n) \equiv 0 \pmod{5}$ for any n that is coprime to m, where m is a prime satisfying $m \equiv -1 \pmod{5}$.

The following conjecture was posed by Hirschhorn and Sellers [HS-1].

Conjecture 1.1. For $n \geq 0$,

$$\bar{p}(40n + 35) \equiv 0 \pmod{40}.$$

To prove the above conjecture, we derive a generating function for $\bar{p}(40n+35)$ modulo 5 by using 2-dissection formulas for quotients of theta functions given by Ramanujan [B], and Hirschhorn and Sellers [HS-2]. Then we use the (p, k)-parametrization of theta functions due to Alaca, Alaca and Williams [AAW, AW, W] to show that $\bar{p}(40n+35) \equiv 0 \pmod{5}$ for $n \geq 0$. Combining this congruence and the congruence $\bar{p}(4n+3) \equiv 0 \pmod{8}$ for $n \geq 0$, we confirm the conjecture.

2 The generating function

In this Section, we derive a generating function of $\bar{p}(40n+35)$ modulo 5. We first recall several 2-dissection formulas for quotients of theta functions due to Ramanujan [B], Hirschhorn and Sellers [HS-2].

The following relations are consequences of dissection formulas of Ramanujan collected in Entry 25 in Berndt's book [B, p. 40]. Recall that $f_n = (q^n; q^n)_{\infty}$ as given by (1.6).

Lemma 2.1. We have

(2.1)
$$f_1^2 = \frac{f_2 f_8^5}{f_4^2 f_{16}^2} - 2q \frac{f_2 f_{16}^2}{f_8},$$

(2.2)
$$\frac{1}{f_1^2} = \frac{f_8^5}{f_2^5 f_{16}^2} + 2q \frac{f_4^2 f_{16}^2}{f_2^5 f_8},$$

$$f_1^4 = \frac{f_4^{10}}{f_2^2 f_8^4} - 4q \frac{f_2^2 f_8^4}{f_4^2}$$

and

(2.4)
$$\frac{1}{f_1^4} = \frac{f_4^{14}}{f_2^{14} f_8^4} + 4q \frac{f_4^2 f_8^4}{f_2^{10}}.$$

Hirschhorn and Sellers [HS-2] established the following 2-dissection formula.

Lemma 2.2. We have

(2.5)
$$\frac{f_5}{f_1} = \frac{f_8 f_{20}^2}{f_2^2 f_{40}} + q \frac{f_4^3 f_{10} f_{40}}{f_2^3 f_8 f_{20}}.$$

By Lemmas 2.1 and 2.2, we are led to a generating function of $\bar{p}(40n + 35)$ modulo 5.

Theorem 2.3. We have

$$\sum_{n=0}^{\infty} \bar{p}(40n+35)q^n \equiv 2\frac{f_2^{122}}{f_1^{63}f_4^{40}} + 3\frac{f_1f_2^{26}}{f_4^8} + 4q\frac{f_2^{98}}{f_1^{55}f_4^{24}} + 3qf_1^9f_2^2f_4^8 + 4q^2\frac{f_2^{74}}{f_1^{47}f_4^8}$$

$$(2.6) +4q^3 \frac{f_2^{50} f_4^8}{f_1^{39}} + 4q^4 \frac{f_2^{26} f_4^{24}}{f_1^{31}} + 2q^5 \frac{f_2^2 f_4^{40}}{f_1^{23}} \pmod{5}.$$

Proof. Recall that the theta functions $\varphi(q)$ and $\psi(q)$ are defined by

(2.7)
$$\varphi(q) = f(q, q) = \sum_{n = -\infty}^{\infty} q^{n^2},$$

and

(2.8)
$$\psi(q) = f(q, q^3) = \sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}}.$$

