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Abstract

The spt-function spt(n) was introduced by Andrews as the weighted counting
of partitions of n with respect to the number of occurrences of the smallest
part. In this survey, we summarize recent developments in the study of spt(n),
including congruence properties established by Andrews, Bringmann, Folsom,
Garvan, Lovejoy and Ono et al., a constructive proof of the Andrews-Dyson-
Rhoades conjecture given by Chen, Ji and Zang, generalizations and variations
of the spt-function. We also give an overview of asymptotic formulas of spt(n)
obtained by Ahlgren, Andersen and Rhoades et al. We conclude with some
conjectures on inequalities on spt(n), which are reminiscent of those on p(n) due
to DeSalvo and Pak, and Bessenrodt and Ono. Furthermore, we observe that,
beyond the log-concavity, p(n) and spt(n) satisfy higher order inequalities based
on polynomials arising in the invariant theory of binary forms. In particular,
we conjecture that the higher order Turán inequality 4(a2n − an−1an+1)(a

2
n+1 −

anan+2)− (anan+1 − an−1an+2)
2 > 0 holds for p(n) when n ≥ 95 and for spt(n)

when n ≥ 108.

1 Introduction

Andrews [12] introduced the spt-function spt(n) as the weighted counting of partitions
with respect to the number of occurrences of the smallest part and he discovered that
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the spt-function bears striking resemblance to the classical partition function p(n). S-
ince then, the spt-function has drawn much attention and has been extensively studied.
In this survey, we shall summarize developments on the spt-function including congru-
ence properties derived from q-identities and modular forms, along with their combina-
torial interpretations, as well as generalizations, variations and asymptotic properties.
For the background on partitions, we refer to [8, 10, 20], and for the background on
modular forms, we refer to [26,59,98,111].

The spt-function spt(n), called the smallest part function, is defined to be the total
number of smallest parts in all partitions of n. More precisely, for a partition λ of n,
we use ns(λ) to denote the number of occurrences of the smallest part in λ. Let P (n)
denote the set of partitions of n, then

spt(n) =
∑

λ∈P (n)

ns(λ). (1.1)

For example, for n = 4, we have spt(4) = 10. Partitions in P (4) and the values of
ns(λ) are listed below:

λ ∈ P (4) (4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

ns(λ) 1 1 2 2 4

The spt-function spt(n) can also be interpreted by marked partitions, see Andrews,
Dyson and Rhoades [19]. A marked partition of n is meant to be a pair (λ, k), where
λ = (λ1, λ2, . . . , λl) is an ordinary partition of n and k is an integer identifying one of
its smallest parts. If λk is the identified smallest part of λ, we then use (λ, k) to denote
this marked partition. For example, there are ten marked partitions of 4.

((4), 1), ((3, 1), 2), ((2, 2), 1), ((2, 2), 2), ((2, 1, 1), 2),

((2, 1, 1), 3), ((1, 1, 1, 1), 1), ((1, 1, 1, 1), 2), ((1, 1, 1, 1), 3), ((1, 1, 1, 1), 4).

Using the definition (1.1), it is easy to derive the following generating function, see
Andrews [12],

∞∑
n=1

spt(n)qn =
∞∑
n=1

qn

(1− qn)2(qn+1; q)∞
. (1.2)

Here we have adopted the common notation [10]:

(a; q)∞ =
∞∏
n=0

(1− aqn) and (a; q)n =
(a; q)∞

(aqn; q)∞
.

The spt-function is closely related to the rank and the crank of a partition. Recall
that the rank of a partition was introduced by Dyson [63] as the largest part of the
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partition minus the number of parts. The crank of a partition was defined by Andrews
and Garvan [21] as the largest part if the partition contains no ones, otherwise as the
number of parts larger than the number of ones minus the number of ones. For n ≥ 1,
let N(m,n) denote the number of partitions of n with rank m, and for n > 1, let
M(m,n) denote the number of partitions of n with crank m. For n = 1, set

M(0, 1) = −1, M(1, 1) = M(−1, 1) = 1,

and for n = 1 and m 6= −1, 0, 1, set

M(m, 1) = 0.

Atkin and Garvan [28] defined the k-th moment Nk(n) of ranks as

Nk(n) =
∞∑

m=−∞

mkN(m,n), (1.3)

and the k-th moment Mk(n) of cranks as

Mk(n) =
∞∑

m=−∞

mkM(m,n).

It is worth mentioning that Atkin and Garvan [28] showed that the generating functions
of the moments of cranks are related to quasimodular forms. Bringmann, Garvan
and Mahlburg [41] showed that the generating functions of the moments of ranks are
related to quasimock theta functions. Asymptotic formulas for the moments of ranks
and cranks were derived by Bringmann, Mahlburg and Rhoades [47].

Based on the generating function (1.2) and Watson’s q-analog of Whipple’s theorem
[80, p. 43, eq. (2.5.1)], Andrews [12] showed that the spt-function can be expressed in
terms of the second moment N2(n) of ranks introduced by Atkin and Garvan [28],

spt(n) = np(n)− 1

2
N2(n). (1.4)

Ji [93] found a combinatorial proof of (1.4) using rooted partitions.

By means of a relation due to Dyson [64], namely,

M2(n) = 2np(n), (1.5)

Garvan [72] observed that the expression

spt(n) =
1

2
M2(n)− 1

2
N2(n) (1.6)

implies that M2(n) > N2(n) for n ≥ 1. In general, he conjectured and later proved
that M2k(n) > N2k(n) for k ≥ 1 and n ≥ 1, see [72,73].
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In view of the relation (1.4) and identities on refinements of N(m,n) established by
Atkin and Swinnerton-Dyer [30] and O’Brien [108], Andrews proved that spt(n) satisfies
congruences mod 5, 7 and 13 which are reminiscent of Ramanujan’s congruences for
p(n). Let ` be a prime. A Ramanujan congruence modulo ` for the sequence {a(n)}n≥0
means a congruence of the form

a(`n+ β) ≡ 0 (mod `)

for all nonnegative integers n and a fixed integer β.

Ramanujan [122] discovered the following congruences for p(n),

p(5n+ 4) ≡ 0 (mod 5), (1.7)

p(7n+ 5) ≡ 0 (mod 7), (1.8)

p(11n+ 6) ≡ 0 (mod 11), (1.9)

and proclaimed that “it appears that there are no equally simple properties for any
moduli involving primes other than these three (i.e. ` = 5, 7, 11).” See also Berndt [34,
p. 27].

Elementary proofs of the congruences (1.7) and (1.8) were given by Ramanujan [122]
and an elementary proof of the congruence (1.9) was given by Winquist [133]. Al-
ternative proofs of (1.9) were found by Berndt, Chan, Liu and Yesilyurt [36] and
Hirschhorn [84]. Recently, Paule and Radu [116] found a recurrence relation of the
generating function of p(11n + 6), from which (1.9) is an immediate consequence.
Berndt [35] provided simple proofs of (1.7)–(1.9) by using Ramanujan’s differential
equations for the Eisenstein series. Uniform proofs of (1.7)–(1.9) were found by
Hirschhorn [83].

Concerning Ramanujan’s conjecture, Kiming and Olsson [97] showed that if there
exists a Ramanujan’s congruence p(`n + β) ≡ 0 (mod `), then 24β ≡ 1 (mod `).
According to this condition, Ahlgren and Boylan [4] confirmed Ramanujan’s conjecture.
More precisely, they showed that for a prime `, if there is a Ramanujan’s congruence
modulo ` for p(n), then it must be one of the congruences (1.7), (1.8) and (1.9).

Combinatorial studies of Ramanujan’s congruences of p(n) go back to Dyson [63].
He conjectured that the rank of a partition can be used to divide the set of partitions of
5n+4 (or 7n+5) into five (or seven) equinumerous classes. More precisely, let N(i, t, n)
denote the number of partitions of n with rank congruent to i modulo t. Dyson [63]
conjectured that

N(i, 5, 5n+ 4) =
p(5n+ 4)

5
for 0 ≤ i ≤ 4, (1.10)

N(i, 7, 7n+ 5) =
p(7n+ 5)

7
for 0 ≤ i ≤ 6. (1.11)

4



These relations were proved by Atkin and Swinnerton-Dyer [30], which imply (1.7)
and (1.8). Dyson also pointed out that the rank of a partition cannot be used to
interpret (1.9). To give a combinatorial explanation of this congruence modulo 11,
Garvan [70] introduced the crank of a vector partition and showed that this statistic
leads to interpretations of the above congruences of p(n) mod 5, 7 and 11. Andrews
and Garvan [21] found an equivalent definition of the crank in terms of an ordinary
partition. For the history of the rank and the crank, see, for example, Andrews and
Berndt [14] and Andrews and Ono [24].

Although Dyson’s rank fails to explain Ramanujan’s congruence (1.9) combinatori-
ally, the generating functions for the rank differences have been extensively studied. For
example, the generating functions for the rank differences N(s, `, `n+d)−N(t, `, `n+d)
for ` = 2, 9, 11, 12, 13 have been determined by Atkin and Hussain [29], O’Brien [108],
Lewis [102,103] and Santa-Gadea [126].

By the relations (1.4), (1.10) and (1.11), Andrews [12] showed that

spt(5n+ 4) ≡ 0 (mod 5), (1.12)

spt(7n+ 5) ≡ 0 (mod 7). (1.13)

He also obtained that
spt(13n+ 6) ≡ 0 (mod 13), (1.14)

by considering the properties of N(i, 13, 13n+ 6) due to O’Brien [108]. Let

ra,b(d) =
∞∑
n=0

(N(a, 13, 13n+ d)−N(b, 13, 13n+ d))q13n,

and for 1 ≤ i ≤ 5, and let

Si(d) = r(i−1),i(d)− (7− i)r5,6(d).

O’Brien [108] deduced that

S1(6) + 2S2(6)− 5S5(6) ≡ 0 (mod 13) (1.15)

and
S2(6) + 5S3(6) + 3S4(6) + 3S5(6) ≡ 0 (mod 13). (1.16)

Employing (1.4), Andrews derived an expression for spt(13n+6) in terms ofN(i, 13, 13n+
6) modulo 13. Then the congruence (1.14) follows from (1.15) and (1.16).

This paper is organized as follows. In Section 2, we recall the spt-crank of an
S-partition defined by Andrews, Garvan and Liang, which leads to combinatorial in-
terpretations of the congruences of the spt-function mod 5 and 7. Motivated by a
problem of Andrews, Garvan and Liang on constructive proofs of the congruences mod
5 and 7, Chen, Ji and Zang introduced the notion of a doubly marked partition and
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its spt-crank. Such an spt-crank can be used to divide the set counted by spt(5n+ 4)
(resp. spt(7n + 5)) into five (resp. seven) equinumerous classes. The unimodality
of the spt-crank and related topics are also discussed. In Section 3, we begin with
Ramanujan-type congruences of spt(n) mod 11,17, 19, 29, 31 and 37 obtained by Gar-
van. We then consider Ramanujan-type congruences of spt(n) modulo any prime ` ≥ 5
due to Ono and the `-adic generalization due to Ahlgren, Bringmann and Lovejoy. The
congruences of spt(n) mod powers of 5, 7 and 13 established by Garvan will also be dis-
cussed. We finish this section with congruences of spt(n) mod 2, 3 and powers of 2 due
to Folsom and Ono, and Garvan and Jennings-Shaffer. Section 4 is devoted to general-
izations and variations of the spt-function. We first recall the higher order spt-function
defined by Garvan, as a generalization of the spt-function. We then concentrate on
two generalizations of the spt-function based on the j-rank, given by Dixit and Yee.
The first variation of the spt-function was defined by Andrews, Chan and Kim as the
difference between the first rank and crank moments. At the end of this section, we
present three variations of the spt-function, which are restrictions of the spt-function
to three classes of partitions. The generating functions, combinatorial interpretations
and congruences of these generalizations and variations of the spt-function will also be
discussed. In Section 5, we summarize asymptotic formulas of the spt-function and its
variations. Section 6 contains some conjectures on inequalities on spt(n), which are
analogous to those on p(n), due to DeSalvo and Pak, and Bessenrodt and Ono. Beyond
the log-concavity, we conjecture that p(n) and spt(n) satisfy higher order inequalities
induced from invariants of binary forms. In particular, we conjecture that the higher
order Turán inequality holds for both p(n) and spt(n) when n is large enough.

