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Abstract Let p(n) denote the number of overpartitions of n. Recently, Fortin-Jacob-
Mathieu and Hirschhorn-Sellers independently obtained 2-, 3- and 4-dissections of the
generating function for p(n) and derived a number of congruences for p(n) modulo 4, 8
and 64 including p(8n+7) ≡ 0 (mod 64), for n ≥ 0. In this paper, we give a 16-dissection
of the generating function for p(n) modulo 16 and show that p(16n+14) ≡ 0 (mod 16) for
n ≥ 0. Moreover, using the 2-adic expansion of the generating function for p(n) according
to Mahlburg, we obtain that p(`2n+ r`) ≡ 0 (mod 16), where n ≥ 0, ` ≡ −1 (mod 8) is
an odd prime and r is a positive integer with ` - r. In particular, for ` = 7 and n ≥ 0, we
get p(49n+7) ≡ 0 (mod 16) and p(49n+14) ≡ 0 (mod 16). We also find four congruence
relations: p(4n) ≡ (−1)np(n) (mod 16) for n ≥ 0, p(4n) ≡ (−1)np(n) (mod 32) where
n is not a square of an odd positive integer, p(4n) ≡ (−1)np(n) (mod 64) for n 6≡ 1, 2, 5
(mod 8) and p(4n) ≡ (−1)np(n) (mod 128) for n ≡ 0 (mod 4).
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1 Introduction

The objective of this paper is to derive Ramanujan-type congruences for overpartitions
modulo 16, 32, 64 and 128 by constructing a 16-dissection of the generating function for
overpartitions modulo 16 and applying the 2-adic expansion according to Mahlburg [14].

Recall that an overpartition of a nonnegative integer n is a partition of n where the first
occurrence of each distinct part may be overlined. We denote the number of overpartitions
of n by p(n). For example, there are 8 overpartitions of 3:

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

Overpartitions arise in combinatorics [5], q-series [4], symmetric functions [2], represen-
tation theory [9], mathematical physics [6] and number theory [12, 13], where they are
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also called standard MacMahon diagrams, joint partitions, jagged partitions or dotted
partitions.

As noted by Corteel and Lovejoy [5], the generating function of p(n) is given by∑
n≥0

p(n)qn =
(−q; q)∞
(q; q)∞

, (1.1)

where |q| < 1 and

(a; q)∞ =
∞∏
n=0

(1− aqn).

The generating function (1.1) can be written in terms of Ramanujan’s theta function φ(q):∑
n≥0

p(n)qn =
1

φ(−q)
, (1.2)

where

φ(q) =
∞∑

n=−∞

qn
2

.

Mahlburg [14] showed that the generating function of p(n) has the following 2-adic ex-
pansion: ∑

n≥0

p(n)qn = 1 +
∞∑
k=1

2k

∞∑
n=1

(−1)n+kck(n)qn, (1.3)

where ck(n) denotes the number of representations of n as a sum of k squares of positive
integers. Employing the above 2-adic expansion (1.3), Mahlburg [14] showed that p(n) ≡ 0
(mod 64) for a set of integers of arithmetic density 1. Moreover, Kim [10] showed that
p(n) ≡ 0 (mod 128) for a set of integers of arithmetic density 1.

Congruence properties for p(n) have been extensively studied, see, for example, [3, 6–
8, 10, 11, 14–16]. Fortin et al. [6] and Hirschhorn and Sellers [7] independently obtained
2-, 3- and 4-dissections of the generating function for p(n) and derived a number of
Ramanujan-type congruences for p(n) modulo 4, 8 and 64, such as

p(5n+ 2) ≡ 0 (mod 4), (1.4)

p(4n+ 3) ≡ 0 (mod 8),

p(8n+ 7) ≡ 0 (mod 64). (1.5)

Using dissection techniques, Yao and Xia [16] found some congruences for p(n) modulo
8, 16 and 32, such as

p(48n+ 26) ≡ 0 (mod 8),
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p(24n+ 17) ≡ 0 (mod 16),

p(72n+ 69) ≡ 0 (mod 32). (1.6)

Applying the 2-adic expansion (1.3) of the generating function for p(n), Kim [11]
proved a conjecture of Hirschhorn and Sellers [7], that is, if ` is an odd prime and r is a
quadratic nonresidue modulo `, then

p(`n+ r) ≡

{
0 (mod 8) if ` ≡ ±1 (mod 8),

0 (mod 4) if ` ≡ ±3 (mod 8).

