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Abstract. The contact map of a protein fold is a graph that represents the patterns
of contacts in the fold. It is known that the contact map can be decomposed into
stacks and queues. RNA secondary structures are special stacks in which the degree of
each vertex is at most one and each arc has length at least two. Waterman and Smith
derived a formula for the number of RNA secondary structures of length n with exactly
k arcs. Höner zu Siederdissen et al. developed a folding algorithm for extended RNA
secondary structures in which each vertex has maximum degree two. An equation for
the generating function of extended RNA secondary structures was obtained by Müller
and Nebel by using a context-free grammar approach, which leads to an asymptotic
formula. In this paper, we consider m-regular linear stacks, where each arc has length
at least m and the degree of each vertex is bounded by two. Extended RNA secondary
structures are exactly 2-regular linear stacks. For any m ≥ 2, we obtain an equation
for the generating function of the m-regular linear stacks. For given m, we deduce
a recurrence relation and an asymptotic formula for the number of m-regular linear
stacks on n vertices. To establish the equation, we use the reduction operation of
Chen, Deng and Du to transform an m-regular linear stack to an m-reduced zigzag (or
alternating) stack. Then we find an equation for m-reduced zigzag stacks leading to
an equation for m-regular linear stacks.

1 Introduction

Proteins are polymer chains consisting of amino acid residues of twenty types. The
function of a protein is directly dependent on its three dimensional structure. Due to
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the complexity of the full-atom protein model, lattice models have been proposed and
extensively studied. Lattice models often preserve important features of the protein
structure, and enable us to focus on dominant aspects of a protein structure. In such
a model, protein folds are represented by self-avoiding walks on the specific lattice.

When two amino acids in a protein fold come very close to each other, say, closer
than a predetermined threshold, they presumably form some kind of bond, which is
called a contact. Let S = s1s2 . . . sn represent the amino acid residue sequence of a
protein. When we consider the protein fold as a self-avoiding walk on some regular
lattice, two residues si and sj are in a contact if they reside on two adjacent points in
the lattice, but not consecutive in the sequence. Let the vertex i stand for the residue
si. The contact map of a folding of S is a diagram with vertices 1, 2, . . . , n arranged
on a horizontal line and there is an edge between two vertices if they are in contact.
See Figure 1.1 for an illustration.
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Figure 1.1: A protein fold on the 2D square lattice and its contact map.

Contacts play a fundamental role in the HP-model for protein folding, see [5, 6].
Contact maps of protein folds have been extensively studied from various perspectives,
such as protein folding prediction [7,24], structure alignment [1,9,16], protein secondary
structure [15, 26], and protein structure data mining [11]. Crippen [4] has studied the
enumeration of contact maps. Vendruscolo et al. [23] investigated statistical properties
of contact maps. Goldman et al. [9] discovered that contact maps for protein folds in
two dimension can be decomposed into “simpler” graphs, called stacks and queues. In
combinatorial words, a stack is a noncrossing diagram, and a queue is a nonnesting
diagram.

Theorem 1.1 (Goldman et al. [9]). For any protein sequence S, the contact map of
any two-dimensional fold of S can be decomposed into (at most) two stacks and one
queue.

For example, the contact map in Figure 1.1 can be decomposed into two stacks:
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{
(6, 17), (7, 16), (9, 16), (10, 15), (11, 14), (17, 24), (18, 23), (19, 22)

}
and

{
(13, 20),

(14, 19), (15, 18)
}

, and one queue
{

(1, 22), (2, 23), (3, 24), (5, 24)
}

.

Recently, Agarwal et al. [1] found a similar decompositions of contact maps of
protein folds in the three dimensional cubic lattice.

As pointed out by Istrail and Lam, the enumeration of stacks and of queues is
related to an approximation algorithm for computing the partition function of self-
avoiding walks in two dimensions. Denote the numbers of stacks on n vertices by s(n).
We notice that from the combinatorial intepretation of Schröder numbers an in terms
of noncrossing graphs, see [22, Exercise 6.39(p)], it is easy to see that s(n) = 2n−1an−2,
where an is the Schröder number whose generating function is given by

∑
n≥0

anx
n =

1− x−
√

1− 6x+ x2

2x
.

When folding a protein on a specific lattice, the lattice model leads to degree and
arc length constraints to the corresponding contact map. For instance, in a contact
map on 2D square lattice, each internal vertex has maximum degree 2 and each arc
has length at least 3. In the case of 2D triangular lattice, each vertex has maximum
degree 4 and each arc has length at least 2. In the hexagonal lattice, the degree of each
vertex is at most 1, but the length of each arc is at least 5. For other lattice models,
see [19]. A stack with arc length at least m is called an m-regular stack and a stack
with degree of each vertex bounded by two is called linear.

RNA secondary structures can be viewed as 2-regular stacks with maximum degree
1. By establishing a bijection between RNA secondary structures and linear trees,
Schmitt and Waterman [21, 25] provided an explicit formula for the number of RNA
secondary structures on n vertices and k arcs. See Figure 1.2 for an example of the
bijection.
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Figure 1.2: An RNA secondary structure and its Schmitt-Waterman contact tree.

Theorem 1.2 (Schmitt and Waterman [21]). The number of RNA secondary structures
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of length n with k arcs is given by

s2(n, k) =
1

k

(
n− k
k + 1

)(
n− k − 1

k − 1

)
. (1.1)

In a recent survey [12], the authors raised the question concerning generalizations
of the Schmitt-Waterman counting formulas to stacks and to queues. In fact, Nebel
[18] derived the generating function of m-regular RNA secondary structures by using
the binary trees and the Horton-Strahler number. Based on the bijection between
matchings and walks inside Weyl-chambers given by [3], Jin, Qin and Reidys [13]
derived a formula for the number of k-noncrossing RNA structures with pseudoknots
of length n with l isolated vertices.

Theorem 1.3. Let fk(n, l) be the number of k-noncrossing digraphs over n vertices
with exactly l isolated vertices. Then the number of RNA structures of pseudoknot type
k − 2 with l isolated vertices is given by

sk(n, l) =

(n−l)/2∑
b=0

(−1)b
(
n− b
b

)
fk(n− 2b, l), (1.2)

where n ≥ 1, 1 ≤ l ≤ n and k ≥ 2.

In particular, when k = 2, formula (1.2) reduces to Schmitt and Waterman’s formula
(1.1). When k = 3, Jin and Reidys [14] obtained the following asymptotic formula for
the 3-noncrossing RNA structures

S3(n) ∼
10.4724 · 4!

n(n− 1) · · · (n− 4)

(
5 +
√

21

2

)n
.

Höner zu Siederdissen et al. [10] presented a model of extended RNA secondary
structures in which the degree of each vertex is bounded by two. They provided a
folding algorithm which is known to be the first thermodynamics-based algorithm that
allows the degrees of vertices to be two. Müller and Nebel [17] studied the enumeration
of extended RNA secondary structures by using a context-free grammar approach.
They obtained an equation satisfied by the ordinary generating functions of the number
of extended RNA secondary structures.

Theorem 1.4. Let
S(z) =

∑
n≥0

r2(n)zn,

where r2(n) is the number of extended RNA secondary structures of length n and r2(0) =
0. Then we have

S(z) = 4z5S5(z) + (4z3 − 7z4 + 9z5)S4(z) + (−8z2 + 11z3 − 14z4 + 7z5)S3(z)

+ (5z − 10z2 + 14z3 − 9z4 + 2z5)S2(z) + (3z − 7z2 + 7z3 − 2z4)S(z)

+ z − 2z2 + z3 (1.3)
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and
r2(n) ∼ 0.250536155× 4.1012475n · n−

3
2 . (1.4)

In this paper, we are mainly concerned with m-regular linear stacks, in which arc
length is at least m with m ≥ 2 and the degree of each vertex is bounded by 2. For
example, the two stacks in Figure 1.1 are 3-regular linear stacks. Extended RNA
secondary structures are exactly 2-regular linear stacks.

We obtain an equation for the generating function of the m-regular linear stacks.
For given m, we can derive an explicit recurrence relation and an asymptotic formula
for the number of m-regular linear stacks of length n.