2 The spt-crank

To give combinatorial interpretations of congruences on spt(n), Andrews, Garvan and
Liang [22] introduced the spt-crank of an S-partition, which is analogous to Garvan’s
crank of a vector partition [70]. They showed that the spt-crank of an S-partition
can be used to divide the set of S-partitions with signs counted by spt(5n + 4) (or
spt(7n + 5)) into five (or seven) equinumerous classes which leads to the congruences
(1.12) and (1.13).

Andrews, Dyson and Rhoades [19] proposed the problem of finding an equivalent
definition of the spt-crank for a marked partition. Chen, Ji and Zang [53] introduced
the structure of a doubly marked partition and established a bijection between marked
partitions and doubly marked partitions. Then they defined the spt-crank of a doubly
marked partition in order to divide the set of marked partitions counted by spt(5n+4)
(or spt(7n + 5)) into five (or seven) equinumerous classes. Hence, in principle, the
spt-crank of a doubly marked partition can be considered as a solution to the problem
of Andrews, Dyson and Rhoades. It would be interesting to find an spt-crank directly
defined on marked partitions.
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Let NS(m,n) denote the net number, or the sum of signs, of S-partitions of n
with spt-crank m. Andrews, Dyson and Rhoades [19] conjectured that {NS(m,n)}m is
unimodal for any given n and showed that this conjecture is equivalent to an inequality
between the rank and the crank of a partition. Using the notion of the rank-set of
a partition introduced by Dyson [64], Chen, Ji and Zang [52] gave a proof of this
conjecture by constructing an injection from the set of partitions of n such that m
appears in the rank-set to the set of partitions of n with rank not less than −m.

2.1 The spt-crank of an S-partition

Based on (1.2), Andrews, Garvan and Liang [22] noticed that the generating function
of spt(n) can be expressed as

∞∑
n=1

spt(n)qn =
∞∑
n=1

qn(qn+1; q)∞
(qn; q)2∞

, (2.1)

and they introduced the structure of S-partitions to interpret the right-hand side of
(2.1) as the generating function of the net number of S-partitions of n, that is, the
sum of signs of S-partitions of n. More precisely, let D denote the set of partitions into
distinct parts and P denote the set of partitions. For λ ∈ P , we use s(λ) to denote
the smallest part of λ with the convention that s(∅) = +∞. The set of S-partitions is
defined by

S = {(π1, π2, π3) ∈ D × P × P | π1 6= ∅ and s(π1) ≤ min{s(π2), s(π3)}}. (2.2)

For π = (π1, π2, π3) ∈ S, Andrews, Garvan and Liang [22] defined the weight of π to
be |π1|+|π2|+|π3| and defined the sign of π to be

ω(π) = (−1)l(π1)−1,

where |π| denotes the sum of parts of π and l(π) denotes the number of parts of π.

They showed that

spt(n) =
∑
π

ω(π),

where π ranges over S-partitions of n. To give combinatorial interpretations of the
congruences (1.12) and (1.13), Andrews, Garvan and Liang [22] defined the spt-crank
of an S-partition, which takes the same form as the crank of a vector partition.

Let π be an S-partition, the spt-crank of π, denoted r(π), is defined to be the
number of parts of π2 minus the number of parts of π3, i.e.,

r(π) = l(π2)− l(π3).
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Let NS(m,n) denote the net number of S-partitions of n with spt-crank m, that is,

NS(m,n) =
∑
|π|=n
r(π)=m

ω(π), (2.3)

and let NS(k, t, n) denote the net number of S-partitions of n with spt-crank congruent
to k (mod t), namely,

NS(k, t, n) =
∑

m≡k (mod t)

NS(m,n).

Andrews, Garvan and Liang [22] obtained the following relations.

Theorem 2.1 (Andrews, Garvan and Liang). For 0 ≤ k ≤ 4,

NS(k, 5, 5n+ 4) =
spt(5n+ 4)

5
,

and for 0 ≤ k ≤ 6,

NS(k, 7, 7n+ 5) =
spt(7n+ 5)

7
.

Andrews, Garvan and Liang [22] defined an involution on the set of S-partitions:

ι(~π) = ι(π1, π2, π3) = (π1, π3, π2),

which leads to the symmetry property of NS(m,n):

NS(m,n) = NS(−m,n). (2.4)

Using the generating function of NS(m,n), Andrews, Garvan and Liang [22] proved
its positivity.

Theorem 2.2 (Andrews, Garvan and Liang). For all integers m and positive integers n,

NS(m,n) ≥ 0. (2.5)

Dyson [65] gave an alternative proof of this property by establishing the relation:

NS(m,n) =
∞∑
k=1

(−1)k−1
k−1∑
j=0

p(n− k(m+ j)− (k(k + 1)/2)).

Andrews, Garvan and Liang [22] posed the problem of finding a combinatorial
interpretation of NS(m,n). Chen, Ji and Zang [53] introduced the structure of a
doubly marked partition which leads to a combinatorial interpretation of NS(m,n).
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((3, 2, 2), 1, 2) ((3, 2, 1), 1, 2) ((3, 2, 2), 2, 1)

s t s t t s

Figure 1: An illustration of the conditions for a doubly marked partition

2.2 The spt-crank of a doubly marked partition

In this section, we first give a definition of a doubly marked partition and then define its
spt-crank. To this end, we assume that a partition λ of n is represented by its Ferrers
diagram, and we use D(λ) to denote size of the Durfee square of λ, see [10, p. 28].
For each partition λ = (λ1, λ2, . . . , λl) of n, the associated Ferrers diagram is the
arrangement of n dots in l rows with the dots being left-justified and the i-th row
having λi dots for 1 ≤ i ≤ l. The Durfee square of λ is the largest-size square contained
within the Ferrers diagram of λ.

For a partition λ, let λ′ denote its conjugate. A doubly marked partition of n is
a partition λ of n along with two distinguished columns indexed by s and t, denoted
(λ, s, t), where

(1) 1 ≤ s ≤ D(λ);

(2) s ≤ t ≤ λ1;

(3) λ′s = λ′t.

For example, ((3, 2, 2), 1, 2) is a doubly marked partition, whereas
((3, 2, 1), 1, 2) and ((3, 2, 2), 2, 1) are not doubly marked partitions, see Figure 1.

To define the spt-crank of a doubly marked partition (λ, s, t), let

g(λ, s, t) = λ′s − s+ 1, (2.6)

As s ≤ D(λ), we see that λ′s ≥ s, which implies that g(λ, s, t) ≥ 1.

Let (λ, s, t) be a doubly marked partition, and let g = g(λ, s, t). The spt-crank of
(λ, s, t) is defined by

c(λ, s, t) = g − λg + t− s. (2.7)

For example, for the doubly marked partition ((4, 4, 1, 1), 2, 3), we have g = 2−1 = 1
and the spt-crank equals 1− λ1 + 3− 2 = −2.

The following theorem in [53] gives a combinatorial interpretation of NS(m,n).
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Theorem 2.3 (Chen, Ji and Zang). For any integer m and any positive integer n,
NS(m,n) equals the number of doubly marked partitions of n with spt-crank m.

For example, for n = 4, the sixteen S-partitions of 4, their spt-cranks and the ten
doubly marked partitions of 4 and their spt-cranks are listed in Table 1.

S-partition sign spt-crank doubly marked partition spt-crank

((1), (1, 1, 1), ∅) +1 3 ((1, 1, 1, 1), 1, 1) 3

((1), (2, 1), ∅) +1 2 ((2, 1, 1), 1, 1) 2

((1), (1, 1), (1)) +1 1 ((3, 1), 1, 1) 1

((1), (3), ∅) +1 1 ((2, 2), 1, 2) 1

((2, 1), (1), ∅) −1 1

((2), (2), ∅) +1 1

((1), (2), (1)) +1 0 ((2, 2), 1, 1) 0

((1), (1), (2)) +1 0 ((4), 1, 4) 0

((3, 1), ∅, ∅) −1 0

((4), ∅, ∅) +1 0

((1), (1), (1, 1)) +1 −1 ((2, 2), 2, 2) −1

((1), ∅, (3)) +1 −1 ((4), 1, 3) −1

((2, 1), ∅, (1)) −1 −1

((2), ∅, (2)) +1 −1

((1), ∅, (2, 1)) +1 −2 ((4), 1, 2) −2

((1), ∅, (1, 1, 1)) +1 −3 ((4), 1, 1) −3

Table 1: S-partitions and doubly marked partitions

The proof of Theorem 2.3 relies on the generating function of NS(m,n) given by
Andrews, Garvan and Liang [22].

Andrews, Dyson and Rhoades [19] proposed the problem of finding a definition of
the spt-crank for a marked partition so that the set of marked partitions of 5n + 4
(or 7n + 5) can be divided into five (or seven) equinumerous classes. Chen, Ji and
Zang [53] established a bijection ∆ between the set of marked partitions of n and the
set of doubly marked partitions of n.

Theorem 2.4 (Chen, Ji and Zang). There is a bijection ∆ between the set of marked
partitions (µ, k) of n and the set of doubly marked partitions (λ, s, t) of n.

To prove the above theorem, we adopt the notation (λ, s, t) for a partition λ with
two distinguished columns λ′s and λ′t in the Ferrers diagram. Let Qn denote the set of
doubly marked partitions of n, and let

Un = {(λ, s, t) | |λ|= n, 1 ≤ s ≤ D(λ), 1 ≤ t ≤ λ1}.
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s t

p = max{i:λ′i = λ′s}

Extract s th, s+ 1 th,
. . ., p th columns

δ γ

conjugate of γ

λ

δ γ′

Insert the parts of γ′

into δ

(µ, a, b) = τ(λ, s, t)
a = min{i: δi < γ′1}

b

p

τ

Figure 2: An illustration of the map τ

Obviously, Qn ⊆ Un.

Before we give a description of the bijection ∆, we introduce a transformation τ
from Un \Qn to Un.

The transformation τ : Assume that (λ, s, t) ∈ Un \ Qn, that is, λ is a partition of
n with two distinguished columns indexed by s and t such that 1 ≤ s ≤ D(λ) and
either 1 ≤ t < s or λ′s > λ′t. We wish to construct a partition µ with two distinguished
columns indexed by a and b. Let p be the maximum integer such that λ′p = λ′s. Define

δ = (λ1 − p+ s− 1, λ2 − p+ s− 1, . . . , λλ′s − p+ s− 1, λλ′s+1, . . . , λ`). (2.8)

Set a to be the minimum integer such that δa < λ′s and

µ = (δ1, . . . , δa−1, λ
′
s, . . . , λ

′
p, δa, . . . , δ`). (2.9)

If t < s, then set b = t and if λ′s > λ′t, then set b = t − p + s − 1. Define
τ(λ, s, t) = (µ, a, b). Figure 2 gives an illustration of the map τ : ((6, 5, 3, 1), 2, 6) 7→
((4, 3, 3, 3, 1, 1), 3, 4).