By the Jacobi triple product identity, we find

(2.9)
$$\varphi(q) = \frac{f_2^5}{f_1^2 f_4^2}$$

and

(2.10)
$$\psi(q) = \frac{f_2^2}{f_1}.$$

Replacing q by -q in (2.9) and (2.10), and using the fact that

(2.11)
$$f(q) = (-q; -q)_{\infty} = \frac{f_2^3}{f_1 f_4},$$

we deduce that

$$\varphi(-q) = \frac{f_1^2}{f_2}$$

and

(2.13)
$$\psi(-q) = \frac{f_1 f_4}{f_2}.$$

In view of (1.3), (1.4) and (2.7), we see that

$$\varphi(q) = \sum_{n=-\infty}^{\infty} q^{n^2} = \sum_{n=-\infty}^{\infty} q^{25n^2} + 2q \sum_{n=-\infty}^{\infty} q^{25n^2+10n} + 2q^4 \sum_{n=-\infty}^{\infty} q^{25n^2+20n}$$

$$= \varphi(q^{25}) + 2qD(q^5) + 2q^4E(q^5),$$
(2.14)

where

(2.15)
$$D(q) = \sum_{n=-\infty}^{\infty} q^{5n^2+2n} = (-q^3, -q^7, q^{10}; q^{10})_{\infty}$$

and

(2.16)
$$E(q) = \sum_{n=-\infty}^{\infty} q^{5n^2+4n} = (-q, -q^9, q^{10}; q^{10})_{\infty}.$$

It is easily checked that

(2.17)
$$D(q)E(q) = \frac{f_2^2 f_5 f_{20}}{f_1 f_4}.$$

By the binomial theorem, we see that for any positive integer k,

$$(2.18) (1 - q^k)^5 \equiv (1 - q^{5k}) \pmod{5},$$

which implies that

(2.19)
$$\varphi^5(q) \equiv \varphi(q^5) \pmod{5}.$$

Based on (1.7), (2.9) and (2.19), we have

$$\sum_{n=0}^{\infty} \bar{p}(n)(-q)^n = \frac{1}{\varphi(q)} = \frac{\varphi^4(q)}{\varphi^5(q)}$$

$$\equiv \frac{\varphi^{4}(q)}{\varphi(q^{5})} \equiv \frac{(\varphi(q^{25}) + 2qD(q^{5}) + 2q^{4}E(q^{5}))^{4}}{\varphi(q^{5})}$$

$$\equiv \frac{1}{\varphi(q^{5})} (\varphi^{4}(q^{25}) + 3q\varphi^{3}(q^{25})D(q^{5}) + 4q^{2}\varphi^{2}(q^{25})D^{2}(q^{5})$$

$$+ 2q^{3}\varphi(q^{25})D^{3}(q^{5}) + 3q^{4}\varphi^{3}(q^{25})E(q^{5}) + q^{4}D^{4}(q^{5})$$

$$+ 3q^{5}\varphi^{2}(q^{25})D(q^{5})E(q^{5}) + q^{6}\varphi(q^{25})D^{2}(q^{5})E(q^{5})$$

$$+ 4q^{7}D^{3}(q^{5})E(q^{5}) + 4q^{8}\varphi^{2}(q^{25})E^{2}(q^{5}) + q^{9}\varphi(q^{25})D(q^{5})E^{2}(q^{5})$$

$$+ q^{10}D^{2}(q^{5})E^{2}(q^{5}) + 2q^{12}\varphi(q^{25})E^{3}(q^{5})$$

$$+ 4q^{13}D(q^{5})E^{3}(q^{5}) + q^{16}E^{4}(q^{5})^{4}) \pmod{5},$$

$$(2.20)$$

which yields

(2.21)
$$\sum_{n=0}^{\infty} \bar{p}(5n)(-q)^n \equiv \frac{\varphi^4(q^5) + 3q\varphi^2(q^5)D(q)E(q) + q^2D^2(q)E^2(q)}{\varphi(q)} \pmod{5}.$$

Plugging (2.9) and (2.17) into (2.21), we get

(2.22)
$$\sum_{n=0}^{\infty} \bar{p}(5n)(-q)^n \equiv \frac{f_1^2 f_4^2 f_{10}^{20}}{f_2^5 f_5^8 f_{20}^8} + 3q \frac{f_1 f_4 f_{10}^{10}}{f_2^3 f_5^3 f_{20}^3} + q^2 \frac{f_5^2 f_{20}^2}{f_2} \pmod{5}.$$

Replacing q by -q in (2.22) and invoking (2.11), we arrive at

(2.23)
$$\sum_{n=0}^{\infty} \bar{p}(5n)q^n \equiv \frac{f_2 f_5^8}{f_1^2 f_{10}^4} - 3q \frac{f_5^3 f_{10}}{f_1} + q^2 \frac{f_{10}^6}{f_2 f_5^2} \pmod{5}.$$