Using the reduction operation on the standard representation of an m-regular par-
tition due to Chen et al. [2], we find a class of zigzag stacks which are in one-to-one
correspondence with m-regular linear stacks. More precisely, a zigzag stack, or an al-
ternating stack, is a noncrossing diagram without multiple edges or loops subject to
the following conditions:

(1) The degree of each vertex is bounded by 2;

(2) For each vertex v of degree 2, the two arcs are on the same side with respect to
the position of v.

Notice that isolated vertices are allowed in a zigzag stack. Figure 1.3 gives a zigzag
stack. It is easy to see that each connected component of a zigzag stack forms a zigzag
path.

q q q q q q q
1 2 3 4 5 6 7

Figure 1.3: A zigzag stack.

Given a vertex v in a stack, we denote the degree of v by deg(v), and denote the
left-degree and right-degree of v by ldeg(v) and rdeg(v), respectively. We find that
the reduction operation transforms an m-regular linear stack of length n+m− 1 to a
zigzag stack of length n with the following two constraints:

(1) For 1 ≤ i ≤ n−m+ 1, ldeg(i) + rdeg(i+m− 1) ≤ 2;

(2) For 1 ≤ i < j ≤ n, if ldeg(i) > 0 and rdeg(j) > 0, then j − i ≥ m− 1.
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A zigzag stack satisfying the above two constraints is called an m-reduced zigzag stack.
The above conditions can be used to characterize the substructures of m-reduced zigzag
stacks. For example, the zigzag stack in Figure 1.4 is obtained from a non-linear 3-
regular stack by applying the reduction operation twice. Thus none of 3-reduced zigzag

r r r r r r r r r r r r r r
1 2 3 4 5 6 7 8

reduction−−−−−−→
1 2 3 4 5 6

Figure 1.4: The reduction from a non-linear stack to a zigzag stack.

stacks can contain a substructure like the reduced zigzag stack in Figure 1.4. We shall
use Conditions (1) and (2) to describe the substructures in the decomposition of m-
reduced zigzag stacks. As will be seen, the substructure in Figure 1.4 is not a valid
substructure according to the characterizations as given in Theorem 5.1.

Denote the set of m-regular linear stacks and m-reduced zigzag stacks of length n
by Rm(n) and Zm(n), respectively. Clearly, when m = 2, R2(n) reduces to extended
RNA secondary structures. Let rm(n) = |Rm(n)| and zm(n) = |Zm(n)|, and let

Rm(x) =
∞∑
n=0

rm(n)xn,

Zm(x) =
∞∑
n=0

zm(n)xn,

where rm(0) = zm(0) = 1. Then the reduction algorithm implies that zm(n) = rm(n+
m− 1) and

Rm(x) = 1 + x+ x2 + · · ·+ xm−2 + xm−1Zm(x). (1.5)

By decomposing an m-reduced zigzag stack into a connected component and a list
of substructures, we derive an equation satisfied by Zm(x). Furthermore, by apply-
ing relation (1.5), we obtain that the following relation for Rm(x) with polynomial
coefficients.

Theorem 1.5. We have

c5(x)R5
m + c4(x)R4

m + c3(x)R3
m + c2(x)R2

m + c1(x)Rm + c0(x) = 0, (1.6)
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where

c0(x) = (x− 1)(xm − 1)3,

c1(x) = (xm − 1)2(x2m+1 − 2xm+2 − xm+1 + xm − 3x3 + 8x2 − 3x− 1),

c2(x) = −x(x− 1)(xm − 1)(5x2m+1 − 6xm+2 − 9xm+1 + 5xm − 3x3 + 12x2 + x− 5),

c3(x) = x2(x− 1)2(xm − 1)(11xm+1 − 8x2 − 11x+ 8),

c4(x) = x3(x− 1)3(−11xm+1 + 4x2 + 11x− 4),

c5(x) = 4x5(x− 1)4.

From the above equation (1.6), we can deduce a recurrence relation for rm(n) for
given m. Applying Newton-Puiseux Expansion Theorem [8], we are led to the following
asymptotic formula

rm(n) ∼ γ · ωn · n−
3
2 ,

where γ and ω are constants. When m = 2, it coincides with Müller and Nebel’s
formula (1.4) for extended RNA secondary structures, see [17]. For m = 3, 4, 5, 6, we
have

r3(n) ∼ 0.19005341× 3.5271506n · n−
3
2 ,

r4(n) ∼ 0.145636571× 3.2431591n · n−
3
2 ,

r5(n) ∼ 0.112004701× 3.0833083n · n−
3
2 ,

r6(n) ∼ 0.086237333× 2.9880679n · n−
3
2 .

2 Zigzag stacks

In this section, we derive an equation satisfied by the generating function of the number
of zigzag stacks on n vertices. To enumerate zigzag stacks, we introduce the primary
component decomposition.

Denote [n] = {1, 2, . . . , n}. Let S be a zigzag stack on [n], and define the primary
component of S to be the connected component containing the vertex 1. The primary
component will split [n] into disjoint intervals, on which smaller zigzag stacks can be
constructed. This enables us to establish a recursive procedure to enumerate zigzag
stacks, so that we can derive an equation on the generating function for the number
of zigzag stacks. Figure 2.1 illustrates a primary component decomposition of a zigzag
stack.

The following lemma shows that the primary component decomposition leads to a
primary component along with zigzag stacks on the intervals.
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q q q q q q q
v1 v2 v3 v4 v5 v6 v7

Figure 2.1: Decomposition of a zigzag stack.

Lemma 2.1. Let S be a zigzag stack, and C be the primary component of S. Then
there is no arc of S that connects two vertices in different intervals. In other words,
a zigzag stack can be decomposed into a primary component along with a list of zigzag
stacks on the intervals.

Proof. Clearly, any vertex in an interval is not connected to any vertex of C. Assume
to the contrary that the lemma does not hold. Then there exists an arc (i, j) with i < j
such that i ∈ I and j ∈ J , where I and J are two different intervals of S. Let k be the
vertex of C such that k is next to the last vertex of I. We now have 1 < i < k < j.
Since 1 and k are in the connected component C, the arc (i, j) must intersect with
some arc of C, contradicting the assumption that S is a stack. This completes the
proof.

Let cn denote the number of connected zigzag stacks on [n]. We have the following
formula.

Lemma 2.2. If n ≥ 2, we have
cn = n− 1. (2.1)

Proof. The lemma is obvious for n = 2, 3. For n ≥ 4, let C be a connected zigzag stack
on [n]. Clearly, (1, n) is an arc in C, since C is connected and is zigzag. There are
three cases with respect to the degrees of 1 and n, see Figure 2.2.

q q q q q q q q q q q q q q
(a) (b) (c)

Figure 2.2: Three cases of connected zigzag stacks

If deg(1) = 1, as shown in Figure 2.2 (a), C is the unique diagram consisting of
the arcs (1, n), (2, n), (2, n − 1), and so on. Similarly, if deg(n) = 1, C is uniquely
determined.

If deg(1) = deg(n) = 2, assume that (1, i) is an arc of C, where i < n. Then
(i + 1, n) is an arc of C. Moreover, C is determined once the arcs (1, i) and (i + 1, n)
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are given. Since i can be any vertex in {2, 3, . . . , n − 2}, there are n − 3 choices of C
in this case. In summary, there are a total number of n− 1 connected zigzag stacks on
[n].

We set c0 = c1 = 1. For n ≥ 1, let Z(n) denote the set of zigzag stacks on [n], and
let z(n) = |Z(n)|. We set z(0) = 1. Let

Z(x) =
∑
n≥0

z(n)xn

denote the ordinary generating function of z(n). The following theorem gives an equa-
tion satisfied by Z(x).

Theorem 2.1. We have

x2(x− 1)Z3(x) + 2xZ2(x)− (x+ 1)Z(x) + 1 = 0. (2.2)

Proof. Let S be a zigzag stack, and let C be the primary component of S. Assume
that C has k vertices, then S can be decomposed into a primary component C and k
zigzag stacks S1, S2, . . . , Sk, where Si are allowed to be empty.