It was proved in [53] that the map τ is indeed an injection. Using this property,
they described the bijection ∆ in Theorem 2.4 based on the injection τ .

The definition of ∆: Let (µ, k) be a marked partition of n, we proceed to construct a
doubly marked partition (λ, s, t) of n.
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a b b b sta

((2, 2, 1, 1), 2, 2) = 4((2, 1, 1, 1, 1), 5)

k

a

((2, 1, 1, 1, 1), 5) ((2, 2, 1, 1), 2, 2)

τ τ τconjugate

Figure 3: The bijection 4: ((2, 1, 1, 1, 1), 5) 7→ ((2, 2, 1, 1), 2, 2)

We first consider (µ′, 1, k). If (µ′, 1, k) is already a doubly marked partition, then
there is nothing to be done and we just set (λ, s, t) = (µ′, 1, k). Otherwise, we iteratively
apply the map τ to (µ′, 1, k) until we get a doubly marked partition (λ, s, t). We then
define

∆(µ, k) = (λ, s, t).

It can be shown that this process terminates and it is reversible. Thus ∆ is well-defined
and is a bijection between the set of marked partitions (µ, k) of n and the set of doubly
marked partitions (λ, s, t) of n.

To give an example of the map ∆, let n = 6, µ = (2, 1, 1, 1, 1) and k = 5. We have
µ′ = (5, 1). Note that (µ′, 1, k) = ((5, 1), 1, 5), which is not a doubly marked partition.
It can be checked that τ(µ′, 1, k) = ((4, 2), 2, 4), which is not a doubly marked partition.
Repeating this process, we get τ((4, 2), 2, 4) = ((3, 2, 1), 2, 3), and τ((3, 2, 1), 2, 3) =
((2, 2, 1, 1), 2, 2),
which is eventually a doubly marked partition. See Figure 3. Thus, we obtain

∆((2, 1, 1, 1, 1), 5) = ((2, 2, 1, 1), 2, 2).

Utilizing the bijection ∆ and the spt-crank for a doubly marked partition, one
can divide the set of marked partitions of 5n + 4 (or 7n + 5) into five (or seven)
equinumerous classes. Hence, in principle, the spt-crank of a doubly marked partition
can be considered as a solution to the problem of Andrews, Dyson and Rhoades. It
would be interesting to find an spt-crank directly defined on marked partitions.

For example, for n = 4, we have spt(4) = 10. The ten marked partitions of 4,
the corresponding doubly marked partitions, and the spt-crank modulo 5 are listed in
Table 2.

For n = 5, we have spt(5) = 14. The fourteen marked partitions of 5, the cor-
responding doubly marked partitions, and the spt-crank modulo 7 are listed in Table
3.
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(µ, k) (λ, s, t) = ∆(µ, k) c(λ, s, t) c(λ, s, t) mod 5

((4), 1) ((1, 1, 1, 1), 1, 1) 3 3

((3, 1), 2) ((3, 1), 1, 1) 1 1

((2, 2), 1) ((2, 2), 1, 1) 0 0

((2, 2), 2) ((2, 2), 1, 2) 1 1

((2, 1, 1), 2) ((2, 1, 1), 1, 1) 2 2

((2, 1, 1), 3) ((2, 2), 2, 2) −1 4

((1, 1, 1, 1), 1) ((4), 1, 1) −3 2

((1, 1, 1, 1), 2) ((4), 1, 2) −2 3

((1, 1, 1, 1), 3) ((4), 1, 3) −1 4

((1, 1, 1, 1), 4) ((4), 1, 4) 0 0

Table 2: The case for n = 4

(µ, k) (λ, s, t) = ∆(µ, k) c(λ, s, t) c(λ, s, t) mod 7

((5), 1) ((1, 1, 1, 1, 1), 1, 1) 4 4

((4, 1), 2) ((4, 1), 1, 1) 1 1

((3, 2), 2) ((3, 1, 1), 1, 1) 2 2

((3, 1, 1), 2) ((3, 2), 1, 1) 0 0

((3, 1, 1), 3) ((3, 2), 1, 2) 1 1

((2, 2, 1), 3) ((2, 2, 1), 1, 1) 2 2

((2, 1, 1, 1), 2) ((2, 1, 1, 1), 1, 1) 3 3

((2, 1, 1, 1), 3) ((3, 2), 2, 2) −2 5

((2, 1, 1, 1), 4) ((2, 2, 1), 2, 2) −1 6

((1, 1, 1, 1, 1), 1) ((5), 1, 1) −4 3

((1, 1, 1, 1, 1), 2) ((5), 1, 2) −3 4

((1, 1, 1, 1, 1), 3) ((5), 1, 3) −2 5

((1, 1, 1, 1, 1), 4) ((5), 1, 4) −1 6

((1, 1, 1, 1, 1), 5) ((5), 1, 5) 0 0

Table 3: The case for n = 5

2.3 The unimodality of the spt-crank

The unimodality of the spt-crank was first studied by Andrews, Dyson and Rhoades
[19]. They showed that the unimodality of the spt-crank is equivalent to an inequality
between the rank and the crank of a partition. Define

N≤m(n) =
∑
|r|≤m

N(r, n), (2.10)
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M≤m(n) =
∑
|r|≤m

M(r, n). (2.11)

Andrews, Dyson and Rhoades [19] established the following relation.

Theorem 2.5 (Andrews, Dyson and Rhoades). For m ≥ 0 and
n > 1,

NS(m,n)−NS(m+ 1, n) =
1

2
(N≤m(n)−M≤m(n)) . (2.12)

They also posed a conjecture on the spt-crank.

Conjecture 2.6 (Andrews, Dyson and Rhoades). For m,n ≥ 0,

NS(m,n) ≥ NS(m+ 1, n). (2.13)

By the symmetry (2.4) of NS(m,n) and the relation (2.13), we see that

NS(−n, n) ≤ · · · ≤ NS(−1, n) ≤ NS(0, n) ≥ NS(1, n) ≥ · · · ≥ NS(n, n).

n \m −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

0 1

1 1

2 1 1 1

3 1 1 1 1 1

4 1 1 2 2 2 1 1

5 1 1 2 2 2 2 2 1 1

6 1 1 2 3 4 4 4 3 2 1 1

7 1 1 2 3 4 4 5 4 4 3 2 1 1

Table 4: An illustration of the unimodality of NS(m,n)

In view of (2.12), Andrews, Dyson and Rhoades pointed out that Conjecture 2.6 is
equivalent to the assertion

N≤m(n) ≥M≤m(n), (2.14)

where m,n ≥ 0. It was remarked in [19] that (2.14) was conjectured by Bringmann
and Mahlburg [44]. When m = 0, (2.14) was conjectured by Kaavya [95].

Andrews, Dyson and Rhoades [19] obtained an asymptotic formula for N≤m(n) −
M≤m(n), which implies that Conjecture 2.6 holds for fixed m and sufficiently large n.

Theorem 2.7 (Andrews, Dyson and Rhoades). For each m ≥ 0,

(N≤m(n)−M≤m(n)) ∼ (2m+ 1)π2

192
√

3n2
eπ
√

2n
3 as n→∞. (2.15)
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Using the rank-set of a partition, Chen, Ji and Zang [52] constructed an injection
from the set of partitions of n such thatm appears in the rank-set to the set of partitions
of n with rank not less than −m. This proves the inequality (2.14) for all m ≥ 0 and
n ≥ 1, and hence Conjecture 2.6 is confirmed.

In fact, the relation (2.14) was stated by Bringmann and Mahlburg [44] in a different
notation. For an integer m and a positive integer n, let

M(m,n) =
∑
r≤m

M(r, n),

and
N (m,n) =

∑
r≤m

N(r, n).

By the symmetry properties of the rank and the crank, that is,

N(m,n) = N(−m,n) and M(m,n) = M(−m,n),

see [63] and [70], it is not difficult to verify that (2.14) is equivalent to the following
inequality for m < 0 and n ≥ 1:

N (m,n) ≤M(m,n). (2.16)

It turns out that the constructive approach in [52] can be used to prove the other
part of the conjecture (2.16) of Bringmann and Mahlburg, that is,

M(m,n) ≤ N (m+ 1, n), (2.17)

for m < 0 and n ≥ 1. A proof of (2.17) was given in [54].

In the notation N≤m−1(n) and M≤m(n), the inequality (2.17) can be expressed as

M≤m(n) ≥ N≤m−1(n), (2.18)

for m ≥ 1 and n ≥ 1.

Bringmann and Mahlburg [44] also pointed out that the inequalities (2.16) and
(2.17) can be restated as the existence of a re-ordering τn on the set of partitions of
n such that |crank(λ)|−|rank(τn(λ))|= 0 or 1 for all partitions λ of n. Chen, Ji and
Zang [54] defined a re-ordering τn on the set of partitions of n and showed that this
re-ordering τn satisfies the relation |crank(λ)|−|rank(τn(λ))|= 0 or 1 for any partition
λ of n. Appealing to this re-ordering τn, they gave a new combinatorial interpretation
of the function ospt(n) defined by Andrews, Chan and Kim [15], which leads to an
upper bound for ospt(n) due to Chan and Mao [49].

Bringmann and Mahlburg [44] also remarked that using the Cauchy-Schwartz in-
equality, the bijection τn leads to an upper bound for spt(n), namely, for n ≥ 1,

spt(n) ≤
√

2np(n). (2.19)
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Chan and Mao [49] posed a conjecture on a sharper upper bound and a lower bound
for spt(n).

Conjecture 2.1 (Chan and Mao). For n ≥ 3,

√
6n

π
p(n) ≤ spt(n) ≤

√
np(n). (2.20)

The following upper bound and lower bound for spt(n) were conjectured by Hirschhorn
and later proved by Eichhorn and Hirschhorn [66].

Theorem 2.8 (Eichhorn and Hirschhorn). For n ≥ 2,

p(0) + p(1) + · · ·+ p(n− 1) < spt(n) < p(0) + p(1) + · · ·+ p(n). (2.21)

3 More congruences

Garvan [72] obtained Ramanujan-type congruences of spt(n) mod 11, 17, 19, 29, 31
and 37.

Theorem 3.1 (Garvan). For n ≥ 0,

spt(11 · 194 · n+ 22006) ≡ 0 (mod 11), (3.1)

spt(17 · 74 · n+ 243) ≡ 0 (mod 17), (3.2)

spt(19 · 54 · n+ 99) ≡ 0 (mod 19), (3.3)

spt(29 · 134 · n+ 18583) ≡ 0 (mod 29), (3.4)

spt(31 · 294 · n+ 409532) ≡ 0 (mod 31), (3.5)

spt(37 · 54 · n+ 1349) ≡ 0 (mod 37). (3.6)

Bringmann [39] showed that spt(n) possesses a congruence property analogous to
the following theorem for p(n), due to Ono [110].

Theorem 3.2 (Ono). For any prime ` ≥ 5, there are infinitely many arithmetic progres-
sions an+ b such that

p(an+ b) ≡ 0 (mod `). (3.7)

As for spt(n), Bringmann [39] proved the following assertion.