Moreover, Kim obtained the following congruence:

p(n) ≡ 0 (mod 8), (1.7)

where n is neither a square nor twice a square.

It should be noted that Kim’s congruences (1.7) contain certain Ramanujan-type con-
gruences for p(n) modulo 8. Here are some special cases of (1.7). The detailed proofs are
omitted. For example, we get the following Ramanujan-type congruences for p(n) modulo
8. For n ≥ 0, we have

p(8n+ 5) ≡ 0 (mod 8), (1.8)

p(8n+ 6) ≡ 0 (mod 8),

p(12n+ 10) ≡ 0 (mod 8),

p(16n+ 10) ≡ 0 (mod 8),

p(20n+ 6) ≡ 0 (mod 8),

p(20n+ 14) ≡ 0 (mod 8).

Moreover, as consequences of (1.7), we obtain three infinite families of Ramanujan-
type congruences. Let n be a nonnegative integer and ` be an odd prime. If r is a positive
integer with ` - r, then

p(`2n+ r`) ≡ 0 (mod 8).

If r is an odd positive integer with
(
r
`

)
= −1, then

p(2`n+ r) ≡ 0 (mod 8),

where
( ·
`

)
denotes the Legendre symbol. If ` ≡ ±3 (mod 8) and

(
r
3`

)
= −1, then

p(3`n+ r) ≡ 0 (mod 8),

where
( ·
3`

)
denotes the Jacobi symbol.

In this paper, we are mainly concerned with congruences for p(n) modulo 16. We first
find a 16-dissection of the generating function for p(n) modulo 16 and then establish the
following congruence.
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Theorem 1.1. For n ≥ 0, we have

p(16n+ 14) ≡ 0 (mod 16). (1.9)

Applying the 2-adic expansion (1.3), we derive the following infinite family of congru-
ences for p(n) modulo 16.

Theorem 1.2. Let n be a nonnegative integer, ` ≡ −1 (mod 8) be an odd prime and r
be a positive integer with ` - r. Then we have

p(`2n+ r`) ≡ 0 (mod 16). (1.10)

For example, when ` = 7, Theorem 1.2 implies that

p(49n+ 7r) ≡ 0 (mod 16)

holds for n ≥ 0 and 1 ≤ r ≤ 6.

The 2-adic expansion (1.3) can also be used to deduce the following congruence rela-
tions for p(n) modulo 16, 32, 64 and 128.

Theorem 1.3. For n ≥ 0, we have

p(4n) ≡ (−1)np(n) (mod 16). (1.11)

If n is not a square of an odd positive integer, then

p(4n) ≡ (−1)np(n) (mod 32). (1.12)

If n 6≡ 1, 2, 5 (mod 8), then

p(4n) ≡ (−1)np(n) (mod 64). (1.13)

If n ≡ 0 (mod 4), then

p(4n) ≡ (−1)np(n) (mod 128). (1.14)

Applying the above congruence relations to the congruences (1.5), (1.6) and (1.9), we
obtain the following congruences for n, k ≥ 0:

p(4k(16n+ 14)) ≡ 0 (mod 16),

p(4k(72n+ 69)) ≡ 0 (mod 32),

p(4k(8n+ 7)) ≡ 0 (mod 64).
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2 Proof of Theorem 1.1

In this section, we obtain a 16-dissection of the generating function for p(n) modulo 16,
which implies Theorem 1.1.

Recall that Ramanujan’s theta functions φ(q) and ψ(q) are given by

φ(q) =
∞∑

n=−∞

qn
2

,

ψ(q) =
∞∑
n=0

q
n2+n

2 =
∞∑

n=−∞

q2n
2+n. (2.1)

From (2.1), it is easy to check that

ψ(q) = ψ1(q
2) + qψ2(q

2), (2.2)

where

ψ1(q) =
∞∑

n=−∞

q4n
2+n

and

ψ2(q) =
∞∑

n=−∞

q4n
2−3n.