Let di be the number of vertices in Si. Then we have

z(n) =
n∑
k=1

ck
∑

d1+d2+···+dk=n−k

z(d1)z(d2) · · · z(dk). (2.3)

Multiplying both sides of (2.3) by xn and summing over n, we obtain

Z(x) =
∞∑
n=0

∞∑
k=1

ck
∑

d1+d2+···+dk=n−k

z(d1)z(d2) · · · z(dk)x
n

=
∞∑
k=1

ckx
k

∞∑
c1=0

z(d1)x
d1

∞∑
d2=0

z(d2)x
d2 · · ·

∞∑
dk=0

z(dk)x
dk

=
∞∑
k=1

ck
(
xZ(x)

)k
.

Since c0 = c1 = 1 and ck = k − 1 for k ≥ 2, we deduce that

Z(x) = c0 + c1xZ +
∞∑
k=2

ck(xZ(x))k

= 1 + xZ(x) +
∞∑
k=2

(k − 1)(xZ(x))k

= 1 + xZ(x) + (xZ(x))2
∞∑
k=0

(k + 1)(xZ(x))k
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= 1 + xZ(x) +
(xZ(x))2

(1− xZ(x))2
,

which yields (2.2).

Given the equation (2.2), it is straightforward to derive a second order differential
equation for Z(x) and a recurrence relation of z(n), see, for example [22, Chapter 6].
The computation can also be carried out by using the Maple package gfun, see [20].
Moreover, the asymptotic formula for z(n) can be derived by applying Newton-Puiseux
Expansion Theorem [8].

Theorem 2.2. We have

x2(23x3 − 26x2 + 23x− 4)(4x2 + x− 1)(x− 1)Z ′′(x)

+ x(368x6 − 433x5 + 108x4 + 260x3 − 258x2 + 93x− 10)Z ′(x)

+ (184x6 − 87x5 − 117x4 + 217x3 − 129x2 + 30x− 2)Z(x)

− 2(25x2 − 8x+ 1)(x− 1) = 0.

The number of zigzag stacks on [n] satisfies the following recurrence relation

6∑
i=0

pi(n)z(n+ i) = 0, (2.4)

where
p0(n) = 184 + 276n+ 92n2, p1(n) = −520− 606n− 173n2,

p2(n) = 347 + 480n+ 124n2, p3(n) = 937 + 210n− 10n2,

p4(n) = −1881− 678n− 60n2, p5(n) = 1115 + 372n+ 31n2,

p6(n) = −182− 54n− 4n2.

We also have
z(n) ∼ 0.4781905× 4.6107186n · n−

3
2 .

The first few values of z(n) are given below

n 1 2 3 4 5 6 7 8 9 10 11 12
z(n) 1 2 6 20 70 255 959 3696 14520 57930 234080 955999

3 Reduction of m-Regular linear stacks

In this section, we use the reduction operation in [2] to transform a m-regular linear
stack to a zigzag stack. Then we give a characterization of zigzag stacks that are in
one-to-one correspondence with m-regular linear stacks. In the next three sections,
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we derive an equation for the generating function of the number of m-reduce zigzag
stacks on [n], which leads to an equation for the generating function of the number of
m-regular linear stacks on [n].

An m-reduced zigzag stack in Zm(n) is a zigzag stack satisfying the following two
conditions:

(1) For 1 ≤ i ≤ n−m+ 1, ldeg(i) + rdeg(i+m− 1) ≤ 2;

(2) For 1 ≤ i < j ≤ n, if ldeg(i) > 0 and rdeg(j) > 0, then j − i ≥ m− 1.

The reduction operation θm is defined by

θm : Rm(n+m− 1) −→ Zm(n), (3.1)

in which for S ∈ Rm(n+m− 1), θm(S) is obtained from S by replacing each arc (i, j)
by an arc (i, j−m+ 1) and deleting the vertices n+ 1, n+ 2, . . . , n+m− 1 afterwards.
Figure 3.1 is an example for m = 2.

q q q q q q q q q q qθ2−→

1 2 3 4 5 6 1 2 3 4 5

Figure 3.1: An example of the reduction for m = 2.

The following theorem shows that θm is a bijection.

Theorem 3.1. The map θm is a bijection between m-regular linear stacks on [n+m−1]
and m-reduced zigzag stacks on [n].

Proof. Let S be any m-regular linear stack in Rm(n + m − 1) and T = θm(S). Let
(i, j) be an arc of S. Since S is m-regular, that is j − i ≥ m, we see that the reduced
pair (i, j − m + 1) is an arc. We claim that T is a stack. Assume to the contrary
that T contains two crossing arcs: (i1, j1) and (i2, j2) with i1 < i2 < j1 < j2. Thus
(i1, j1 + m − 1) and (i2, j2 + m − 1) are arcs of S. Moreover, these two arcs form a
crossing since i1 < i2 < j1 + m− 1 < j2 + m− 1, a contradiction. This proves that T
is a stack.

Next we show that T is a zigzag stack. We claim that for each vertex j of T , either
ldegT (j) = 0 or rdegT (j) = 0. Otherwise, T contains two arcs: (i, j) and (j, k) with
i < j < k. These two arcs in T correspond to arcs (i, j + m − 1) and (j, k + m − 1)
in S, which form a crossing, since i < j < j + m − 1 < k + m − 1. Thus the claim is
proved.
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To prove that the degree of each vertex in T is bounded by 2, we notice that for
any vertex i in T ,

ldegT (i) = ldegS(i+m− 1) (3.2)

and
rdegT (i) = rdegS(i). (3.3)

Moreover, if ldegT (i) = 0, then degT (i) = rdegS(i), and if rdegT (i) = 0, then degT (i) =
ldegS(i+m− 1). In view of the above claim that for any vertex i in T , rdegT (i) = 0 or
rdegT (i) = 0, we deduce that either degT (i) = ldegS(i+m− 1) or degT (i) = rdegS(i).
Given that S is linear, both ldegS(i+m− 1) and rdegS(i) are bounded by 2. It follows
that degT (i) ≤ 2. Hence T is a zigzag stack.

Employing relations (3.2) and (3.3), we deduce that

ldegT (i) + rdegT (i+m− 1) = ldegS(i+m− 1) + rdegS(i+m− 1)

= degS(i+m− 1) ≤ 2,

which is Condition (1) in the definition of an m-reduced zigzag stack.

To verify Condition (2), we assume to the contrary that there exist two vertices
j, k in T with j < k such that ldegT (j) > 0 and rdegT (k) > 0, but k − j < m − 1.
Since ldegT (j) > 0 and rdegT (k) > 0, there exist two arcs (i, j), (k, l) in T which are
obtained from arcs (i, j+m− 1) and (k, l+m− 1) in S. Since k− j < m− 1, we have
i < k < j +m− 1 < l +m− 1, so that we get two crossing arcs in S, a contradiction.
This implies that T satisfies Condition (2) in the definition of an m-reduced zigzag
stack. In summary, we have shown that θm is well-defined.

Let T ∈ Zm(n). To prove that θm is a bijection, we define the inverse map

ϕm : Zm(n) −→ Rm(n+m− 1)

by ϕm(T ) = S, where S is a diagram on [n + m − 1] whose arcs are obtained by
expanding each arc (i, j) of T to an arc (i, j+m− 1). Since j− i ≥ 1 for each arc (i, j)
in T , we have j +m− 1− i ≥ m, which says that S is m-regular.

Next, to prove that S is linear, we notice that for any vertex i in S,

ldegS(i) = ldegT (i−m+ 1), (3.4)

rdegS(i) = rdegT (i). (3.5)

When 1 ≤ i ≤ m − 1, it is easy to see that ldegS(i) = 0 since S is m-regular. Then
degS(i) = rdegT (i) ≤ 2. When m ≤ i ≤ n, by using Condition (1), we find that

degS(i) = ldegS(i) + rdegS(i) = ldegT (i−m+ 1) + rdegT (i) ≤ 2.