Theorem 3.3 (Bringmann). For any prime ` ≥ 5, there are infinitely many arithmetic
progressions an+ b such that

spt(an+ b) ≡ 0 (mod `).
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The above theorem is a consequence of (1.4), Theorem 3.2 and the following theorem
of Bringmann [39].

Theorem 3.4 (Bringmann). For any prime ` ≥ 5, there are infinitely many arithmetic
progressions an+ b such that

N2(an+ b) ≡ 0 (mod `). (3.8)

Bringmann [39] constructed a weight 3/2 harmonic weak Maass form M(z) on
Γ0(576) with Nebentypus χ12(•) =

(
12
•

)
, which is related to the generating function of

spt(n). This implies that the generating function of spt(n) is essentially a mock theta
function with Dedekind eta-function η(q) as its shadow just as pointed out by Rhoades
[124]. Ono [112] found a weight (`2 +3)/2 holomorphic modular form on SL2(Z) which
contains the holomorphic part of M(z). Using this modular form, Ono [112] derived
Ramanujan-type congruences of spt(n) modulo ` for any prime ` ≥ 5.

Theorem 3.5 (Ono). Let ` ≥ 5 be a prime and let
(•
◦

)
denote the Legendre symbol.

(i) For n ≥ 1, if
(−n
`

)
= 1,

spt
(
(`2n+ 1)/24

)
≡ 0 (mod `).

(ii) For n ≥ 0,

spt
(
(`3n+ 1)/24

)
≡
(

3

`

)
spt ((`n+ 1)/24) (mod `).

Ahlgren, Bringmann and Lovejoy [5] extended Theorem 3.5 to any prime power.
An analogous congruence for p(n) was found by Ahlgren [1].

Theorem 3.6 (Ahlgren, Bringmann and Lovejoy). Let ` ≥ 5 be a prime and let m ≥ 1.

(i) For n ≥ 1, if
(−n
`

)
= 1,

spt
(
(`2mn+ 1)/24

)
≡ 0 (mod `m).

(ii) For n ≥ 0,

spt
(
(`2m+1n+ 1)/24

)
≡
(

3

`

)
spt
(
(`2m−1n+ 1)/24

)
(mod `m).

Recall the following congruences of p(n):

p(5an+ δa) ≡ 0 (mod 5a), (3.9)

p(7bn+ λb) ≡ 0 (mod 7b
b+2
2 c), (3.10)
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p(11cn+ ϕc) ≡ 0 (mod 11c), (3.11)

where a, b, c are positive integers and δa, λb and ϕc are the least nonnegative residues of
the reciprocals of 24 mod 5a, 7b and 11c, respectively. The congruences (3.9) and (3.10)
were proved by Watson [132] and the congruence (3.11) was proved by Atkin [27].
Folsom, Kent and Ono [67] provided alternative proofs of the congruences (3.9)–(3.11)
with the aid of the theory of `-adic modular forms. Recently, Paule and Radu [117]
found a unified algorithmic approach to (3.9)–(3.11) resorting to elementary modular
function tools only.

In the case of the spt-function, although Theorem 3.6 gives congruences for all
primes ` ≥ 5, the congruences (1.12)–(1.14) do not follow from Theorem 3.6. Congru-
ences for these missing cases have been obtained by Garvan [74], which are analogous
to (3.9)–(3.11).

Theorem 3.7 (Garvan). For n ≥ 0,

spt(5an+ δa) ≡ 0 (mod 5b
a+1
2
c),

spt(7bn+ λb) ≡ 0 (mod 7b
b+1
2
c),

spt(13cn+ γc) ≡ 0 (mod 13b
c+1
2
c),

where a, b, c are positive integers, and δa, λb and γc are the least nonnegative residues
of the reciprocals of 24 mod 5a, 7b and 13c respectively.

Setting a = b = c = 1, Theorem 3.7 reduces to (1.12)–(1.14). Belmont, Lee, Musat
and Trebat-Leder [32] provided another proof of the above theorem by generalizing
techniques of Folsom, Kent and Ono [67] and by utilizing refinements due to Boylan
and Webb [38].

Before we get into the discussions about the parity of spt(n), let us look back at
the parity of p(n). Subbarao [129] conjectured that in every arithmetic progression
r (mod t), there are infinitely many integers N ≡ r (mod t) for which p(N) is even,
and infinitely many integers M ≡ r (mod t) for which p(M) is odd. This conjecture
has been confirmed for t = 1, 2, 3, 4, 5, 10, 12, 16 and 40 by Garvan and Stanton [79],
Hirschhorn [82], Hirschhorn and Subbarao [85], Kolberg [99] and Subbarao [129]. The
even case of Subbarao’s conjecture was settled by Ono [109] and the odd case was solved
by Radu [121]. Radu [121] also showed that for every arithmetic progression r (mod t),
there are infinitely many integers N ≡ r (mod t) such that p(N) 6≡ 0 (mod 3). This
confirms a conjecture posed by Ahlgren and Ono [6].

For n ≥ 1, the parity of spt(n) is determined by Folsom and Ono [68]. They
constructed a pair of harmonic weak Maass forms with equal nonholomorphic parts,
whose difference contains the generating function of spt(n) as a component. Based on
the results in [40], Folsom and Ono showed that the difference of such pair of harmonic
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weak Maass forms can be expressed as the sum of the generating function for spt(n)
and a modular form. This enables us to completely determine the parity of spt(n).

To be more specific, Folsom and Ono [68] first defined the mock theta functions:

D(z) =
q−

1
24

(q; q)∞

(
1− 24

∞∑
n=1

nqn

1− qn

)
=

q−
1
24

(q; q)∞
E2(z)

and

L(z) =
(q6; q)2∞(q24; q)2∞

(q12; q)5∞

( ∞∑
n=−∞

(12n− 1)q6n
2− 1

24

1− q12n−1
−

∞∑
n=−∞

(12n− 5)q6n
2− 25

24

1− q12n−5

)
.

Then they obtained the following modular form.

Theorem 3.8 (Folsom and Ono). The function

D(24z)− 12L(24z)− 12q−1S(24z)

is a weight 3/2 weakly holomorphic modular form on Γ0(576) with Nebentypus
(
12
•

)
,

where

S(z) =
∞∑
n=0

spt(n)qn.

By Theorem 3.8, Folsom and Ono [68] obtained a characterization of the parity of
spt(n).

Theorem 3.9 (Folsom and Ono). The function spt(n) is odd if and only if 24n−1 = pm2,
where m is an integer and p ≡ 23 (mod 24) is prime.

As pointed out by Andrews, Garvan and Liang [23], Theorem 3.9 contains an error.
For example, for n = 507, it is clear that 507×24−1 = 12167 = 23×232 = pm2, where
p = m = 23. Obviously, 507 satisfies the condition of Theorem 3.9. But spt(507) =
60470327737556285225064 is even. This error has been corrected by Andrews, Garvan
and Liang [23]. By using the notion of S-partitions as defined in (2.2), they noticed
that the number of S-partitions of n has the same parity as spt(n). Then they built
an involution ι on the set of S-partitions of n as follows:

ι(~π) = ι(π1, π2, π3) = (π1, π3, π2).

Clearly, an S-partition (π1, π2, π3) is a fixed point of ι if and only if π2 = π3. Denote
the number of such S-partitions of n by NSC(n). It is not difficult to see that

spt(n) ≡ NSC(n) (mod 2).

By computing the generating function of NSC(n), Andrews, Garvan and Liang [23]
established a corrected version of Theorem 3.9.
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Theorem 3.10 (Andrews, Garvan and Liang). The function spt(n) is odd if and only
if 24n − 1 = p4a+1m2 for some prime p ≡ 23 (mod 24) and some integers a,m with
(p,m) = 1.

The spt-function is also related to some combinatorial sequences, see, for exam-
ple, Andrews, Rhoades and Zwegers [25] and Bryson, Ono, Pitman and Rhoades [48].
Bryson, Ono, Pitman and Rhoades [48] showed that the number of strongly unimodal
sequences of size n has the same parity as spt(n). More specifically, a sequence of
integers {ai}si=1 is said to be a strongly unimodal sequence of size n if a1 + · · ·+as = n
and for some k,

0 < a1 < a2 < · · · < ak > ak+1 > ak+2 > · · · > as > 0.

Let u(n) be the number of strongly unimodal sequences of size n. By [13, Theorem 1],
Bryson, Ono, Pitman and Rhoades [48] observed that

u(n) ≡ spt(n) (mod 2).

As for congruences of spt(n) modulo powers of 2, Garvan and Jennings-Shaffer [77]
obtained congruences mod 23, 24 and 25. Let

s` =
`2 − 1

24
.

Theorem 3.11 (Garvan and Jennings-Shaffer). Let ` ≥ 5 be a prime, and define

β =


3, if ` ≡ 7, 9 (mod 24),

4, if ` ≡ 13, 23 (mod 24),

5, if ` ≡ 1, 11, 17, 19 (mod 24).

Then for n ≥ 1,

spt(`2n− s`) +

(
3− 72n

`

)
spt(n) + ` spt

(
(n+ s`)/`

2
)

≡
(

3

`

)
(1 + `) spt(n) (mod 2β).

By using the Hecke algebra of a Maass form, Folsom and Ono [68] derived a con-
gruence of spt(n) modulo 3.

Theorem 3.12 (Folsom and Ono). Let ` ≥ 5 be a prime, then for n ≥ 1,

spt(`2n− s`) +

(
3− 72n

`

)
spt(n) + ` spt

(
(n+ s`)/`

2
)

≡
(

3

`

)
(1 + `) spt(n) (mod 3).
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Corollary 3.13 (Folsom and Ono). Let ` ≥ 5 be a prime such that ` ≡ 2 (mod 3). If
0 < k < `− 1, then for n ≥ 1,

spt(`4n+ `3k − (`4 − 1)/24) ≡ 0 (mod 3).

For example, for ` = 5, we have

spt(625n+ 99) ≡ spt(625n+ 224)

≡ spt(625n+ 349)

≡ spt(625n+ 474)

≡ 0 (mod 3).

Garvan [75] derived congruences mod 5, 7, 13 and 72.

Theorem 3.14 (Garvan). (i) If ` ≥ 5 is prime, then for n ≥ 1

spt(`2n− s`) +

(
3− 72n

`

)
spt(n) + ` spt

(
(n+ s`)/`

2
)

≡
(

3

`

)
(1 + `) spt(n) (mod 72). (3.12)

(ii) If ` ≥ 5 is prime, t = 5, 7 or 13 and ` 6= t, then for n ≥ 1

spt(`2n− s`) +

(
3− 72n

`

)
spt(n) + ` spt

(
(n+ s`)/`

2
)

≡
(

3

`

)
(1 + `) spt(n) (mod t). (3.13)

Note that Theorem 3.12 can be deduced from (3.12). Moreover, writing 32760 =
23 · 32 · 5 · 7 · 13, from (3.12) and (3.13), it is easy to deduce a congruence of spt(n)
modulo 32760.

Corollary 3.15 (Garvan). If ` is prime and ` 6∈ {2, 3, 5, 7, 13}, then for n ≥ 1

spt(`2n− s`) +

(
3− 72n

`

)
spt(n) + ` spt

(
(n+ s`)/`

2
)

≡
(

3

`

)
(1 + `) spt(n) (mod 32760).