According to 2-dissection formulas (2.1), (2.2), (2.3), (2.5) and congruence (2.23), we obtain

$$\begin{split} \sum_{n=0}^{\infty} \bar{p}(5n)q^n &\equiv \frac{f_2}{f_{10}^4} \left(\frac{f_8^5}{f_2^5 f_{16}^2} + 2q \frac{f_4^2 f_{16}^2}{f_2^5 f_8} \right) \left(\frac{f_{20}^{10}}{f_{10}^2 f_{40}^4} - 4q^5 \frac{f_{10}^2 f_{40}^4}{f_{20}^2} \right)^2 \\ &- 3q f_{10} \left(\frac{f_{10} f_{40}^5}{f_{20}^2 f_{80}^2} - 2q^5 \frac{f_{10} f_{80}^2}{f_{40}} \right) \left(\frac{f_8 f_{20}^2}{f_2^2 f_{40}} + q \frac{f_4^3 f_{10} f_{40}}{f_2^3 f_8 f_{20}} \right) \\ &+ q^2 \frac{f_{10}^6}{f_2} \left(\frac{f_{40}^5}{f_{10}^5 f_{80}^2} + 2q^5 \frac{f_{20}^2 f_{80}^2}{f_{10}^5 f_{40}} \right) \\ &\equiv \frac{f_8^5 f_{20}^{20}}{f_2^4 f_{10}^8 f_{16}^2 f_{40}^8} + 2q \frac{f_4^2 f_{16}^2 f_{20}^2}{f_2^4 f_8 f_{10}^8 f_{40}^8} - 3q \frac{f_8 f_{10}^2 f_{40}^4}{f_2^2 f_{80}^2} - 3q^2 \frac{f_3^3 f_{10}^3 f_{40}^6}{f_2^3 f_8 f_{20}^3 f_{20}^8} \end{split}$$

$$+q^{2} \frac{f_{10}f_{40}^{5}}{f_{2}f_{80}^{2}} - 3q^{5} \frac{f_{8}^{5}f_{20}^{8}}{f_{2}^{4}f_{10}^{4}f_{16}^{2}} + q^{6} \frac{f_{8}f_{10}^{2}f_{20}^{2}f_{80}^{2}}{f_{2}^{2}f_{40}^{2}} - q^{6} \frac{f_{4}^{2}f_{16}^{2}f_{20}^{8}}{f_{2}^{4}f_{8}f_{10}^{4}}$$

$$+q^{7} \frac{f_{4}^{3}f_{10}^{3}f_{80}^{2}}{f_{2}^{3}f_{8}f_{20}} + 2q^{7} \frac{f_{10}f_{20}^{2}f_{80}^{2}}{f_{2}f_{40}} + q^{10} \frac{f_{8}^{5}f_{40}^{8}}{f_{2}^{4}f_{16}^{2}f_{20}^{4}}$$

$$+2q^{11} \frac{f_{4}^{2}f_{16}^{2}f_{40}^{8}}{f_{2}^{4}f_{8}f_{20}^{4}} \pmod{5}.$$

$$(2.24)$$

Extracting the terms of odd powers of q on both sides of (2.24), we have

$$\sum_{n=0}^{\infty} \bar{p}(10n+5)q^{2n+1} \equiv 2q \frac{f_4^2 f_{16}^2 f_{20}^2}{f_2^4 f_8 f_{10}^8 f_{40}^8} - 3q \frac{f_8 f_{10}^2 f_{40}^4}{f_2^2 f_{80}^2} - 3q^5 \frac{f_8^5 f_{20}^8}{f_2^4 f_{10}^4 f_{16}^2} + q^7 \frac{f_4^3 f_{10}^3 f_{80}^2}{f_2^3 f_8 f_{20}}$$

$$+ 2q^7 \frac{f_{10} f_{20}^2 f_{80}^2}{f_2 f_{40}} + 2q^{11} \frac{f_4^2 f_{16}^2 f_{40}^8}{f_2^4 f_8 f_{20}^4} \pmod{5}.$$
(2.25)