Theorem 2.1. We have a 16-dissection of the generating function for p(n) modulo 16,
namely,∑

n≥0

p(n)qn ≡ φ12

φ(−q16)16
(
φ3 + 2q

(
φ2ψ1 + 4q16ψ2ψ2

)
+ 4q2

(
φψ2

1 + q16φψ2
2

)
+ 8q3

(
ψ3
1 + q16ψ1ψ

2
2

)
+ 14q4φ2ψ + 8q5φψψ1

+ 8q6
(
ψψ2

1 + q16ψψ2
2

)
+ 4q8φψ2 + 2q9

(
φ2ψ2 + 4ψ2ψ1

)
+ 8q10φψ1ψ2 + 8q11

(
ψ2
1ψ2 + q16ψ3

2

)
+ 8q12ψ3

+ 8q13φψψ2

)
(mod 16), (2.3)

where φ, ψ, ψ1 and ψ2 denote φ(q16), ψ(q32), ψ1(q
16) and ψ2(q

16), respectively.

To prove the above formula, we need the following relations:

φ(q) = φ(q4) + 2qψ(q8), (2.4)

φ(q)2 = φ(q2)2 + 4qψ(q4)2, (2.5)
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φ(q)φ(−q) = φ(−q2)2, (2.6)

see Berndt [1, p. 40, Entry 25].

Proof of Theorem 2.1 We claim that

1

φ(q)
=
φ(−q)φ(q2)2φ(q4)4φ(q8)8

φ(−q16)16
. (2.7)

Let α = e
πi
4 and β = e

3πi
4 . Using (2.6), we find that

1

φ(q)
=

φ(−q)φ(iq)φ(−iq)φ(αq)φ(−αq)φ(βq)φ(−βq)
φ(q)φ(−q)φ(iq)φ(−iq)φ(αq)φ(−αq)φ(βq)φ(−βq)

=
φ(−q)φ(q2)2φ(−iq2)2φ(iq2)2

φ(−q2)2φ(q2)2φ(−iq2)2φ(iq2)2

=
φ(−q)φ(q2)2φ(q4)4

φ(−q8)8

=
φ(−q)φ(q2)2φ(q4)4φ(q8)8

φ(−q8)8φ(q8)8

=
φ(−q)φ(q2)2φ(q4)4φ(q8)8

φ(−q16)16
.

Therefore, the generating function for p(n) can be written as∑
n≥0

p(n)qn =
1

φ(−q)
=
φ(q)φ(q2)2φ(q4)4φ(q8)8

φ(−q16)16
. (2.8)

Using (2.2) and (2.4), we obtain that

φ(q) = φ(q4) + 2qψ(q8)

=
(
φ(q16) + 2q4ψ(q32)

)
+ 2q

(
ψ1(q

16) + q8ψ2(q
16)
)

= φ+ 2qψ1 + 2q4ψ + 2q9ψ2, (2.9)

Applying (2.2), (2.4) and (2.5), we deduce that

φ(q2)2 = φ(q4)2 + 4q2ψ(q8)2

=
(
φ(q16) + 2q4ψ(q32)

)2
+ 4q2

(
ψ1(q

16) + q8ψ2(q
16)
)2

= φ2 + 4q2
(
ψ2
1 + q16ψ2

2

)
+ 4q4φψ + 4q8ψ2 + 8q10ψ1ψ2. (2.10)

Similarly, it can be shown that

φ(q4)4 =
(
φ(q16) + 2q4ψ(q32)

)4
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=
(
φ4 + 16q16ψ4

)
+ 8q4φ3ψ + 24q8φ2ψ2 + 32q12φψ3 (2.11)

and

φ(q8)8 =
(
φ(q16)2 + 4q8ψ(q32)2

)4
=
(
φ8 + 96q16φ4ψ4 + 256q32ψ8

)
+ 16q8φ2ψ2

(
φ4 + 16q16ψ4

)
. (2.12)

Plugging (2.9)—(2.12) into (2.8) and taking modulo 16, we are led to (2.3). This completes
the proof.

Notice that the 16-dissection of the generating function for p(n) modulo 16 given in
Theorem 2.1 contains no terms of powers of q congruent to 7, 14 and 15 modulo 16. So
we deduce that p(16n+ 14) ≡ 0 (mod 16), p(16n+ 7) ≡ 0 (mod 16) and p(16n+ 15) ≡ 0
(mod 16), in which the latter two are special cases of (1.5), that is, p(8n+7) ≡ 0 (mod 64).

