W.Y.C. Chen, Q.-H. Hou and D. Zeilberger,
Automated discovery and proof of congruence theorems for partial sums of combinatorial sequences,
J. Difference Equ. Appl. 22(6) (2016) 780-788.

Cited by

  1. M. Apagodu, Elementary proof of congruences involving sum of binomial coefficients, Int. J. Number Theory 14(6) (2018) 1547-1557.

  2. M. Apagodu and D. Zeilberger, Using the "freshman's dream'' to prove combinatorial congruences, Amer. Math. Monthly 124(7) (2017) 597-608.

  3. S. Chen, How to generate all possible rational Wilf-Zeilberger pairs? In: N. Fillion, R. Corless, I. Kotsireas (eds) Algorithms and Complexity in Mathematics, Epistemology, and Science. Fields Institute Communications, vol 82. Springer, New York, NY., 2019.

  4. Q.-H. Hou and Y.-S. Wang, Constant term evaluation and two kinds of congruence, Int. J. Number Theory 14(7) (2018) 2013-2022.

  5. J.-C. Liu, On two conjectural supercongruences of Apagodu and Zeilberger, J. Difference Equ. Appl. 22(12) (2016) 1791-1799.

  6. G. Raayoni, S. Gottlieb, Y. Manor, G. Pisha1, Y. Harris, U. Mendlovic, D. Haviv, Y. Hadad and I. Kaminer, Generating conjectures on fundamental constants with the Ramanujan Machine, Nature 590 (2021) 67–73.

  7. G. Raayoni, G. Pisha, Y. Manor, U. Mendlovic, D. Haviv, Y. Hadad and I. Kaminer, The Ramanujan machine: Automatically generated conjectures on fundamental constants, arXiv:1907.00205.

  8. J. Rosen, The MHS algebra and supercongruences, arXiv:1608.06864.