Dividing both sides of (2.25) by q and replacing q^2 by q, we get

$$\sum_{n=0}^{\infty} \bar{p}(10n+5)q^n \equiv 2\frac{f_2^2 f_8^2 f_{10}^{20}}{f_1^4 f_4 f_5^8 f_{20}^8} - 3\frac{f_4 f_5^2 f_{20}^4}{f_1^2 f_{40}^2} - 3q^2 \frac{f_4^5 f_{10}^8}{f_1^4 f_5^4 f_8^2}$$

$$+ q^3 \frac{f_2^3 f_5^3 f_{40}^2}{f_1^3 f_4 f_{10}} + 2q^3 \frac{f_5 f_{10}^2 f_{40}^2}{f_1 f_{20}} + 2q^5 \frac{f_2^2 f_8^2 f_{20}^8}{f_1^4 f_4 f_{40}^4} \pmod{5}.$$

Employing 2-dissection formulas (2.4), (2.5) and congruence (2.26), we deduce that

$$\begin{split} \sum_{n=0}^{\infty} \bar{p}(10n+5)q^n &\equiv 2\frac{f_2^2 f_8^2 f_{10}^{20}}{f_4 f_{80}^8} \left(\frac{f_4^{14}}{f_2^{14} f_8^4} + 4q \frac{f_4^2 f_8^4}{f_2^{10}}\right) \left(\frac{f_{20}^{14}}{f_{10}^{14} f_{40}^4} + 4q^5 \frac{f_{20}^2 f_{40}^4}{f_{10}^{10}}\right)^2 \\ &- 3\frac{f_4 f_{20}^4}{f_{40}^2} \left(\frac{f_8 f_{20}^2}{f_2^2 f_{40}} + q \frac{f_4^3 f_{10} f_{40}}{f_2^3 f_8 f_{20}}\right)^2 \\ &- 3q^2 \frac{f_4^5 f_{10}^8}{f_8^2} \left(\frac{f_4^4}{f_2^{14} f_8^4} + 4q \frac{f_4^2 f_8^4}{f_2^{10}}\right) \left(\frac{f_{20}^{14}}{f_{10}^{14} f_{40}^4} + 4q^5 \frac{f_{20}^2 f_{40}^4}{f_{10}^{10}}\right) \\ &+ q^3 \frac{f_2^3 f_{40}^2}{f_4 f_{10}} \left(\frac{f_8 f_{20}^2}{f_2^2 f_{40}} + q \frac{f_4^3 f_{10} f_{40}}{f_2^3 f_8 f_{20}}\right)^3 \\ &+ 2q^3 \frac{f_{10}^2 f_{40}^2}{f_{20}} \left(\frac{f_8 f_{20}^2}{f_2^2 f_{40}} + q \frac{f_4^3 f_{10} f_{40}}{f_2^3 f_8 f_{20}}\right) \\ &+ 2q^5 \frac{f_2^2 f_8^2 f_{20}^8}{f_4 f_{10}^4} \left(\frac{f_4^{14}}{f_2^{14} f_8^4} + 4q \frac{f_4^2 f_8^4}{f_2^{10}}\right) \end{split}$$

$$\equiv -3 \frac{f_4 f_8^2 f_{20}^8}{f_2^4 f_{40}^4} + 2 \frac{f_4^{13} f_{20}^{20}}{f_2^{12} f_8^2 f_{10}^8 f_{40}^8} + 3q \frac{f_4 f_8^6 f_{20}^{20}}{f_2^8 f_{10}^8 f_{40}^8} - q \frac{f_4^4 f_{10} f_{20}^5}{f_2^5 f_{40}^2}$$

$$-3q^2 \frac{f_4^{19} f_{20}^{14}}{f_2^{14} f_8^6 f_{10}^6 f_{40}^4} - 3q^2 \frac{f_4^7 f_{10}^2 f_{20}^2}{f_2^6 f_8^2} - 2q^3 \frac{f_4^7 f_8^2 f_{20}^{14}}{f_2^{10} f_{10}^6 f_{40}^4}$$

$$+ 2q^3 \frac{f_8 f_{10}^2 f_{20} f_{40}}{f_2^2} + q^3 \frac{f_8^3 f_{20}^6}{f_2^3 f_4 f_{10} f_{40}} + 2q^4 \frac{f_4^3 f_{10}^3 f_{30}^3}{f_2^3 f_8 f_{20}^2}$$