Garrett, McEachern, Frederick and Hall-Holt [69] obtained a recurrence relation
for spt(n). To compute spt(n), they introduced two integer arrays A(n, j) and B(n, j),
where A(n, j) denotes the number of partitions of n with the smallest part at least j and
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B(n, j) denotes the number of times that j occurs as the smallest part of partitions of
n. From the definitions of A(n, j) and B(n, j), it is not difficult to deduce the following
recurrence relations:

A(n, j) = A(n− j, j) + A(n, j + 1),

B(n, j) = A(n− j, j) +B(n− j, j),
where A(n, j) = B(n, j) = 0 whenever n < j and A(n, n) = B(n, n) = 1.

Thus we have

spt(n) =
n∑
j=1

B(n, j).

By the above relation, Garrett, McEachern, Frederick and Hall-Holt computed the first
million values of spt(n), and found many conjectures on congruences of spt(n).

spt(1331n+ 479) ≡ 0 (mod 11), (3.14)

spt(1331n+ 842) ≡ 0 (mod 11), (3.15)

spt(1331n+ 1084) ≡ 0 (mod 11), (3.16)

spt(1331n+ 1205) ≡ 0 (mod 11), (3.17)

spt(1331n+ 1326) ≡ 0 (mod 11), (3.18)

spt(4913n+ 566) ≡ 0 (mod 17), (3.19)

spt(4913n+ 2300) ≡ 0 (mod 17), (3.20)

spt(4913n+ 2878) ≡ 0 (mod 17), (3.21)

spt(4913n+ 3167) ≡ 0 (mod 17), (3.22)

spt(4913n+ 3456) ≡ 0 (mod 17), (3.23)

spt(4913n+ 4323) ≡ 0 (mod 17), (3.24)

spt(4913n+ 4612) ≡ 0 (mod 17), (3.25)

spt(4913n+ 4901) ≡ 0 (mod 17), (3.26)

spt(11875n+ 99) ≡ 0 (mod 19), (3.27)

spt(12167n+ 9500) ≡ 0 (mod 23), (3.28)

spt(24389n+ 806) ≡ 0 (mod 29). (3.29)

All the above conjectures have been confirmed. The congruence (3.27) has been
proved by Garvan [72], and the rest are consequences of Theorem 3.5. Indeed, Theorem
3.5 (i) implies that if

(−δ
`

)
= 1, then

spt

(
`2(`n+ δ) + 1

24

)
≡ 0 (mod `). (3.30)

When ` = 11, 17, 23, 29, (3.30) becomes (3.14)−(3.26), (3.28) and (3.29), respectively.
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4 Generalizations and variations

In this section, we discuss three generalizations and one variation of the spt-function
based on the relation (1.6) and three variations based on the combinatorial definition.

4.1 The higher order spt-function of Garvan

The first generalization of the spt-function was due to Garvan [73]. He defined a
higher order spt-function in terms of the k-th symmetrized rank function and the k-th
symmetrized crank function.

The k-th symmetrized rank function ηk(n) was introduced by Andrews [11], and it
is defined by

ηk(n) =
n∑

m=−n

(
m+ bk−1

2
c

k

)
N(m,n). (4.1)

By using q-identities, Andrews [11] found a combinatorial interpretation of ηk(n) in
terms of k-marked Durfee symbol. Ji [94] and Kursungoz [101] found combinatorial
derivations of this combinatorial interpretation of ηk(n) directly from the definition
(4.1). When k = 2, it is easy to check that

η2(n) =
1

2
N2(n),

where the second rank moment N2(n) is defined as in (1.3).

Garvan [73] introduced the k-th symmetrized crank function µk(n) as follows:

µk(n) =
n∑

m=−n

(
m+ bk−1

2
c

k

)
M(m,n). (4.2)

A combinatorial interpretation of µk(n) was given by Chen, Ji and Shen [51]. When
k = 2, it is not difficult to derive that

µ2(n) =
1

2
M2(n).

Garvan [73] introduced the higher order spt-function sptk(n).

Definition 4.1. For k ≥ 1, define

sptk(n) = µ2k(n)− η2k(n). (4.3)

In view of (1.6), it is easy to see that sptk(n) reduces to spt(n) when k = 1. Making
use of Bailey pairs [9], Garvan obtained the generating function of sptk(n).
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Theorem 4.2 (Garvan). For k ≥ 1,

∞∑
n=1

sptk(n)qn

=
∑

nk≥nk−1≥···≥n1≥1

qn1+n2+···+nk

(1− qnk)2(1− qnk−1)2 · · · (1− qn1)2(qn1+1; q)∞
. (4.4)

Setting k = 1 in (4.4), we get the generating function (1.2) of spt(n). Furthermore,
it can be seen from (4.4) that sptk(n) ≥ 0 for n, k ≥ 1. Together with (4.3), we find
that

µ2k(n) ≥ η2k(n). (4.5)

The inequality (4.5) plays a key role in the proof of an inequality between the rank
moments and the crank moments, as conjectured by Garvan [72].

Conjecture 4.3 (Garvan). For n, k ≥ 1,

M2k(n) ≥ N2k(n). (4.6)

Bringmann and Mahlburg [44] showed that the above conjecture is true for k =
1, 2 and sufficiently large n. For each fixed k, Garvan’s conjecture was proved for
sufficiently large n by Bringmann, Mahlburg and Rhoades [46]. Garvan [73] confirmed
his conjecture for all k and n. He introduced an analogue of the Stirling numbers of
the second kind, denoted by S∗(k, j). It is defined recursively as follows:

(1) S∗(1, 1) = 1;

(2) S∗(k, j) = 0 if j ≤ 0 or j > k;

(3) S∗(k + 1, j) = S∗(k, j − 1) + j2S∗(k, j) for 1 ≤ j ≤ k + 1.

It is clear from the above recurrence relation that S∗(k, j) ≥ 0. Garvan established the
following relations between the ordinary moments and symmetrized moments in terms
of S∗(k, j):

M2k(n) =
k∑
j=1

(2j)!S∗(k, j)µ2j(n) (4.7)

and

N2k(n) =
k∑
j=1

(2j)!S∗(k, j)η2j(n). (4.8)

It follows from (4.7) and (4.8) that

M2k(n)−N2k(n) =
k∑
j=1

(2j)!S∗(k, j) (µ2j(n)− η2j(n)) . (4.9)
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Invoking (4.5) we deduce that M2k(n)−N2k(n) ≥ 0 for n, k ≥ 1, and hence Conjecture
4.3 is proved.

Garvan [73] gave a combinatorial explanation of the right-hand side of (4.4). Thus
Theorem 4.2 leads to a combinatorial interpretation of sptk(n).

Theorem 4.4 (Garvan). Let λ be a partition with m different parts

n1 < n2 < · · · < nm.

Let k ≥ 1, define the weight ωk(λ) of λ as follows:

ωk(λ) =
∑

m1+···+mr=k
1≤r≤k

(
f1 +m1 − 1

2m1 − 1

)

×
∑

2≤j2<j3<···<jr

(
fj2 +m2

2m2

)(
fj3 +m3

2m3

)
· · ·
(
fjr +mr

2mr

)
,

where fj = fj(λ) denotes the multiplicity of the part nj in λ. Then

sptk(n) =
∑

λ∈P (n)

ωk(λ).

Garvan [73] also obtained congruences of spt2(n), spt3(n) and spt4(n).

Theorem 4.5 (Garvan). For n ≥ 1,

spt2(n) ≡ 0 (mod 5), if n ≡ 0, 1, 4 (mod 5),

spt2(n) ≡ 0 (mod 7), if n ≡ 0, 1, 5 (mod 7),

spt2(n) ≡ 0 (mod 11), if n ≡ 0 (mod 11),

spt3(n) ≡ 0 (mod 7), if n 6≡ 3, 6 (mod 7),

spt3(n) ≡ 0 (mod 2), if n ≡ 1 (mod 4),

spt4(n) ≡ 0 (mod 3), if n ≡ 0 (mod 3).

4.2 Generalized higher order spt-functions of Dixit and Yee

Other generalizations of the spt-function have been given by Dixit and Yee [62], which
are based on the j-rank introduced by Garvan [71]. The j-rank is a generalization
of Dyson’s rank. For a partition λ and j ≥ 2, let nj(λ) denote the size of the j-th
successive Durfee square of λ, let cj(λ) denote the number of columns in the Ferrers
diagram of λ with length not exceeding nj(λ) and let rj(λ) denote the number of parts
of λ that lie below the j-th Durfee square. Then the j-rank of λ is defined to be
cj−1(λ)− rj−1(λ). It should be noted that the 2-rank coincides with Dyson’s rank.
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Figure 4: An illustration of 3-rank of (9, 9, 7, 7, 7, 5, 3, 3, 2, 2, 1)

For example, the 3-rank of λ = (9, 9, 7, 7, 7, 5, 3, 3, 2, 2, 1) is equal to −1, since
n2(λ) = 3, c2(λ) = 2 and r2(λ) = 3, see Figure 4.

Let Nj(m,n) denote the number of partitions of n with j-rank m. Garvan [71]
showed that for j ≥ 2,

∞∑
n=0

Nj(m,n)qn =
1

(q; q)∞

∞∑
n=1

(−1)n−1q
n((2j−1)n−1)

2
+|m|n(1− qn). (4.10)

Dixit and Yee [62] defined the j-rank moment jNk(n) by

jNk(n) =
∞∑

m=−∞

mkNj(m,n). (4.11)

In the notation jNk(n), they defined Sptj(n) as follows.

Definition 4.6. For n, j ≥ 1,

Sptj(n) = np(n)− 1

2
j+1N2(n). (4.12)

In light of (1.4), it is easy to see that Sptj(n) reduces to spt(n) when j = 1.

Dixit and Yee [62] derived the generating function of Sptj(n).

Theorem 4.7 (Dixit and Yee). For j ≥ 1,

∞∑
n=1

Sptj(n)qn
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=
∑
nj≥1

∑
nj−1≥···≥n1≥0

qnj

(1− qnj)(qnj ; q)∞

[
nj
nj−1

]
· · ·
[
n2

n1

]
qn

2
1+···+n2

j−1 , (4.13)

where the q-binomial coefficients or the Gaussian coefficients are defined by[
n

k

]
=

(q; q)n
(q; q)k(q; q)n−k

. (4.14)

Dixit and Yee also found a combinatorial interpretation of Sptj(n). To give a
combinatorial explanation of the right-hand side of (4.13), they introduced the k-th
lower-Durfee square of a partition λ. For a partition λ, take the largest square that fits
inside the Ferrers diagram of λ starting from the lower left corner. This square is called
the lower-Durfee square. If there are remaining parts above the lower-Durfee square,
then take the second lower-Durfee square in the diagram above the lower-Durfee square.
Repeating this process, we are led to the third lower-Durfee square, if it exists, and so
on.

The combinatorial explanation of the right-hand side of (4.13) also requires a la-
beling of a partition, as given by Dixit and Yee. For a partition λ, let fi denote
the multiplicity of i in λ. For the fi occurrences of i, we label these fi parts from
left to right by 1, 2, . . . , fi. The labels are represented by subscripts. For instance,
(9, 8, 8, 8, 8, 6, 6, 5, 4, 4, 3) can be labeled as (91, 81, 82, 83, 84, 61, 62, 51, 41, 42, 31).

Using the lower-Durfee squares and the above labeling of a partition, for a partition
λ and j ≥ 1, Dixit and Yee defined the weight of λ , denoted Wj(λ). There are two
cases:

Case 1: λ does not contain the (j − 1)-th lower-Durfee square. Then Wj(λ) is defined
to be the sum of the labels of λ.