3 Proof of Theorem 1.2

In this section, we give a proof of Theorem 1.2 by using the 2-adic expansion (1.3) of the
generating function for p(n). Recall that Theorem 1.2 says that

p(`2n+ r`) ≡ 0 (mod 16), (3.1)

where n ≥ 0, ` ≡ −1 (mod 8) is an odd prime and r is a positive integer with ` - r.

Proof of Theorem 1.2 By the 2-adic expansion (1.3), we see that for n ≥ 1,

p(n) ≡ 2(−1)n+1c1(n) + 4(−1)nc2(n) + 8(−1)n+1c3(n) (mod 16).

Thus, to prove congruence (3.1), it suffices to show that

c1(`
2n+ r`) = 0, (3.2)

c2(`
2n+ r`) ≡ 0 (mod 4), (3.3)

c3(`
2n+ r`) ≡ 0 (mod 2), (3.4)

where n, ` and r are given in (3.1).

First, we consider (3.2). Assume to the contrary that there exists a positive integer a
such that `2n + r` = a2. It follows that ` | a2. Since ` is a prime, we have `2 | a2 and
` | r, contradicting the assumption that ` - r. This proves (3.2).

Next, to prove (3.3), it suffices to show that the following equation has no positive
integer solution in x and y:

`2n+ r` = x2 + y2. (3.5)
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Otherwise, assume that (a, b) is a positive integer solution of (3.5). Let d = gcd(a, b),
a = da1 and b = db1. Then we have

`2n+ r` = d2(a21 + b21),

which implies that ` | d or ` | (a21 + b21). If ` | d, then `2 | d2, and hence ` | r, which is a
contradiction. If ` | (a21 + b21), namely,

a21 + b21 ≡ 0 (mod `), (3.6)

since gcd(a1, b1) = 1, we have ` - a1 and ` - b1, so that (3.6) can be written as

a21
b21
≡ −1 (mod `),

that is,
(−1

`

)
= 1, contradicting the assumption ` ≡ −1 (mod 8). Hence (3.3) is proved.

As for (3.4), it suffices to show that the following equation has an even number of
positive integer solutions in x, y and z:

`2n+ r` = x2 + y2 + z2. (3.7)

Suppose that (a, b, c) is a positive integer solution of (3.7). We consider the following
three cases:

Case 1: a = b = c. In this case, (3.7) becomes

`2n+ r` = 3a2. (3.8)

Since ` 6= 3 and ` - r, it is clear that (3.8) has no positive integer solution.

Case 2: There are exactly two equal numbers among a, b and c. Without loss of
generality, we assume that a = c, then (3.7) becomes

`2n+ r` = 2a2 + b2. (3.9)

Using the argument concerning (3.5), we deduce that (3.9) has no positive integer solution.

Case 3: a, b and c are distinct. If there exists a solution (a, b, c), then any permutation
of (a, b, c) is also a solution of (3.7). Thus the number of solutions of (3.7) is even.

In view of the above three cases, we conclude that (3.7) has an even number of positive
integer solutions, and hence the proof is complete.

4 Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by applying the 2-adic expansion (1.3) of the
generating function for p(n).
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Proof of Theorem 1.3 From the 2-adic expansion (1.3), we see that for n ≥ 1 and k ≥ 0,

(−1)np(n) ≡ −2c1(n) + 22c2(n) + · · ·+ (−1)k2kck(n) (mod 2k+1). (4.1)

Replacing n by 4n in (4.1), we get

p(4n) ≡ −2c1(4n) + 22c2(4n) + · · ·+ (−1)k2kck(4n) (mod 2k+1). (4.2)

By the definition of ck(n), it is easy to check that for n ≥ 0,

c1(n) = c1(4n), c2(n) = c2(4n), c3(n) = c3(4n).

Thus (4.2) becomes

p(4n) ≡ −2c1(n) + 22c2(n) + · · ·+ (−1)k2kck(4n) (mod 2k+1). (4.3)

Comparing (4.1) and (4.3), we find that for n ≥ 0,

p(4n) ≡(−1)np(n) + 24
(
c4(4n)− c4(n)

)
+ · · ·+ (−1)k2k

(
ck(4n)− ck(n)

)
(mod 2k+1). (4.4)

When k = 3, it follows from (4.4) that for n ≥ 0,

p(4n) ≡ (−1)np(n) (mod 16).