When n + 1 ≤ i ≤ n + m − 1, it is clear that rdegS(i) = 0, which implies that
degS(i) = ldegT (i−m+ 1) ≤ 2. Thus the degree of each vertex in S is bounded by 2,
namely, S is linear.
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To prove S is an m-regular linear stack, we still need to show that S is a stack.
Otherwise, suppose that S contains two crossing arcs (i1, j1) and (i2, j2) with i1 <
i2 < j1 < j2. Thus we get two arcs (i1, j1 − m + 1) and (i2, j2 − m + 1) in T . If
j1 − m + 1 > i2, then (i1, j1 − m + 1) and (i2, j2 − m + 1) form a crossing in T ,
contradicting the assumption that T is a stack. If j1 − m + 1 = i2, then for vertex
i2, we have ldegT (i2) > 0 and rdegT (i2) > 0, contradicting the assumption that T is a
zigzag stack. If j1−m+ 1 < i2, then we have ldegT (j1−m+ 1) > 0, rdegT (i2) > 0 and
i2 − (j1 −m+ 1) < j1 − (j1 −m+ 1) = m− 1. But this violates Condition (2) for T .
So we conclude that by no means does S contain a crossing, namely, S is a stack.

We now have shown that S is an m-regular linear stack, that is, ϕm is well-defined.
It is easily seen that ϕm(θm(S)) = S. Hence θm is a bijection and the proof is complete.

4 Decomposition of an m-reduced zigzag stack

Based on the bijection given in Theorem 3.1, we can transform an m-regular linear
stack to an m-reduced zigzag stack. The advantage of enumerating m-reduced zigzag
stack lies in that there is no restriction on the arc lengths. We apply the primary
component decomposition to enumerate m-reduced zigzag stacks.

Let u and v (u < v) be two adjacent vertices in the primary connected component
of S. We use 〈u, v〉 to denote the interval of integers between u and v, that is, {u +
1, u+2, . . . , v−1}. Note that 〈u, v〉 is allowed to be empty. We use this notation 〈u, v〉
to distinguish with the notation (u, v) for an arc. If the primary component C does
not include the last vertex n of S, then the vertices after the last vertex of C also form
an interval. Since the intervals we are concerned with are determined by the primary
component C, we call such intervals C-intervals. Note that the C-intervals are allowed
to be empty. However, if C contains the last vertex n, we do not consider the empty
set after the vertex n as an interval. In this case, if C contains k vertices, then there
are k − 1 C-intervals.

Figure 4.1 illustrates a primary component decomposition of a 3-reduced zigzag
stack S. The primary component C is a connected zigzag stack on {1, 7, 9, 13}, it
decomposes S into four intervals I1 = {2, 3, 4, 5, 6}, I2 = {8}, I3 = {10, 11, 12} and the
last interval is I4 = {14, 15, 16, 17}.

Let S be a zigzag stack on [n], and let C be the primary component of S. Let
I1, I2, . . . , Ik be the C-intervals of S. Define the sets J1, J2, . . . , Jk as follows. There
are two cases. Case 1: C contains the vertex n. Assume that for 1 ≤ t ≤ k, It is the
interval between the vertices ut and vt in C. Then let Jt = {ut, ut + 1, . . . , vt} for each
t. Case 2: C does not contain the vertex n. Assume that for 1 ≤ t ≤ k − 1, It is the
interval between the vertices ut and vt in C and that Ik is the interval after the vertex
uk. Then let Jt = {ut, ut + 1, . . . , vt} for 1 ≤ t ≤ k− 1 and let Jk = {uk, uk + 1, . . . , n}.
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q q q q q q q q
1 2 3 4 5 6 7 8

q q q q q q q q q
9 10 11 12 13 14 15 16 17

Figure 4.1: The primary component decomposition of a 3-reduced zigzag stack.

For example, in Figure 4.1, we see that J1 = {1, 2, 3, 4, 5, 6, 7}, J2 = {7, 8, 9}, J3 =
{9, 10, 11, 12, 13} and J4 = {13, 14, 15, 16, 17}.

Lemma 2.1 shows that a zigzag stack S can be decomposed into a primary com-
ponent and a list of zigzag stacks. Let S1, S2, . . . , Sk be the zigzag stacks on the
C-intervals I1, I2, . . . , Ik. If S is an m-reduced zigzag stack, it can be seen that all
the substructures St are m-reduced zigzag stacks. However, the converse may not be
true. For example, in Figure 4.2, the substructure on {4, 5, 6} is a 3-reduced zigzag
stack, but the stack on {1, 2, 3, 4, 5, 6, 7} is not a 3-reduced zigzag stack, because for
the vertices 3 and 4, we have ldeg(3) > 0, rdeg(4) > 0, but 4−3 = 1 < 2, contradicting
the condition j − i ≥ m− 1.

q q q q q q q
1 2 3 4 5 6 7

Figure 4.2: A zigzag stack on [7].

The following lemma gives a necessary and sufficient condition for a zigzag stack
S to be m-reduced. It shows that the primary component decomposition of S can be
used to restrict the verification of the following degree conditions to pairs of vertices
in each set Jt, where 1 ≤ t ≤ k:

(1) For 1 ≤ i ≤ n−m+ 1, ldeg(i) + rdeg(i+m− 1) ≤ 2;

(2) For 1 ≤ i < j ≤ n, if ldeg(i) > 0 and rdeg(j) > 0, then j − i ≥ m− 1.

Lemma 4.1. Let S be a zigzag stack on [n], and let C be the primary component of
S. Let I1, I2, . . . , Ik be the C-intervals of S, and J1, J2, . . . , Jk be the subsets of [n] as
given before. Then S is an m-reduced zigzag stack if and only if Conditions (1) and
(2) hold for each Jt with respect to the degrees in S.
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Proof. Clearly, we only need to show that if Conditions (1) and (2) hold for each Jt,
then they hold for any pair of vertices in [n]. The proof consists of two claims. Claim
1. If Condition (1) holds for each Jt, then the violation of Condition (1) on [n] implies
the violation of Condition (2) on [n]. Claim 2. If Condition (2) holds for each Jt, then
Condition (2) holds for any pair of vertices in [n]. Combining these two claims, we see
that if Conditions (1) and (2) hold for each Jt, then they hold on [n], and hence S is
an m-reduced zigzag stack.

To prove Claim 1, we suppose that there exist two vertices i and i+m−1 such that
ldeg(i)+rdeg(i+m−1) > 2. Since ldeg(i), rdeg(i+m−1) ≤ 2, we see that ldeg(i) > 0
and rdeg(i + m − 1) > 0. On the other hand, i and i + m − 1 cannot be contained
in the same interval Jt. Otherwise, Condition (1) would hold for i and i + m − 1, a
contradiction. Thus there exists at least one vertex u in C such that i < u < i+m−1.
It follows that either ldeg(u) > 0 or rdeg(u) > 0 since C is a connected zigzag stack.
If ldeg(u) > 0, then (i + m− 1)− u < m− 1; If rdeg(u) > 0, then u− i < m− 1. In
either case, Condition (2) is violated.

To verify Claim 2, suppose to the contrary that i and j (1 ≤ i < j ≤ n) are two
vertices that violate Condition (2), namely, ldeg(i) > 0, rdeg(j) > 0 but j− i < m− 1.
We further assume that the vertices i and j are chosen so that j− i is minimum. Since
Condition (2) holds for each Jt, i and j cannot be contained in the same interval Jt.
Hence there exists at least one vertex u in C such that i < u < j. Noting that C is
a connected zigzag stack, we have either ldeg(u) > 0 or rdeg(u) > 0. If ldeg(u) > 0,
then j − u < j − i; If rdeg(u) > 0, then u− i < j − i. In either case, this contradicts
the choice of i and j. So we conclude that any pair of vertices in S satisfies Condition
(2). This completes the proof.

The above lemma shows that an m-reduced zigzag stack can be decomposed into a
primary component along with a list of m-reduced zigzag stacks on the intervals. We
observe that the primary components C has six patterns as shown in Figure 4.3, where
the structure (a) and (b) in Figure 4.4 stand for connected zigzag stacks with at least
three vertices.

q q q q q q q q q q q q q q q q

q q q q q q q q q q q q

(4) (5) (6)

(1) (2) (3)

T1 T5 T1 T2 T∗4 T ′2 T1 T5 T1 T∗4 T ′2 T1 T6 T1 T2 T∗4

T ′4 T1 T2 T∗4 T ′2 T1 T4 T∗2 T1 T3 T1 T∗4

Figure 4.3: The primary component decompositions of m-reduced zigzag stacks.
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q q q q q q
(a) (b)

Figure 4.4: Substructures with at least three vertices.