$$+ 3q^4 \frac{f_4^2 f_8 f_{20}^3 f_{40}}{f_2^4} + 3q^5 \frac{f_4^5 f_{10} f_{40}^3}{f_2^5 f_8} + 3q^5 \frac{f_4^1 f_8^3 f_{20}^3}{f_2^{12} f_8^2 f_{10}^4}$$

$$+ 2q^6 \frac{f_4 f_8^6 f_{20}^8}{f_2^8 f_{10}^4} + q^6 \frac{f_4^8 f_{10}^2 f_{40}^5}{f_2^6 f_8^3 f_{20}^3} - 2q^7 \frac{f_4^{19} f_{20}^2 f_{40}^4}{f_1^{14} f_8^6 f_{10}^2}$$

$$- 3q^8 \frac{f_4^7 f_8^2 f_{20}^2 f_{40}^4}{f_2^{10} f_{10}^2} + 2q^{10} \frac{f_4^{13} f_{40}^8}{f_1^{12} f_8^2 f_{20}^4} + 3q^{11} \frac{f_4 f_8^6 f_{40}^8}{f_2^8 f_{20}^4} \pmod{5}.$$

$$(2.27)$$

Extracting the terms of odd powers of q on both sides of (2.27), then dividing by q and replacing q^2 by q, we find that

$$\sum_{n=0}^{\infty} \bar{p}(20n+15)q^n \equiv 3\frac{f_2f_4^6f_{10}^{20}}{f_1^8f_5^8f_{20}^8} - \frac{f_2^4f_5f_{10}^5}{f_1^5f_{20}^2} - 2q\frac{f_2^7f_4^2f_{10}^{14}}{f_1^{10}f_5^6f_{20}^4} + 2q\frac{f_4f_5^2f_{10}f_{20}}{f_1^2} + q\frac{f_4^3f_{10}^6}{f_1^3f_2f_5f_{20}} + 3q^2\frac{f_2^5f_5f_{20}^3}{f_1^5f_4} + 3q^2\frac{f_2^{13}f_{10}^8}{f_1^{12}f_4^2f_5^4} - 2q^3\frac{f_2^{19}f_{10}^2f_{20}^4}{f_1^{14}f_4^6f_5^2} + 3q^5\frac{f_2f_4^6f_{20}^8}{f_1^8f_{10}^4} \pmod{5}.$$
(2.28)

By (2.18), we see that

$$(2.29) f_5 \equiv f_1^5 \pmod{5}.$$

Substituting (2.29) into (2.28) gives

$$\sum_{n=0}^{\infty} \bar{p}(20n+15)q^n \equiv 3\frac{f_2^{101}}{f_1^{48}f_4^{34}} - \frac{f_2^{29}}{f_4^{10}} - 2q\frac{f_2^{77}}{f_1^{40}f_4^{18}} + 2qf_1^8f_2^5f_4^6 + q\frac{f_2^{29}}{f_1^8f_4^2}$$

$$+ 3q^2f_2^5f_4^{14} + 3q^2\frac{f_2^{53}}{f_1^{32}f_4^2} - 2q^3\frac{f_2^{29}f_4^{14}}{f_1^{24}} + 3q^5\frac{f_4^{46}}{f_1^8f_2^{19}} \pmod{5}.$$

Combining 2-dissection formulas (2.3), (2.4) and congruence (2.30), we see that

$$\sum_{n=0}^{\infty} \bar{p}(20n+15)q^n \equiv 3\frac{f_2^{101}}{f_4^{34}} \left(\frac{f_4^{14}}{f_2^{14}f_8^4} + 4q\frac{f_4^2f_8^4}{f_2^{10}}\right)^{12} + 2qf_2^5f_4^6 \left(\frac{f_4^{10}}{f_2^2f_8^4} - 4q\frac{f_2^2f_8^4}{f_4^2}\right)^{22}$$

$$-\frac{f_2^{29}}{f_4^{10}} - 2q \frac{f_2^{77}}{f_4^{18}} \left(\frac{f_4^{14}}{f_2^{14}f_8^4} + 4q \frac{f_4^2 f_8^4}{f_2^{10}} \right)^{10}$$

$$+ q \frac{f_2^{29}}{f_4^2} \left(\frac{f_4^{14}}{f_2^{14}f_8^4} + 4q \frac{f_4^2 f_8^4}{f_2^{10}} \right)^2 + 3q^2 f_2^5 f_4^{14}$$