Case 2: λ contains the (j−1)-th lower-Durfee square. Then Wj(λ) is defined to be the
sum of labels of all the parts that are contained in and below the (j−1)-th lower-Durfee
square and the label of the part just right above the (j − 1)-th lower-Durfee square.

For example, for λ = (9, 8, 8, 8, 8, 6, 6, 5, 4, 4, 3) and j = 3, we have W3(λ) = 2 + 3 +
4 + 1 + 2 + 1 + 1 + 2 + 1 = 17, see Figure 5.

We are now ready to state the combinatorial interpretation of Sptj(n).

Theorem 4.8 (Dixit and Yee). For j ≥ 1,

Sptj(n) =
∑

λ∈P (n)

Wj(λ).

Analogous to the k-th symmetrized rank moments ηk(n) and the k-th symmetrized
crank moments µk(n), Dixit and Yee [62] defined the k-th symmetrized j-rank function
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Figure 5: An illustration of weight W3(λ)

jµk(n) by

jµk(n) =
∞∑

m=−∞

(
m+

⌊
k−1
2

⌋
k

)
Nj(m,n).

It can be checked that 1µk(n) = µk(n) and 2µk(n) = ηk(n). By the definition (4.3) of
the higher order spt-function sptk(n), we see that

sptk(n) = 1µ2k(n)− 2µ2k(n). (4.15)

The generalized higher order spt-function j sptk is defined as follows.

Definition 4.9. For j, k ≥ 1,

j sptk(n) = jµ2k(n)− j+1µ2k(n).

Dixit and Yee [62] derived the generating function of j sptk(n):

Theorem 4.10 (Dixit and Yee). For j, k ≥ 1,

∞∑
n=1

j sptk(n)qn =
∑

nk≥···≥n1≥
m1≥···≥mj−1≥1

(
qnk+···+n1(q; q)n1

(1− qnk)2 · · · (1− qn1)2(qn1+1; q)∞

× qm
2
1+···+m2

j−1

(q; q)n1−m1(q; q)m1−m2 · · · (q; q)mj−1

)
. (4.16)

They also gave a combinatorial explanation of the right-hand side of (4.16). Let λ
be a partition, and let ft denote the number of occurrences of t in λ. We shall use the
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same labeling of λ as given before. For a positive integer k and a part t in λ with label
a, define

gk(λ, ta) =

(
a+ k − 1

2k − 1

)

+
k∑
r=2

∑
m1,m2,...,mr≥1
m1+···+mr=k
t<t2<···<tr≤λ1

(
a+m1 − 1

2m1 − 1

)(
ft2 +m2

2m2

)
· · ·
(
ftr +mr

2mr

)
.

Definition 4.11. For j, k ≥ 1, define

jωk(λ) =
∑
ta

gk(λ, ta), (4.17)

where the sum ranges over the parts that are contained in the (j − 1)-th lower-Durfee
square except for the last part, but also contains the part immediately above the
(j − 1)-th lower-Durfee square.

For example, let λ = (5, 5, 5, 3, 3, 2, 2, 2), j = 3 and k = 2. Label λ as (51, 52, 53, 31, 32, 21, 22, 23).
Then

g2(λ, 31) = 0 + 1 ·
(

3 + 1

2

)
= 6

and

g2(λ, 32) = 1 + 2 ·
(

3 + 1

2

)
= 13.

Moreover, from (4.17) we find that

3ω2(λ) = g2(λ, 31) + g2(λ, 32) = 6 + 13 = 19.

Figure 6 gives an illustration of this example.

Dixit and Yee [62] proved that j sptk(n) can be expressed in terms of jωk(λ).

Theorem 4.12 (Dixit and Yee). We have

j sptk(n) =
∑

λ∈P (n)

jωk(λ).

4.3 The ospt-function of Andrews, Chan and Kim

A variation of the spt-function based on relation (1.6) was given by Andrews, Chan and
Kim [15]. In view of the symmetry properties N(−m,n) = N(m,n) and M(−m,n) =
M(m,n), it is known that

N2k+1(n) = M2k+1(n) = 0.
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Figure 6: An illustration of jωk(π)

To avoid the trivial odd moments, Andrews, Chan and Kim [15] introduced the
modified rank and crank moments N+

j (n) and M+
j (n) by considering the unilateral

sums:
N+
j (n) =

∑
m≥0

mjN(m,n)

and
M+

j (n) =
∑
m≥0

mjM(m,n).

They proved the following inequality.

Theorem 4.13 (Andrews, Chan and Kim). For n, k ≥ 1,

M+
k (n) > N+

k (n). (4.18)

Bringmann and Mahlburg [45] proved that the above inequality (4.18) holds for
any fixed positive integer k and sufficiently large n by deriving an asymptotic formula
for M+

k (n) − N+
k (n) stated in Theorem 5.2. When k is even, this inequality (4.18) is

equivalent to the inequality (4.6) of Garvan between the rank moments and the crank
moments. Chen, Ji and Zang [52] showed that the Andrews-Dyson-Rhoades conjecture
(2.13) implies the inequality (4.18).

Andrews, Chan and Kim [15] defined the ospt-function ospt(n) as given below:

Definition 4.14. For n ≥ 1,

ospt(n) = M+
1 (n)−N+

1 (n). (4.19)

They obtained the generating function of ospt(n).
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Theorem 4.15 (Andrews, Chan and Kim). We have

∞∑
n=0

ospt(n)qn =
1

(q; q)∞

∞∑
i=0

 ∞∑
j=0

q6i
2+8ij+2j2+7i+5j+2(1− q4i+2)(1− q4i+2j+3)

+
∞∑
j=0

q6i
2+8ij+2j2+5i+3j+1(1− q2i+1)(1− q4i+2j+2)

 . (4.20)

Andrews, Chan and Kim found a combinatorial interpretation of the right-hand
side of (4.20), which leads to a combinatorial interpretation of ospt(n). In doing so,
they defined even strings and odd strings of a partition.

Definition 4.16. Let λ be a partition. A maximal consecutive sequence (r, r− 1, . . . , s)
in λ is called an even string of λ if it satisfies the following restrictions:

(1) r ≥ 2s− 2;

(2) r and s are even.

Similarly, a consecutive sequence (r, r−1, . . . , s) in λ, not necessarily maximal, is called
an odd string of λ if it satisfies the following restrictions:

(1) r + 1 is not a part of λ;

(2) s is odd and it appears only once in λ;

(3) r ≥ 2s− 1.

For example, the partition λ = (5, 4, 4, 3, 2, 2) contains only one odd string (5, 4, 3),
and it does not contain any even string. For λ = (6, 4, 4, 3, 2), it contains an even string
(4, 3, 2), but it does not contain any odd string.

Andrews, Chan and Kim [15] found a combinatorial interpretation of ospt(n).

Theorem 4.17 (Andrews, Chan and Kim). For a partition λ, let
ST(λ) denote the total number of even strings and odd strings in λ. For n ≥ 1,

ospt(n) =
∑

λ∈P (n)

ST(λ).

In light of Theorem 4.17, Bringmann and Mahlburg [45] proved a monotone prop-
erty of ospt(n) by a combinatorial argument.

Theorem 4.18 (Bringmann and Mahlburg). For n ≥ 1,

ospt(n+ 1) ≥ ospt(n).
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They also noticed that ospt(n) and spt(n) have the same parity. This fact can be
justified as follows: Since

M+
1 (n) =

∑
m≥0

mM(m,n) ≡
∑
m≥0

m2M(m,n) = M+
2 (n) (mod 2)

and
N+

1 (n) =
∑
m≥0

mN(m,n) ≡
∑
m≥0

m2N(m,n) = N+
2 (n) (mod 2),

we see that

ospt(n) = M+
1 (n)−N+

1 (n) ≡M+
2 (n)−N+

2 (n) = spt(n) (mod 2).

With the aid of the characterization of the parity of spt(n), Bringmann and Mahlburg
[45] determined the parity of ospt(n).

Theorem 4.19 (Bringmann and Mahlburg). The ospt-function ospt(n) is odd if and
only if 24n − 1 = p4a+1m2 for some prime p ≡ 23 (mod 24) and some integers a,m,
where (p,m) = 1.

Chan and Mao [49] established an upper bound and a lower bound for ospt(n),
leading to an asymptotic estimate of ospt(n).

Theorem 4.20 (Chan and Mao). We have

ospt(n) >
p(n)

4
+
N(0, n)

2
− M(0, n)

4
for n ≥ 8, (4.21)

ospt(n) <
p(n)

4
+
N(0, n)

2
− M(0, n)

4
+
N(1, n)

2
for n ≥ 7, (4.22)

ospt(n) <
p(n)

2
for n ≥ 3. (4.23)

An asymptotic estimate of ospt(n) can be deduced from the bounds (4.21) and
(4.22), along with an asymptotic property of M(m,n) and N(m,n) due to Mao [106].

Theorem 4.21 (Mao). For any integer m, as n→∞

M(m,n) ∼ N(m,n) ∼ π

4
√

6n
p(n). (4.24)

By (4.24), we see that as n→∞,

p(n)

4
+
N(0, n)

2
− M(0, n)

4
∼ p(n)

4
+
N(0, n)

2
− M(0, n)

4
+
N(1, n)

2
∼ 1

4
p(n).

Combining (4.21) and (4.22), we arrive at the asymptotic estimate (5.2) due to Bring-
mann and Mahlburg [45] as given in Section 5.
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4.4 The first variation of Ahlgren, Bringmann and Lovejoy

We now turn to three variations of the spt-function based on the combinatorial defi-
nition. The first variation of the spt-function was given by Ahlgren, Bringmann and
Lovejoy [5]. They defined the M2spt-function as follows.

Definition 4.22. The function M2spt(n) is defined to be the total number of smallest
parts in all partitions of n without repeated odd parts and the smallest part is even.

For example, there are two partitions of 7 without repeated odd parts and the
smallest part is even, namely,

(5,2), (3,2,2).

So we have M2spt(7) = 3.

By [43, Section 7], Ahlgren, Bringmann and Lovejoy [5] derived the generating
function of M2spt(n).

Theorem 4.23 (Ahlgren, Bringmann and Lovejoy). We have

∞∑
n=1

M2spt(n)qn =
(−q; q2)∞
(q2; q2)∞

×

 ∞∑
n=1

nq2n

1− q2n
+

∞∑
n=−∞
n6=0

(−1)nq2n
2+n

(1− q2n)2

 . (4.25)

Jennings-Shaffer [88] showed that the function M2spt(n) can be expressed as the
difference between the symmetrized M2-rank moments and the symmetrized residue
crank moments of partitions without repeated odd parts. Let us first recall the defini-
tions of the M2-rank of a partition without repeated odd parts and the residue crank
of a partition without repeated odd parts.

Let λ be a partition without repeated odd parts, the M2-rank of λ was defined by
Berkovich and Garvan [33] as stated below:

M2-rank(λ) =

⌈
λ1
2

⌉
− l(λ). (4.26)

The residue crank of λ was defined by Garvan and Jennings-Shaffer [76] which is
related to the crank of an ordinary partition. Let λ = (λ1, λ2, . . . , λl) be a partition
without repeated odd parts, define λe to be the ordinary partition obtained from λ by
omitting odd parts of λ and dividing each even part by 2. The residue crank of λ is
defined to be the crank of λe.