We further classify the substructures on the intervals split by C into six classes, see
Figure 4.5. The types of intervals lead us to define types of m-reduced zigzag stacks.

T1

*T2T2 T2'

T3

*T4T4 T4'

T5 T5'

T6

Figure 4.5: Types of intervals.

If S is a zigzag stack on an interval of type T , then we say that S is also of type T .

Let S be an m-reduced zigzag stack on [n], and let C be the primary component of
S. For given C, the types of the intervals created by C are determined. Assume that
C has k vertices, that create k intervals which are allowed to be empty. In particular,
if C containing the vertex n, then the k-th interval becomes empty. Let us discuss the
case as shown in Figure 4.6 in detail. The other cases are similar.

When k = 2, it is easily seen that the two intervals are of types T1 and T ∗2 respec-
tively. When k ≥ 3, the types of the substructures are described below.
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q q q q q qT ′4 T ′4 T1 T2 T4 T∗4T ′4 T ′4
u1 u2 u3 v3 v2 v1

Figure 4.6: Decomposition of m-reduced zigzag stacks with deg(1) = 1.

Lemma 4.2. Let S be an m-reduced zigzag stack with deg(1) = 1, and let C denote
the primary component of S. Assume that C contains k vertices with k ≥ 3. Suppose
that the arcs of C are denoted by e1 = (u1, v1), e2 = (u2, v1), e3 = (u2, v2), . . .,
ek−1 =

(
u[ k+1

2
], v[ k

2
]

)
. Then the substructures on the intervals can be described as follows:

(1) If k is even, then the substructure on the interval 〈u k
2
, v k

2
〉 is of type T1, the one

on the interval 〈v k
2
, v k

2
−1〉 is of type T2, the ones on the intervals 〈ui, ui+1〉 for

1 ≤ i ≤ k
2
−1 are of type T ′4, the ones on the intervals 〈vj, vj−1〉 for 2 ≤ j ≤ k

2
−1

are of type T4, and the one on the interval after the vertex v1 is of type T ∗4 .

(2) If k is odd, then the substructure on the interval 〈u k+1
2
, v k−1

2
〉 is of type T1, the one

on the interval 〈u k−1
2
, u k+1

2
〉 is of type T ′2, the ones on the intervals 〈ui, ui+1〉 for

1 ≤ i ≤ k−1
2
−1 are of type T ′4, the ones on the intervals 〈vj, vj−1〉 for 2 ≤ j ≤ k−1

2

are of type T4, and the one on the interval after the vertex v1 is of type T ∗4 .

Proof. We only consider the case when k is even. It is clear that ldegS(ui) = 0 for any
1 ≤ i ≤ k/2, and rdegS(u1) = 1, rdegS(ui) = 2 for 2 ≤ i ≤ k/2. Similarly, we have
ldegS(vj) = 2 for 1 ≤ j ≤ k/2 − 1, degS(v k

2
) = 1 and rdegS(vj) = 0 for 1 ≤ j ≤ k/2.

Thus for the interval 〈u k
2
, v k

2
〉, we have ldegS

(
u k

2

)
= 0 and rdegS

(
v k

2

)
= 0. By Lemma

4.1, we see that the substructure of S on this interval is of type T1. In other words,
the substructure on 〈u k

2
, v k

2
〉 can be any m-reduced zigzag stack.

For the interval 〈v k
2
, v k

2
−1〉, we have ldegS

(
v k

2

)
= 1 and rdegS

(
v k

2
−1
)

= 0. Thus this

interval is of type T2 and the substructure on this interval is also of type T2.

Similarly, the other types of the substructures also can be determined from the
degrees of endpoints of the corresponding intervals. This completes the proof.

By Lemma 4.1, we see that if S is the substructure in a C-interval 〈u, v〉, then S is an
m-reduced zigzag stack restricted by ldeg(u) and rdeg(v); and if S is the substructure
in the interval after the last vertex w of the primary component C, then S is an m-
reduced zigzag stack restricted by ldeg(w). For type T2, since rdeg(v) = 0, then S is
determined by ldeg(u). Noting that ldeg(u) = ldeg(w) = 1 for types T2 and T ∗2 , this
implies that the substructures of types T2 and T ∗2 are of the same class of m-reduced
zigzag stacks. Since ldeg(u) = ldeg(w) = 2 and rdeg(v) = 0 for types T4 and T ∗4 , we
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see that the substructures of types T4 and T ∗4 are also of the same class of m-reduced
zigzag stacks. Moreover, if S is of type Ti, then the reflection or reversal of S is of type
T ′i (i = 2, 4, 5).

For 1 ≤ i ≤ 6, let ti(n) denote the number of m-reduced zigzag stacks of type Ti on
[n]. Similarly, for i = 2, 4, 5, let t′i(n) denote the number of m-reduced zigzag stacks of
type T ′i on [n]. Moreover, for i = 2, 4, let t∗i (n) denote the number of m-reduced zigzag
stacks of type T ∗i on [n]. It is clear that ti(n) = t′i(n) for i = 2, 4, 5. We have shown
that ti(n) = t∗i (n) for i = 2, 4. So we shall identify the types T ′i and T ∗i as Ti and we
will restrict our attention to substructures of type Ti (1 ≤ i ≤ 6). For 1 ≤ i ≤ 6, let

Ti(x) =
∞∑
n=0

ti(n)xn.

From the primary component decompositions of m-reduced zigzag stacks, we find
that Zm(x) can be expressed in terms of Ti(x).

Theorem 4.1. We have

(1− x)Zm = 1 +
x2T1T2
1− xT4

+
x3T1T

2
2

1− xT4
+ x4T 2

1 T3T4 +
2x5T 2

1 T2T4T5
1− xT4

+
x6T 2

1 T
2
2 T4T6

1− xT4
,

(4.1)

where Zm and Ti stand for the generating functions Zm(x) and Ti(x), respectively.

Proof. Recall that zm(n) denotes the number of m-reduced zigzag stacks on [n]. For
n = 0 , we set zm(0) = 1. For n ≥ 1, let u0(n) denote the number of these m-reduced
zigzag stacks such that deg(1) = 0, and define

U0(x) =
∞∑
n=0

u0(n)xn.

If 1 is an isolated vertex in an m-reduced zigzag stack S, we get an m-reduced zigzag
stack of length n− 1 by deleting 1. Thus u0(n) = zm(n− 1) and

U0(x) = xZm(x).

We next divide m-reduced zigzag stacks with deg(1) ≥ 1 into six classes Ui(n)
(1 ≤ i ≤ 6) according to the patterns of the primary components, see Figure 4.3. For
each 1 ≤ i ≤ 6, denote the numbers of the m-reduced zigzag stacks in Ui(n) by ui(n)
and define

Ui(x) =
∞∑
n=0

ui(n)xn.

Let ui(n, k) denote the number of m-reduced zigzag stacks in Ui(n) such that the prima-
ry component C contains k vertices. Assume that C contains k vertices v1, v2, . . . , vk.
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Case (1): deg(1) = 1. By Lemma 2.2, C is of the form as shown in Figure 4.3. The
primary component C creates k intervals. Notice that if vk = n, we still consider the
empty set after the vertex n as an interval. By Lemma 4.2, we see that among these k
intervals , there are one interval of type T1, one interval of type T2, and k− 2 intervals
of type T4. Thus

u1(n, k) =
∑

d1+···+dk=n−k

t1(d1)t2(d2)t4(d3)t4(d4) · · · t4(dk),

where di are nonnegative integers. Therefore,

U1(x) =
∞∑
n=2

n∑
k=2

u1(n, k)xn

=
∞∑
n=2

n∑
k=2

∑
d1+···+dk=n−k

t1(d1)t2(d2)t4(d3) · · · t4(dk)xn

=
∞∑
k=2

xk
∞∑
n=0

xn
∑

d1+···+dk=n

t1(d1)t2(d2)t4(d3) · · · t4(dk)

=
∞∑
k=2

xk
(∑
d1≥0

t1(d1)x
d1
∑
d2≥0

t2(d2)x
d2
∑
d3≥0

t4(d3)x
d3 . . .

∑
dk≥0

t4(dk)x
dk

)

=
∞∑
k=2

xkT1(x)T2(x)T k−24 (x)

=
x2T1(x)T2(x)

1− xT4(x)
.