$$+ 3q^2 \frac{f_2^{53}}{f_4^2} \left(\frac{f_4^{14}}{f_2^{14}f_8^4} + 4q \frac{f_4^2 f_8^4}{f_2^{10}} \right)^8$$

$$- 2q^3 f_2^{29} f_4^{14} \left(\frac{f_4^{14}}{f_2^{14}f_8^4} + 4q \frac{f_4^2 f_8^4}{f_2^{10}} \right)^6$$

$$+ 3q^5 \frac{f_4^{46}}{f_2^{19}} \left(\frac{f_4^{14}}{f_2^{14}f_8^4} + 4q \frac{f_4^2 f_8^4}{f_2^{10}} \right)^2$$

$$\equiv 3 \frac{f_4^{134}}{f_2^{67}f_8^{48}} - \frac{f_2^{29}}{f_4^{10}} + 2q \frac{f_4^{122}}{f_2^{63}f_8^{40}} + 3q \frac{f_2 f_4^2}{f_8^8} + q^2 \frac{f_4^{110}}{f_2^{59}f_8^{32}}$$

$$+ 4q^3 \frac{f_4^{98}}{f_2^{55}f_8^{24}} + 3q^3 f_2^9 f_4^2 f_8^8 + q^4 \frac{f_4^{46}}{f_2^{51}f_8^{16}} + 4q^5 \frac{f_4^{74}}{f_2^{47}f_8^8}$$

$$+ 4q^7 \frac{f_4^{50} f_8^8}{f_2^{39}} + q^8 \frac{f_4^{38} f_8^{16}}{f_2^{35}} + 4q^9 \frac{f_4^{26} f_8^{24}}{f_2^{31}} + q^{10} \frac{f_4^{14} f_8^{32}}{f_2^{27}}$$

$$+ 2q^{11} \frac{f_4^2 f_8^{40}}{f_2^{23}} + 3q^{12} \frac{f_8^{48}}{f_2^{19}f_4^{10}} \pmod{5}.$$

Extracting the terms of odd powers of q on both sides of (2.31), then dividing by q and replacing q^2 by q, we obtain (2.6). This completes the proof.

3 Proof of Conjecture 1.1

In this section, we use the (p, k)-parametrization of theta functions given by Alaca, Alaca and Williams [AAW, AW, W] to represent the generating function of $\bar{p}(40n+35)$ modulo 5 as a linear combination of functions in p and k, where p and k are defined in terms of the theta function $\varphi(q)$ as given by

$$p := p(q) = \frac{\varphi^2(q) - \varphi^2(q^3)}{2\varphi^2(q^3)}$$

and

(3.1)
$$k := k(q) = \frac{\varphi^3(q^3)}{\varphi(q)},$$

see Alaca, Alaca and Williams [AAW]. Williams [W] proved that

$$(3.2) p = 2\frac{f_2^3 f_3^3 f_{12}^6}{f_1 f_4^2 f_9^6}.$$

We have the following congruence.

Theorem 3.1. For $n \geq 0$,

(3.3)
$$\bar{p}(40n + 35) \equiv 0 \pmod{5}$$
.

Proof. The following representations of $q^{\frac{1}{24}}f_1$, $q^{\frac{1}{12}}f_2$ and $q^{\frac{1}{6}}f_4$ in terms of p and k are due to Alaca and Williams [AW],

$$(3.4) q^{\frac{1}{24}} f_1 = 2^{-\frac{1}{6}} p^{\frac{1}{24}} (1-p)^{\frac{1}{2}} (1+p)^{\frac{1}{6}} (1+2p)^{\frac{1}{8}} (2+p)^{\frac{1}{8}} k^{\frac{1}{2}},$$

$$(3.5) q^{\frac{1}{12}} f_2 = 2^{-\frac{1}{3}} p^{\frac{1}{12}} (1-p)^{\frac{1}{4}} (1+p)^{\frac{1}{12}} (1+2p)^{\frac{1}{4}} (2+p)^{\frac{1}{4}} k^{\frac{1}{2}}$$

and

$$(3.6) q^{\frac{1}{6}} f_4 = 2^{-2/3} p^{\frac{1}{6}} (1-p)^{\frac{1}{8}} (1+p)^{\frac{1}{24}} (1+2p)^{\frac{1}{8}} (2+p)^{\frac{1}{2}} k^{\frac{1}{2}}.$$