For example, let λ = (11, 7, 6, 5, 4, 4, 3, 2, 2), then λ1 = 11, l(λ) = 9 and λe =
(3, 2, 2, 1, 1). Hence the M2-rank of λ is equal to −3 and the residue crank of λ is equal
to the crank of λe, which equals −1.
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Let N2(m,n) denote the number of partitions of n without repeated odd parts such
that M2-rank is equal to m. Let M2(m,n) denote the number of partitions of n without
repeated odd parts such that the residue crank is equal to m. The k-th symmetrized
M2-rank moments η2k(n) and the k-th symmetrized residue crank moments µ2k(n) of
partitions without repeated odd parts were defined by Jennings-Shaffer [88] as follows:

η2k(n) =
∞∑

m=−∞

(
m+

⌊
k−1
2

⌋
k

)
N2(m,n),

µ2k(n) =
∞∑

m=−∞

(
m+

⌊
k−1
2

⌋
k

)
M2(m,n).

Analogue to the relation (1.6) for spt(n), Jennings-Shaffer [88] established the fol-
lowing connection.

Theorem 4.24 (Jennings-Shaffer). For n ≥ 1,

M2spt(n) = µ22(n)− η22(n). (4.27)

The following congruences of M2spt(n) mod 3 and 5 were given by Garvan and
Jennings-Shaffer [76].

Theorem 4.25 (Garvan and Jennings-Shaffer). For n ≥ 0,

M2spt(3n+ 1) ≡ 0 (mod 3),

M2spt(5n+ 1) ≡ 0 (mod 5),

M2spt(5n+ 3) ≡ 0 (mod 5).

Jennings-Shaffer [89] provided alternative proofs of the above congruences. Fur-
thermore, he showed that

Theorem 4.26 (Jennings-Shaffer). For n ≥ 0,

M2spt(27n+ 26) ≡ 0 (mod 5),

M2spt(125n+ 97) ≡ 0 (mod 5),

M2spt(125n+ 122) ≡ 0 (mod 5).

Ahlgren, Bringmann and Lovejoy [5] established Ramanujan-type congruences of
M2spt(n) modulo powers of ` for any prime ` ≥ 3.

Theorem 4.27 (Ahlgren, Bringmann and Lovejoy). Let ` ≥ 3 be a prime, and let
m,n ≥ 1.
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(i) If
(−n
`

)
= 1, then

M2spt
(
(`2mn+ 1)/8

)
≡ 0 (mod `m).

(ii)

M2spt
(
(`2m+1n+ 1)/8

)
≡
(

2

`

)
M2spt

(
(`2m−1n+ 1)/8

)
(mod `m).

Hecke-type congruences of M2spt(n) mod 2, 22, 23, 3 and 5 have been found by
Andersen [7].

Theorem 4.28 (Andersen). Let ` ≥ 3 be a prime. Define s` = (`2 − 1)/8 and

β =


1, if ` ≡ 3 (mod 8),

2, if ` ≡ 5 (mod 8),

3, if ` ≡ 1, 7 (mod 8).

For t ∈ {2β, 3, 5}, ` 6= t and n ≥ 1,

M2spt(`2n− s`) +

(
2

`

)(
1− 8n

`

)
M2spt(n) + `M2spt

(
(n+ s`)/`

2
)

≡
(

2

`

)
(1 + `) M2spt(n) (mod t).

In analogy with the higher order spt-function sptk(n), Jennings-Shaffer [89] defined
the higher order function M2sptk(n) in terms of the k-th symmetrized M2-rank mo-
ments η2k(n) and the k-th symmetrized residue crank moments µ2k(n) for partitions
without repeated odd parts.

Definition 4.29. For k ≥ 1, define

M2sptk(n) = µ22k(n)− η22k(n).

Using (4.27), it is clear to see that M2sptk(n) reduces to M2spt(n) when k = 1.
Jennings-Shaffer [88] also obtained the generating function of M2sptk(n).

Theorem 4.30 (Jennings-Shaffer). We have

∞∑
n=1

M2sptk(n)qn

=
∑

nk≥nk−1≥···≥n1≥1

(−q2n1+1; q2)∞q
2n1+2n2+···+2nk

(1− q2nk)2(1− q2nk−1)2 · · · (1− q2n1)2(q2n1+2; q2)∞
. (4.28)
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By interpreting the right-hand side of (4.28) combinatorially, Jennings-Shaffer [88]
found a combinatorial interpretation of M2sptk(n). Let Po(n) denote the set of parti-
tions of n without repeated odd parts and the smallest part is even. For a partition
λ ∈ Po(n), assume that there are r different even parts in λ, namely,

2t1 < 2t2 < · · · < 2tr.

Let fj = fj(λ) denote the frequency of the part 2tj in λ. For a fixed integer k ≥ 1,
Jennings-Shaffer [88] defined ωk(λ) as follows:

ωk(λ) =
∑

m1+m2+···+ms=k
1≤s≤k

(
f1 +m1 − 1

2m1 − 1

)
×

∑
2≤j2<j3<···<js

s∏
i=2

(
fji +mi

2mi

)
. (4.29)

For example, let k = 2 and λ = (10, 10, 9, 5, 4, 3, 2, 2, 2) be a partition in Po(47),
there are three distinct even parts in λ. Thus r = 3, f1 = 3, f2 = 1 and f3 = 2. By
the definition (4.29) of ωk(λ), we have ω2(λ) = 16.

With the above notation, Jennings-Shaffer [88] found a combinatorial interpretation
of M2sptk(n).

Theorem 4.31 (Jennings-Shaffer). For n ≥ 1,

M2sptk(n) =
∑

λ∈Po(n)

ωk(λ). (4.30)

Jennings-Shaffer [89] also obtained the following congruences of
M2spt2(n).

Theorem 4.32 (Jennings-Shaffer). For n ≥ 1,

M2spt2(n) ≡ 0 (mod 3), if n ≡ 0 (mod 9),

M2spt2(n) ≡ 0 (mod 5), if n ≡ 0 (mod 5),

M2spt2(n) ≡ 0 (mod 5), if n ≡ 1 (mod 5),

M2spt2(n) ≡ 0 (mod 5), if n ≡ 3 (mod 5).

4.5 The second variation of Bringmann, Lovejoy and Osburn

The second variation of the spt-function was due to Bringmann, Lovejoy and Osburn
[42], which is defined on overpartitions. Recall that Corteel and Lovejoy [56] defined
an overpartition of n as a partition of n in which the first occurrence of a part may be
overlined. Bringmann, Lovejoy and Osburn [42] introduced three spt-type functions.

Definition 4.33 (Bringmann, Lovejoy and Osburn).
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(1) The function spt(n) is defined to be the total number of smallest parts in all
overpartitions of n.

(2) The function spt 1(n) is defined to be the total number of smallest parts in all
overpartitions of n with the smallest part being odd.

(3) The function spt 2(n) is defined to be the total number of smallest parts in all
overpartitions of n with the smallest part being even.

For example, there are 14 overpartitions of 4:

(4) (4̄) (3, 1) (3̄, 1) (3, 1̄) (3̄, 1̄) (2, 2),

(2̄, 2) (2, 1, 1) (2̄, 1, 1) (2, 1̄, 1) (2̄, 1̄, 1) (1, 1, 1, 1) (1̄, 1, 1, 1).

We have spt(4) = 26, spt 1(4) = 20 and spt 2(4) = 6.

Analogous to the relation (1.6) for the spt-function, the functions spt(n) and
spt 2(n) can also be expressed as the differences of the rank and the crank moments
of overpartitions. The definitions of the rank and the crank moments of overpartitions
are based on the two definitions of the rank of an overpartition and the two definitions
of the crank of an overpartition. Although there are four possibilities, only two of them
have been studied.

For an overpartition λ, there are two kinds of ranks. One is called the D-rank
introduced by Lovejoy [104] and the other is called the M2-rank introduced by Lovejoy
[105]. The D-rank of λ is defined as the largest part minus the number of parts. To
define the M2-rank, let λo denote the partition consisting of non-overlined odd parts
of λ. Then M2-rank(λ) can be defined as follows:

M2-rank(λ) =

⌈
λ1
2

⌉
− l(λ) + l(λo)− χ(λ),

where χ(λ) = 1 if the largest part of λ is odd and non-overlined and χ(λ) = 0 otherwise.

For example, for an overpartition λ = (9̄, 9, 7, 6̄, 5, 5, 4̄, 3, 2, 1̄), we see that D-rank(λ) =
9−10 = −1. Moreover, since λo = (9, 7, 5, 5, 3) and χ(λ) = 0, we have M2-rank(λ) = 0.

Bringmann, Lovejoy and Osburn [42] defined the first and second residue crank of
an overpartition. The first residue crank of an overpartition is defined as the crank of
the partition consisting of non-overlined parts. The second residue crank is defined as
the crank of the subpartition consisting of all the even non-overlined parts divided by
two.

For example, for λ = (9̄, 9, 7, 6̄, 5, 5, 4̄, 4, 3, 2, 1̄), the partition consisting of non-
overlined parts of λ is (9, 7, 5, 5, 4, 3, 2). The first residue crank of λ is 9. The partition
formed by even non-overlined parts of λ is (4, 2). So the second residue crank of λ is
equal to the crank of (2, 1), which is equal to 0.
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We are now in a position to present the definitions of the rank and the crank
moments of overpartitions. Let N(m,n) denote the number of overpartitions of n with
the D-rank m, and let N2(m,n) denote the number of overpartitions of n with the
M2-rank m. Notice that there are two kinds of ranks of overpartitions. Consequently,
there are two possibilities to define the rank moments of overpartitions. The two rank
moments are defined as follows:

Nk(n) =
∞∑

m=−∞

mkN(m,n), (4.31)

N2k(n) =
∞∑

m=−∞

mkN2(m,n). (4.32)

Similarly, let M(m,n) denote the number of overpartitions of n with the first residue
crank m and let M2(m,n) denote the number of overpartitions of n with the second
residue crank m. The two crank moments are defined by

Mk(n) =
∞∑

m=−∞

mkM(m,n), (4.33)

M2k(n) =
∞∑

m=−∞

mkM2(m,n). (4.34)

Bringmann, Lovejoy and Osburn [42] deduced the following relations on spt(n) and
spt 2(n).

Theorem 4.34 (Bringmann, Lovejoy and Osburn). For n ≥ 1,

spt(n) = M2(n)−N2(n), (4.35)

spt 2(n) = M22(n)−N22(n). (4.36)

In light of Theorem 4.34, Bringmann, Lovejoy and Osburn [42] proved the following
congruences:

Theorem 4.35 (Bringmann, Lovejoy and Osburn). For n ≥ 1,

spt 2(n) ≡ spt 2(n) ≡ 0 (mod 3), if n ≡ 0, 1 (mod 3), (4.37)

spt(n) ≡ 0 (mod 3), if n ≡ 0 (mod 3), (4.38)

spt 2(n) ≡ 0 (mod 5), if n ≡ 3 (mod 5), (4.39)

spt 1(n) ≡ 0 (mod 5), if n ≡ 0 (mod 5). (4.40)

Moreover, if ` ≥ 5 is a prime, then the following congruence holds:

spt 1(`2n) +

(
−n
`

)
spt 1(n) + `spt 1

(
n/`2

)
≡ (`+ 1)spt 1(n) (mod 3).
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An alternative proof of the congruence (4.37) was given by Jennings-Shaffer [87].
The combinatorial interpretations of the congruences (4.37)–(4.40) were given by Gar-
van and Jennings-Shaffer [76]. Ahlgren, Bringmann and Lovejoy [5] derived Ramanujan-
type congruences of spt 1(n) modulo powers of a prime `, which are similar to the
Ramanujan-type congruences of spt(n) modulo powers of a prime `.