Case (2): deg(1) = 2 and deg(vk) = 1. In this case, we have k ≥ 3 and C creates k
intervals, in which there are one interval of type T1, two of type T2 and k − 3 of type
T4. It yields that

u2(n, k) =
∑

d1+···+dk=n−k

t1(d1)t2(d2)t2(d3)t4(d4)t4(d5) · · · t4(dk),

where di ranges over nonnegative integers. Hence

U2(x) =
x3T1T

2
2

1− xT4
.

Case (3): k = 4, (1, u), (1, w) and (v, w) are arcs of S such that u < v < w ≤ n and
deg(u) = deg(v) = 1. These four vertices 1, u, v, w create four intervals 〈1, u〉, 〈u, v〉,
〈v, w〉 and the interval after the vertex w. In these intervals, there are two of type T1,
one of type T3 and one of type T4. Thus we get

u3(n) =
∑

d1+d2+d3+d4=n−4

t1(d1)t1(d2)t2(d3)t4(d4),
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where d1, d2, d3 and d4 are nonnegative integers. It follows that

U3(x) = x4T 2
1 T3T4.

Cases (4) and (5) are symmetric, thus u4(n) = u5(n) and U4(x) = U5(x). Let us
consider Case (4), which means that (1, v2), (1, vk) and (v3, vk) are arcs of S such that
1 < v2 < v3 < vk ≤ n, deg(v2) = 1 and deg(v3) = 2. In this case k ≥ 5 and the vertices
of C create k intervals, where the interval after vk is allowed to be empty. Among these
k intervals, there are two of type T1, one of type T2, one of type T5 and k − 4 of type
T4. So we have

u4(n, k) =
∑

d1+···+dk=n−k

t1(d1)t1(d2)t2(d3)t5(d4)t4(d5) · · · t4(dk),

where d1, d2, . . . , dk are nonnegative integers. Therefore,

U4(x) =
x5T 2

1 T2T4T5
1− xT4

.

Case (6): deg(1) = 2, (1, vi), (1, vk), (vi+1, vk) are arcs of S such that 1 < vi <
vi+1 < vk and deg(vi) = deg(vi+1) = 2. In this case k ≥ 6 and 3 ≤ i ≤ k−3. When i is
given, these k vertices create k intervals. It can be seen that among these k intervals,
there are two of type T1, two of type T2, one of type T6 and k − 5 of type T4. Thus,

u6(n, k) =
∑

d1+···+dk=n−k

(k − 5)t1(d1)t1(d2)t2(d3)t2(d4)t6(d5)t4(d6) · · · t4(dk),

which implies

U6(x) =
x6T 2

1 T
2
2 T4T6

1− xT4
.

In summary, we find that

Zm(x) = 1 + U0(x) + U1(x) + U2(x) + U3(x) + U4(x) + U5(x) + U6(x)

= 1 + xZm +
x2T1T2
1− xT4

+
x3T1T

2
2

1− xT4
+ x4T 2

1 T3T4 +
2x5T 2

1 T2T4T5
1− xT4

+
x6T 2

1 T
2
2 T4T6

1− xT4
,

(4.2)

which completes the proof.

5 Generating functions of substructures

In this section, we analyze the substructures of types Ti (1 ≤ i ≤ 6) and derive their
generating functions in terms of Zm(x). To do so, we shall consider two classes of
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m-reduced zigzag stacks, which will be called m-reduced zigzag stacks of types G and
H.

More precisely, an m-reduced zigzag stack on [n] is said to be of typeG if deg(1) ≤ 1,
or of type H if deg(1) ≤ 1 and deg(n) ≤ 1. For example, given the 3-reduced zigzag
stack in Figure 5.1, the zigzag stack on {9, 10, 11} is of type G. The zigzag stack on
{14, 15, 16} is also of type G. Moreover, the substructure on {2, 3, 4, 5, 6} is of type H.

q q q q q q q q
1 2 3 4 5 6 7 8

q q q q q q q q
9 10 11 12 13 14 15 16

Figure 5.1: A 3-reduced zigzag stack.

We find that the substructure on each interval of type Ti (1 ≤ i ≤ 6) can be
characterized as follows.

Theorem 5.1. Let S be an m-reduced zigzag stack. Let I be an interval of S of type Ti
(1 ≤ i ≤ 6). Let T be the substructure of S on the interval I. Then T can be described
as follows.

(1) If T is of type T1, then T can be any m-reduced zigzag stack.

(2) If T is of type T2, then T may be empty, or consists of not more than m − 3
isolated vertices, or m− 2 isolated vertices followed by an m-reduced zigzag stack
of type G.

(3) If T is of type T3, then T consists of k isolated vertices with m−2 ≤ k ≤ 2m−5,
or T is a substructure beginning with m − 2 isolated vertices followed by an m-
reduced zigzag stack of type H and ending with m− 2 isolated vertices.

(4) If T is of type T4, then T is empty, or consists of not more than m − 2 isolated
vertices, or m− 1 isolated vertices followed by an m-reduced zigzag stack.

(5) If T is of type T5, then T can be k isolated vertices with m − 2 ≤ k ≤ 2m − 4,
or m − 1 isolated vertices followed by an m-reduced zigzag stack of type G and
m− 2 isolated vertices.

(6) If T is of type T6, then T can be k isolated vertices with m− 2 ≤ k ≤ 2m− 3, or
m− 1 isolated vertices followed by an m-reduced zigzag stack and m− 1 isolated
vertices.
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Proof. We assume that I = 〈u, v〉, and denote I by {w1, w2, . . . , w`} with w1 = u + 1,
w2 = u+ 2, . . ., w` = v − 1.

If T is of type T1, then ldegS(u) = rdegS(v) = 0. By Lemma 4.1, Conditions
(1) and (2) hold on the interval J = {u,w1, . . . , w`, v}. For vertices u and v, since
ldegS(u) = rdegS(v) = 0, there is no restriction with respect to Condition (2). On the
other hand, Condition (1) becomes rdegS(u + m − 1) ≤ 2 and ldegS(v −m + 1) ≤ 2,
which are automatically satisfied since S is zigzag. Hence Conditions (1) and (2) hold
on I = {w1, . . . , w`}. In other words, T can be any m-reduced zigzag stack.

If T is of type T2, we have ldegS(u) = 1 and rdegS(v) = 0. If ` < m − 2, we
claim that w1, w2, . . . , w` are isolated vertices. Otherwise, by Lemma 2.1, there exists
an arc (wj, wk) in T . It follows that rdegS(wj) > 0. Now we have ldegS(u) > 0 and
rdegS(wj) > 0, but wj − u < m − 2, which contradicts Condition (2). If ` ≥ m − 2,
by the above claim we see that degS(wi) = 0 for 1 ≤ i ≤ m − 2. Moreover, by
Condition (1), we find that ldegS(u) + rdegS(wm−1) ≤ 2, so that rdegS(wm−1) ≤ 1.
Consequently, the substructure on {wm−1, wm, . . . , w`} is an m-reduced zigzag stack of
type G. Considering all possible structures of T when T is of type T2, we write

T2 = ∅, •, • •, · · · , • • · · · •︸ ︷︷ ︸
m−3

, • • · · · •︸ ︷︷ ︸
m−2

G.

If T is of type T3, we have ldegS(u) = rdegS(v) = 1. If ` < m− 2, then ldegS(u) >
0, rdegS(v) > 0 but v − u = `+ 1 < m− 1, which violates Condition (2). Thus ` is at
least m− 2. If m− 2 ≤ ` < 2m− 4, we claim that w1, w2, . . . , w` are isolated vertices.
Otherwise, by Lemma 2.1, there exists an arc (wj, wk). It follows that rdegS(wj) > 0
and ldegS(wk) > 0. Since ldegS(u) > 0 and rdegS(wj) > 0, Condition (2) implies that
wj − u ≥ m − 1. Furthermore, since ldegS(wk) > 0 and rdegS(v) > 0, we see that
v − wk ≥ m− 1. Hence

` = v − u− 1 > (v − wk) + (wj − u)− 1 ≥ 2m− 3,

contradicting the assumption that ` < 2m− 4. This proves the claim.