Substituting (3.4), (3.5) and (3.6) into (2.6), we find that

(3.7)
$$2^{19} \sum_{n=0}^{\infty} \bar{p}(40n+35)q^n \equiv \frac{\sqrt{2}p^{7/8}(1+2p)^{21/8}(2+p)^{21/8}}{16q^{7/8}(1-p)^6(1+p)^2\sqrt{k}} F(p,k) \pmod{5}.$$

where F(p, k) is given by

$$F(p,k) = 5k^{10}(524288 + 6029312p + 88735744p^2 + 840761344p^3 + 5072977920p^4 + 22470361088p^5 + 75791417344p^6 + 196034666496p^7 + 392385622016p^8 + 610286094336p^9 + 731633712128p^{10} + 663209854464p^{11} + 441020946176p^{12} + 204189055872p^{13} + 59086163776p^{14} + 8129694944p^{15} + 138932400p^{16} + 2477318p^{19} - 16585772p^{18} + 33708184p^{17} + 19661p^{20}).$$

By (3.4) and (3.5), we have

(3.9)
$$\frac{f_2^{22}}{f_1^{23}} = \frac{\sqrt{2}p^{7/8}(1+2p)^{21/8}(2+p)^{21/8}}{16q^{7/8}(1-p)^6(1+p)^2\sqrt{k}}.$$

Hence (3.7) can be rewritten as

(3.10)
$$2^{19} \sum_{n=0}^{\infty} \bar{p}(40n+35)q^n \equiv \frac{f_2^{22}}{f_1^{23}} F(p,k) \pmod{5},$$

where F(p,k) is defined by (3.8). Clearly, $\frac{f_2^{22}}{f_1^{23}}$ is a formal power series in q with integer coefficients. By (3.1) and (3.2), we see that p and k are also formal power series in q with integer coefficients. It can be seen that the coefficients of F(p,k) are divisible by 5. So we reach the assertion that $\bar{p}(40n+35) \equiv 0 \pmod{5}$ for $n \geq 0$.

To complete the proof of Conjecture 1.1, we recall that Hirschhorn and Sellers [HS-1], and Fortin, Jacob and Mathieu [FJM] independently derived the congruence

$$\bar{p}(4n+3) \equiv 0 \pmod{8},$$

for $n \geq 0$. This yields

$$\bar{p}(40n + 35) \equiv 0 \pmod{8},$$

for $n \ge 0$. Combining (3.12) and the congruence $\bar{p}(40n + 35) \equiv 0 \pmod{5}$ for $n \ge 0$, we come to the conclusion that $\bar{p}(40n + 35) \equiv 0 \pmod{40}$ for $n \ge 0$.

Acknowledgments

This work was supported by the 973 Project and the National Science Foundation of China.

References

- [AAW] A. Alaca, S. Alaca and K. S. Williams, On the two-dimensional theta functions of the Borweins, Acta Arith. 124 (2006), 177–195.
- [AW] S. Alaca and K. S. Williams, The number of representations of a positive integer by certain octonary quadratic forms, Funct. Approx. Comment. Math. 43 (2010), 45–54.
- [B] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer, New York, 1991.
- [CL] S. Corteel and J. Lovejoy, *Overpartitions*, Trans. Amer. Math. Soc. 356 (2004), 1623–1635.
- [FJM] J.-F. Fortin, P. Jacob and P. Mathieu, *Jagged partitions*, Ramanujan J. 10 (2005), 215–235.

- [HS-1] M. D. Hirschhorn and J. A. Sellers, *Arithmetic relations for overpartitions*, J. Combin. Math. Combin. Comput. 53 (2005), 65–73.
- [HS-2] M. D. Hirschhorn and J. A. Sellers, *Elementary proofs of parity results for* 5-regular partitions, Bull. Austral. Math. Soc. 81 (2010), 58–63.
- [M] K. Mahlburg, The overpartition function modulo small powers of 2, Discrete Math. 286 (2004), 263–267.
- [T] S. Treneer, Congruences for the coefficients of weakly holomorphic modular forms, Proc. London Math. Soc. 93 (2006), 304–324.
- [W] K. S. Williams, Fourier series of a class of eta quotients, Inter. J. Number Theory 8 (2012), 993–1004.