Setting k = 4 in (4.4), we get

p(4n) ≡ (−1)np(n) + 16
(
c4(4n)− c4(n)

)
(mod 32). (4.5)

We claim that

c4(4n)− c4(n) ≡ 0 (mod 2), (4.6)

where n is not a square of an odd positive integer.

Observe that the following equation has an even number of positive integer solutions
in (x, y, z, w) such that x, y, z and w are odd:

4n = x2 + y2 + z2 + w2. (4.7)

Assume that (a, b, c, d) is a positive integer solution of (4.7), where a, b, c and d are odd.
Clearly, any permutation of (a, b, c, d) is also a solution of (4.7). If there are at least two
different numbers among a, b, c and d, then the number of such solutions of equation
(4.7) is even. Otherwise, we consider the case a = b = c = d. In this case, we get n = a2,
which contradicts the assumption that n is not a square of an odd integer. This proves
(4.6). Thus, it follows from (4.5) that

p(4n) ≡ (−1)np(n) (mod 32),
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where n is not a square of an odd positive integer.

To prove (1.13), setting k = 5 in (4.4), we find that for n ≥ 0,

p(4n) ≡ (−1)np(n) + 16
(
c4(4n)− c4(n)

)
− 32

(
c5(4n)− c5(n)

)
(mod 64). (4.8)

We claim that for n 6≡ 1, 2, 5 (mod 8),

c4(4n)− c4(n) ≡ 0 (mod 4), (4.9)

c5(4n)− c5(n) ≡ 0 (mod 2). (4.10)

To prove (4.9), we need to show that the number of odd positive integer solutions of the
equation

4n = x2 + y2 + z2 + w2 (4.11)

is a multiple of 4. Assume that (a, b, c, d) is such a solution of equation (4.11). If a = b =
c = d, we get n = a2, which contradicts the assumption n 6≡ 1 (mod 8). If a, b, c and d
are of the pattern a = b, c = d, but a 6= c, regardless of the order of a, b, c, d, then we get
2n = a2 + c2. It contradicts the assumption that n 6≡ 1, 5 (mod 8). For the other cases,
the number of odd positive solutions of (4.11) is a multiple of 4. This proves (4.9).

Congruence (4.10) can be proved by showing that the following equation has an even
number of solutions in (x, y, z, w, v):

4n = x2 + y2 + z2 + w2 + v2, (4.12)

where x, y, z, w, v are not all even. Assume that (a, b, c, d, e) is such a solution. If a, b, c, d
and e are of the pattern a = c = d = e, but a 6= b, regardless of the order of a, b, c, d, e,
then equation (4.12) becomes

4n = 4a2 + b2. (4.13)

Hence b is even. Since a, b, c, d, e are not all even, a must be odd. Setting b = 2r in (4.13),
we deduce that

n = a2 + r2. (4.14)

But this is impossible, since n 6≡ 1, 2, 5 (mod 8). For the other cases, the number of the
solutions of equation (4.12) is even. Thus we obtain (4.10).

Plugging (4.9) and (4.10) into (4.8), we deduce that for n 6≡ 1, 2, 5 (mod 8),

p(4n) ≡ (−1)np(n) (mod 64).

So (1.13) is proved.

Setting k = 6 in (4.4), we obtain that

p(4n) ≡(−1)np(n) + 16
(
c4(4n)− c4(n)

)
10



− 32
(
c5(4n)− c5(n)

)
+ 64

(
c6(4n)− c6(n)

)
(mod 128). (4.15)

Using arguments similar to the proofs of congruences (4.9) and (4.10), we find that for
n ≡ 0 (mod 4),

c4(4n)− c4(n) ≡ 0 (mod 8),

c5(4n)− c5(n) ≡ 0 (mod 4),

c6(4n)− c6(n) ≡ 0 (mod 2).

It follows from (4.15) that for n ≡ 0 (mod 4),

p(4n) ≡ (−1)np(n) (mod 128).

This completes the proof.

We remark that congruence (1.11) modulo 16 contains the following congruences mod-
ulo 4 and 8:

p(4n) ≡ p(n) (mod 4),

p(4n) ≡ (−1)np(n) (mod 8),

which can be used to generate more congruences of p(n) modulo 4 and 8. For example,
from (1.4) and (1.8), we obtain that for k, n ≥ 0, p(4k(5n+2)) ≡ 0 (mod 4) and p(4k(8n+
5)) ≡ 0 (mod 8).
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