If ` ≥ 2m − 4, by the above claim, the first m − 2 vertices w1, w2, . . . , wm−2 and
the last m − 2 vertices w`−m+3, w`−m+4, . . ., w`−1, w` are isolated vertices. Moreover,
according to Condition (1), we have ldegS(u) + rdegS(wm−1) ≤ 2 and ldegS(w`−m+2) +
rdegS(v) ≤ 2. This yields rdegS(wm−1) ≤ 1 and ldegS(w`−m+2) ≤ 1, so that the
substructure on {wm−1, wm, . . . , w`−m+2} is anm-reduced zigzag stack of typeH. Hence
we get

T3 = • • · · · •︸ ︷︷ ︸
m−2

, • • · · · •︸ ︷︷ ︸
m−1

, · · · , • • · · · •︸ ︷︷ ︸
2m−5

, • • · · · •︸ ︷︷ ︸
m−2

H • • · · · •︸ ︷︷ ︸
m−2

.

Similarly, if T is of type T4, T5 or T6, all possible structures of T are given below:

T4 = ∅, •, • •, · · · , • • · · · •︸ ︷︷ ︸
m−2

, • • · · · •︸ ︷︷ ︸
m−1

Zm,
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T5 = • • · · · •︸ ︷︷ ︸
m−1

, • • · · · •︸ ︷︷ ︸
m

, · · · , • • · · · •︸ ︷︷ ︸
2m−4

, • • · · · •︸ ︷︷ ︸
m−1

G • • · · · •︸ ︷︷ ︸
m−2

,

T6 = • • · · · •︸ ︷︷ ︸
m−1

, • • · · · •︸ ︷︷ ︸
m

, · · · , • • · · · •︸ ︷︷ ︸
2m−3

, • • · · · •︸ ︷︷ ︸
m−1

Zm • • · · · •︸ ︷︷ ︸
m−1

.

This completes the proof.

Let g(n) denote the number of m-reduced zigzag stacks of type G on [n], and let
h(n) denote the number of m-reduced zigzag stacks of type H on [n]. The generating
functions of g(n) and h(n) are defined as follows,

G(x) =
∑
n≥0

g(n)xn, H(x) =
∑
n≥0

h(n)xn.

By Theorem 5.1, we are led to expressions of Ti(x) in terms of Zm(x), G(x) and
H(x).

Theorem 5.2. We have

T1(x) = Zm(x), (5.1)

T2(x) =
1− xm−2

1− x
+ xm−2G(x), (5.2)

T3(x) =
xm−2(1− xm−2)

1− x
+ x2m−4H(x), (5.3)

T4(x) =
1− xm−1

1− x
+ xm−1Zm(x), (5.4)

T5(x) =
xm−1(1− xm−2)

1− x
+ x2m−3G(x), (5.5)

T6(x) =
xm−1(1− xm−1)

1− x
+ x2m−2Zm(x). (5.6)

Next, we consider the primary component decompositions of m-reduced zigzag s-
tacks of types G and H. We obtain formulas for the generating functions G(x) and
H(x) in terms of Zm(x) and Ti(x) (1 ≤ i ≤ 6).

Recall that S is of type G if degS(1) ≤ 1. If 1 is an isolated vertex, then S becomes
an m-reduced zigzag stack of length n− 1 after deleting the vertex 1. If degS(1) = 1,
by Lemma 2.2, C is of the form as shown in Figure 4.6. By Lemma 4.2, for k ≥ 2, S
can be decomposed into a connected zigzag stack C and a list of k m-reduced zigzag
stacks. Based on this decomposition, we obtain a functional equation satisfied by G(x),
Zm(x), T2(x) and T4(x).
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Lemma 5.1. We have

G(x) = 1 + xZm(x) +
x2Zm(x)T2(x)

1− xT4(x)
. (5.7)

Proof. Let S be an m-reduced zigzag stack of type G on [n], and let C be the primary
component of S. Assume that C has k vertices, and S is decomposed into a connected
zigzag stack C and a list of k zigzag stacks S1, S2, . . . , Sk, where each Si is allowed to be
empty. Suppose that Si has di vertices for 1 ≤ i ≤ k, so that we have d1+d2+· · ·+dk =
n− k.

Let g(n, k) denote the number of m-reduced zigzag stacks of type G whose primary
component contains k vertices. Set g(n, 0) = 1. When k = 1, by deleting the vertex 1
from S, we obtain an m-reduced zigzag stack of length n− 1. Thus we have g(n, 1) =
zm(n− 1).

For k ≥ 2, by Lemma 4.2, C creates k intervals, in which there are one component
of type T1, one of type T2 and k − 2 of type T4. It follows that

g(n, k) =
∑

d1+···+dk=n−k

t1(d1)t2(d2)t4(d3) · · · t4(dk). (5.8)

Since

g(n) =
n∑
k=0

g(n, k),

we find that

G(x) =
∞∑
n=0

n∑
k=0

g(n, k)xn

= 1 +
∞∑
n=0

g(n, 1)xn +
∞∑
n=0

n∑
k=2

∑
d1+···+dk=n−k

t1(d1)t2(d2)t4(d3) · · · t4(dk)xn

= 1 +
∞∑
n=0

zm(n− 1)xn +
∞∑
k=2

xk
∞∑
n=0

xn
∑

d1+···+dk=n

t1(d1)t2(d2)t4(d3) · · · t4(dk)

= 1 + xZm(x) +
x2T1(x)T2(x)

1− xT4(x)
.

Since T1(x) = Zm(x), we arrive at expression (5.7) for G(x). This completes the proof.

For the m-reduced zigzag stacks of type H, we obtain the following relation for the
generating function H(x).

Lemma 5.2. We have

H(x) = 1 + x+ 2xG(x) + x4Z2
m(x)T3(x) +

2x5Z2
m(x)T2(x)T5(x)

1− xT4(x)
+
x6Z2

m(x)T 2
2 (x)T6(x)

(1− xT4(x))2
.

(5.9)
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Proof. Let H(n) denote the set of m-reduced zigzag stacks of type H on [n]. Recall
that h(n) denotes the number of m-reduced zigzag stack in H(n). We set h(0) = 1.
It is clear that h(1) = 1. For n ≥ 2, according to the degrees of vertices 1 and n,
we divide the set of m-reduced zigzag stacks of type H into four classes F1(n), F2(n),
F3(n) and F4(n). For each 1 ≤ i ≤ 4, denote the cardinality of Fi(n) by fi(n) and
define the generating function as

Fi(x) =
∞∑
n=0

fi(n)xn.

(1) F1(n) = {S |S ∈ H(n) and deg(1) = 0, deg(n) = 0}.

Deleting the vertices 1 and n from a stack in F1(n), we obtain an m-reduced zigzag
stack on n − 2 vertices. Conversely, from any given m-reduced zigzag stack on n − 2
vertices, we may generate a stack in F1(n). Thus we have f1(n) = zm(n − 2) and the
generating function

F1(x) = x2Zm(x).

(2) F2(n) = {S |S ∈ H(n) and deg(1) = 1, deg(n) = 0}.

By deleting the vertex n from a stack in F2(n), we obtain an m-reduced zigzag
stack of type G of length n− 1 with deg(1) = 1. This process is clearly reversible. By
the definition of type G, we see that the number of m-reduced zigzag stacks of length
n− 1 with deg(1) ≤ 1 is g(n− 1). On the other hand, given an m-reduced zigzag stack
of length n− 1 with deg(1) = 0, by deleting the vertex 1, we are led to an m-reduced
zigzag stack of length n − 2. Thus the number of m-reduced zigzag stacks of length
n− 1 with deg(1) = 0 is zm(n− 2). Hence,

f2(n) = g(n− 1)− zm(n− 2)

and
F2(x) = xG(x)− x2Zm(x).

(3) F3(n) = {S |S ∈ H(n) and deg(1) = 0, deg(n) = 1}.

By reversing the order of vertices 1, 2, . . . , n, we get a one-to-one correspondence
between F2(n) and F3(n). Therefore, f3(n) = f2(n) and

F3(x) = xG(x)− x2Zm(x).

(4) F4(n) = {S |S ∈ H(n) and deg(1) = 1, deg(n) = 1}.

In this case, we further divide F4(n) into five classes F4,j(n), where 1 ≤ j ≤ 5, see
Figure 5.2. For each 1 ≤ j ≤ 5, let f4,j(n) be the number of m-reduced zigzag stacks
in F4,j(n) and define

F4,j(x) =
∞∑
n=0

f4,j(n)xn.
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Figure 5.2: Five classes of F4(n).

Case (4.1): (1, n) is an arc of S. Then the interval 〈1, n〉 is of type T1. By Theorem
5.1, the substructure on 〈1, n〉 is an m-reduced zigzag stack of length n − 2. Thus
f4,1(n) = zm(n− 2) and

F4,1(x) = x2Zm(x).

Case (4.2): (1, u) and (v, n) are two arcs of S, where 1 < u < v < n such that
deg(u) = deg(v) = 1. Consider the types of the three intervals. It can be seen that
〈1, u〉 is of type T1, 〈u, v〉 is of type T3, and 〈v, n〉 is of type T1. Consequently, for
n ≥ 4,

f4,2(n) =
∑

d1+d2+d3=n−4

t1(d1)t1(d2)t3(d3),

where d1, d2 and d3 are nonnegative integers. So we obtain that

F4,2(x) = x4Z2
m(x)T3(x).

The Cases (4.3) and (4.4) are symmetric. So we have f4,3(n) = f4,4(n) and F4,3(x) =
F4,4(x). Let us consider Case (4.3). In this case, the primary component contains
exactly two vertices. Suppose that there are k−2 vertices in the connected component
containing n, so that there exist k vertices in these two connected components, where
k ≥ 5. Ignoring the empty interval after the vertex n, there are k− 1 intervals created
by these k vertices. Using the previous arguments, we see that the first interval is of
type T1, the second is of type T5, and among the other k − 3 intervals, there are one
interval of type T1, one of type T2, and k − 5 of type T4. Therefore, we get

f4,3(n) =
n∑
k=5

∑
d1+···+dk−1=n−k

t1(d1)t1(d2)t2(d3)t5(d4)t4(d5)t4(d6) · · · t4(dk−1),

where d1, d2, . . . , dk−1 are nonnegative integers. It follows that

F4,3(x) = F4,4(x) =
x5Z2

m(x)T2(x)T5(x)

1− xT4(x)
.
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Case (4.5): Both the primary component and the connected component containing
n have at least three vertices. Suppose that these two connected components have a
total number of k vertices, where k ≥ 6. Given k, the primary connected component
may have i vertices, where 3 ≤ i ≤ k − 3. When i is also given, these k vertices create
k − 1 intervals, not mentioning the empty interval after the vertex n. It can be seen
that among these k−1 intervals, there are two of type T1, two of type T2, k−6 of type
T4, and one of type T6. Hence

f4,5(n) =
n∑
k=6

∑
d1+···+dk−1=n−k

(k − 5)t1(d1)t1(d2)t2(d3)t2(d4)t6(d5)t4(d6)t4(d7) · · · t4(dk−1),

which gives

F4,5(x) =
x6Z2

m(x)T 2
2 (x)T6(x)

(1− xT4(x))2
.

So we find that

F4(x) = F4,1(x) + F4,2(x) + · · ·+ F4,5(x)

= x2Zm(x) + x4Z2
m(x)T3(x) +

2x5Z2
m(x)T2(x)T5(x)

1− xT4(x)
+
x6Z2

m(x)T 2
2 (x)T6(x)

(1− xT4(x))2
.

Finally, we obtain that

H(x) = 1 + x+ F1(x) + F2(x) + F3(x) + F4(x),

which leads to relation (5.9), and hence the proof is complete.

Substituting the relations (5.7) and (5.9) into (5.1)–(5.6), we find that the generat-
ing functions T2(x), T3(x) and T5(x) can be expressed in terms of Zm(x).

Theorem 5.3. We have

T2(x) =

(
1− xm−1 + xm−1(1− x)Zm

)(
1− 2x+ xm − xm(1− x)Zm

)
(1− x)

(
1− 2x+ xm − 2xm(1− x)Zm

) , (5.10)

T3(x) = xm−2
(
x4m(x− 1)3Z4

m + 3x3m(x− 1)2(xm − 2x+ 1)Z3
m

+ x2m(x− 1)(3x2m − 13xm+1 + 7xm + 9x2 − 5x− 1)Z2
m

+ xm(xm − 2x+ 1)(x2m − 6xm+1 + 4xm + 2x2 + 2x− 3)Zm

+ (1− xm)(xm − 2x+ 1)2
)

/(
(1− x)(1− xmZm)

(
1− 2x+ xm − 2xm(1− x)Zm

)2)
, (5.11)

T5(x) =
xm−1

(
1− xm−1 + xm−1(1− x)Zm

)(
1− 2x+ xm − xm(1− x)Zm

)
(1− x)

(
1− 2x+ xm − 2xm(1− x)Zm

) . (5.12)

We have shown that Ti(x) (1 ≤ i ≤ 6) can be represented in terms of Zm(x). These
relations will be used in the next section to derive an equation on Zm(x).
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6 The generating function of m-regular linear s-

tacks

In this section, we use the relations between Zm(x) and Ti(x) (1 ≤ i ≤ 6) to derive an
equation satisfied by Zm(x). Then we obtain an equation on the generating function
Rm(x) of the number rm(n) of m-regular linear stacks on [n]. For given m, we can
deduce a recurrence relation and an asymptotic formula for rm(n). For m = 3, 4, 5, 6,
we give asymptotic formulas for rm(n).

In Section 4, we find expression (4.1) of Zm(x) in terms of Ti(x) (1 ≤ i ≤ 6).
Moreover, in Section 5, we have shown that the generating functions Ti(x) (1 ≤ i ≤ 6)
can be expressed in terms of Zm(x). Combing these relations, we arrive at the following
equation satisfied by Zm(x).

Theorem 6.1. We have

a5(x)Z5
m(x)+a4(x)Z4

m(x)+a3(x)Z3
m(x)+a2(x)Z2

m(x)+a1(x)Zm(x)+a0(x) = 0, (6.1)

where

a0(x) = (x− 1)(xm − 2x+ 1)2,

a1(x) = −2x3m+1 + x3m + 12x2m+2 − 16x2m+1 + 7x2m − 18xm+3 + 36xm+2

− 28xm+1 + 7xm + 4x4 − 10x3 + 12x2 − 6x+ 1,

a2(x) = xm(2x3m+1 − 15x2m+2 + 14x2m+1 − 5x2m + 33xm+3 − 60xm+2 + 47xm+1

− 14xm − 16x4 + 39x3 − 45x2 + 25x− 5),

a3(x) = x2m(x− 1)(7x2m+1 − 28xm+2 + 22xm+1 − 8xm + 24x3 − 36x2 + 27x− 8),

a4(x) = x3m(x− 1)2(9xm+1 − 16x2 + 11x− 4),

a5(x) = 4x4m+1(x− 1)3.

From the bijection between Rm(n+m− 1) and Zm(n) as given in Theorem 3.1, we
see that

Rm(x) = 1 + x+ x2 + · · ·+ xm−2 + xm−1Zm(x),

or equivalently,

Zm(x) =
(1− x)Rm(x)− (1− xm−1)

(1− x)xm−1
. (6.2)

Substituting the above relation into equation (6.1) on Zm(x), we arrive at equation
(1.6) given in Theorem 1.5.

To conclude this paper, we give some special cases of Theorem 1.5. When m = 2,
equation (1.6) on Rm(x) reduces to Müller and Nebel’s equation (1.3) by replacing
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Table 6.1: rm(n) for m = 3, 4, 5, 6.

n 1 2 3 4 5 6 7 8 9 10 11 12
r3(n) 1 1 1 2 6 18 54 162 491 1509 4692 14729
r4(n) 1 1 1 1 2 6 18 52 150 434 1263 3699
r5(n) 1 1 1 1 1 2 6 18 52 148 422 1206
r6(n) 1 1 1 1 1 1 2 6 18 52 148 420

R2(x) with S(z) + 1. For m = 3, 4, 5, 6, the asymptotic formulas for rm(n) have been
given in Introduction.

The values of rm(n) for m = 3, 4, 5, 6 and 1 ≤ n ≤ 12 are given in Table 6.1.
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