Theorem 4.36 (Ahlgren, Bringmann and Lovejoy). Let ` ≥ 3 be a prime, and let
m,n ≥ 1.

(1) If (−n
`

) = 1, then
spt 1(`2mn) ≡ 0 (mod `m).

(2)
spt 1(`2m+1n) ≡ spt 1(`2m−1n) (mod `m).

Andersen [7] obtained Hecke-type congruences of spt 1(n) mod 26, 27, 28, 3 and 5.

Theorem 4.37 (Andersen). Let ` ≥ 3 be a prime, and define

β =


6, if ` ≡ 3 (mod 8),

7, if ` ≡ 5, 7 (mod 8),

8, if ` ≡ 1 (mod 8).

For t ∈ {2β, 3, 5}, ` 6= t and n ≥ 1,

spt 1(`2n) +

(
−n
`

)
spt 1(n) + `spt 1(n/`2) ≡ (1 + `)spt 1(n) (mod t).

It is readily seen that spt 1(n), spt 2(n) and spt(n) are all even. Congruences of
these functions modulo 4 were investigated by Garvan and Jennings-Shaffer [76].

Theorem 4.38 (Garvan and Jennings-Shaffer). For n ≥ 1,

(1) spt(n) ≡ 2 (mod 4) if and only if n is a square or twice a square;

(2) spt 1(n) ≡ 2 (mod 4) if and only if n is an odd square;

(3) spt 2(n) ≡ 2 (mod 4) if and only if n is an even square or twice a square.

Moreover, they introduced a statistic sptcrank defined on a marked overpartition,
which leads to combinatorial interpretations of the above congruences.

The following recurrence relation of spt 1(n) was given by Ahlgren and Andersen [2].
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Theorem 4.39 (Ahlgren and Andersen). Let

s(n) =
∑
d|n

min
(
d,
n

d

)
.

For n > 0, ∑
k

(−1)kspt 1(n− k2) = b(n),

where

b(n) =


2s(n), if n is odd,

−4s(n/4), if n ≡ 0 (mod 4),

0, if n ≡ 2 (mod 4).

In view of the symmetry properties N(−m,n) = N(m,n) and M(−m,n)
= M(m,n), we see that

N2k+1(n) = M2k+1(n) = 0.

Similarly, to avoid the trivial odd moments, Andrews, Chan, Kim and Osburn [16]

introduced the modified rank and crank moments N
+

k (n) and M
+

k (n) for overpartitions:

N
+

k (n) =
∑
m≥1

mkN(m,n) (4.41)

and
M

+

k (n) =
∑
m≥1

mkM(m,n). (4.42)

They defined the ospt-function ospt(n) for overpartitions which is in the spirit of
the ospt-function ospt(n) for ordinary partitions.

Definition 4.40. For n ≥ 1,

ospt(n) = M
+

1 (n)−N+

1 (n). (4.43)

Andrews, Chan, Kim and Osburn [16] defined even strings and odd strings of an
overpartition, and provided a combinatorial interpretation of ospt(n).

Jennings-Shaffer [88] defined the higher order spt-functions for overpartitions by
using the k-th symmetrized rank and crank moments for overpartitions. There are two
symmetrized rank moments for overpartitions:

ηk(n) =
n∑

m=−n

(
m+ bk−1

2
c

k

)
N(m,n) (4.44)
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and

η2k(n) =
n∑

m=−n

(
m+ bk−1

2
c

k

)
N2(m,n). (4.45)

There are also two symmetrized crank moments for overpartitions:

µk(n) =
n∑

m=−n

(
m+ bk−1

2
c

k

)
M(m,n) (4.46)

and

µ2k(n) =
n∑

m=−n

(
m+ bk−1

2
c

k

)
M2(m,n). (4.47)

The two higher order spt-functions for overpartitions are defined as follows.

Definition 4.41. For k ≥ 1,

sptk(n) = µ2k(n)− η2k(n), (4.48)

spt 2k(n) = µ22k(n)− η22k(n). (4.49)

Using Bailey pairs, Jennings-Shaffer [88] obtained the generating functions of sptk(n)
and spt 2k(n).

Theorem 4.42 (Jennings-Shaffer). For k ≥ 1,

∞∑
n=1

sptk(n)qn

=
∑

nk≥nk−1≥···≥n1≥1

qn1+n2+···+nk(−qn1+1; q)∞
(1− qnk)2(1− qnk−1)2 · · · (1− qn1)2(qn1+1; q)∞

, (4.50)

∞∑
n=1

spt 2k(n)qn

=
∑

nk≥nk−1≥···≥n1≥1

q2n1+2n2+···+2nk(−q2n1+1; q)∞
(1− q2nk)2(1− q2nk−1)2 · · · (1− q2n1)2(q2n1+1; q)∞

. (4.51)

By interpreting the right-hand sides of (4.50) and (4.51) based on vector partitions,
Jennings-Shaffer found combinatorial explanations of sptk(n) and spt 2k(n).
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4.6 The third variation of Andrews, Dixit and Yee

The third variation of the spt-function was introduced by Andrews, Dixit and Yee [18].
Let pω(n) denote the number of partitions of n in which each odd part is less than
twice the smallest part. They defined sptω(n) as follows.

Definition 4.43. The function sptω(n) is defined to be the number of smallest parts in
the partitions enumerated by pω(n).

For example, for n = 4, there are four partitions counted by pω(4), namely,

(4) (2, 2) (2, 1, 1) (1, 1, 1, 1).

We have pω(4) = 4 and sptω(4) = 9.

They derived the generating function of sptω(n).

Theorem 4.44 (Andrews, Dixit and Yee). We have

∞∑
n=1

sptω(n)qn

=
1

(q2; q2)∞

∞∑
n=1

nqn

1− qn
+

1

(q2; q2)∞

∞∑
n=1

(−1)n(1 + q2n)qn(3n+1)

(1− q2n)2
. (4.52)

Using the above generating function, Andrews, Dixit and Yee [18] proved the fol-
lowing congruences of sptω(n).

Theorem 4.45 (Andrews, Dixit and Yee). For n ≥ 0,

sptω(5n+ 3) ≡ 0 (mod 5), (4.53)

sptω(10n+ 7) ≡ 0 (mod 5), (4.54)

sptω(10n+ 9) ≡ 0 (mod 5). (4.55)

Employing the generating function (4.52), Wang [131] derived the generating func-
tion of sptω(2n+ 1).

Theorem 4.46 (Wang). We have

∞∑
n=0

sptω(2n+ 1)qn =
(q2; q2)8∞
(q; q)5∞

. (4.56)

Wang [131] also posed two conjectures on congruences of sptω(n) modulo arbitrary
powers of 5.
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Conjecture 4.47 (Wang). For k ≥ 1 and n ≥ 0,

sptω

(
2 · 52k−1n+

7 · 52k−1 + 1

12

)
≡ 0 (mod 52k−1).

Conjecture 4.48 (Wang). For k ≥ 1 and n ≥ 0,

sptω

(
2 · 52kn+

11 · 52k + 1

12

)
≡ 0 (mod 52k).

Jang and Kim [86] obtained a congruence of sptω(n) via the mock modularity of its
generating function.

Theorem 4.49 (Jang and Kim). Let ` ≥ 5 be a prime, and let j,m and n be positive
integers with

(
n
`

)
= −1. If m is sufficiently large, then there are infinitely many primes

Q ≡ −1 (mod 576`j) satisfying

sptω

(
Q3`mn+ 1

12

)
≡ 0 (mod `j). (4.57)

An overpartition analogue of the function sptω(n) was defined by Andrews, Dixit,
Schultz and Yee [17].

Definition 4.50. The function sptω(n) is defined to be the number of smallest parts in
the overpartitions of n in which the smallest part is always overlined and all odd parts
are less than twice the smallest part.

They obtained the generating function of sptω(n).

Theorem 4.51 (Andrews, Dixit, Schultz and Yee). We have

∞∑
n=1

sptω(n)qn =
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

nqn

(1− qn)
+ 2

(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)nq2n(n+1)

(1− q2n)2
. (4.58)

Based on the generating function (4.58), they derived the following congruences of
sptω(n) mod 3, 5 and 6.

Theorem 4.52 (Andrews, Dixit, Schultz and Yee). For n ≥ 0,

sptω(3n) ≡ 0 (mod 3),

sptω(3n+ 2) ≡ 0 (mod 3),

sptω(10n+ 6) ≡ 0 (mod 5),

sptω(6n+ 5) ≡ 0 (mod 6).

They also characterized the parity of sptω(n).
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Theorem 4.53 (Andrews, Dixit, Schultz and Yee). For n ≥ 1, sptω(n) is odd if and only
if n = k2 or 2k2 for some k ≥ 1.

Moreover, they found a congruence of sptω(n) modulo 4.

Theorem 4.54 (Andrews, Dixit, Schultz and Yee). For n ≥ 1,

sptω(7n) ≡ sptω(n/7) (mod 4),

where we adopt the convention that sptω(x) = 0 if x is not a positive integer.

By (4.52), Wang [131] obtained the generating function of sptω(2n+ 1).

Theorem 4.55 (Wang). We have

∞∑
n=0

sptω(2n+ 1)qn =
(q2; q2)9∞
(q; q)6∞

. (4.59)

In light of (4.59), Wang derived the following congruences of sptω(n).

Theorem 4.56 (Wang). For n ≥ 0,

sptω(8n+ 7) ≡ 0 (mod 4),

sptω(6n+ 5) ≡ 0 (mod 9),

sptω(18n+ r) ≡ 0 (mod 9), for r = 9 or 15,

sptω(22n+ r) ≡ 0 (mod 11), for r = 7, 11, 13, 17, 19, or 21,

sptω(162n+ r) ≡ 0 (mod 27), for r = 81 or 135.

There are other variations of the spt-function, and we just mention the main ideas
of these variations. Jennings-Shaffer [90–92] introduced several spt-type functions aris-
ing from Bailey pairs and derived several Ramanujan-type congruences. Garvan and
Jennings-Shaffer [78] discovered more spt-type functions and found some congruences
of these spt-type functions. Patkowski [113–115] also defined several spt-type functions
based on Bailey pairs. Furthermore, Patkowski obtained generating functions and con-
gruences of these functions. Sarma, Reddy, Gunakala and Comissiong [127] defined a
more general function, in the notation spti(n), as the total number of the i-th smallest
part in all partitions of n.

5 Asymptotic properties

In this section, we present asymptotic formulas for the spt-function and its variations.
By applying the circle method to the second symmetrized rank moment η2(n), Bring-
mann [39] obtained an asymptotic expression of the spt-function spt(n).
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Theorem 5.1 (Bringmann). As n→∞,

spt(n) ∼
√

6

π

√
np(n) ∼ 1

2
√

2π
√
n
eπ
√

2n
3 . (5.1)

The above formula also follows from an asymptotic estimate of the difference of
the positive rank moments and the positive crank moments, due to Bringmann and
Mahlburg [45].

Theorem 5.2 (Bringmann and Mahlburg). For r ≥ 1, as n→∞,

M+
r (n)−N+

r (n) ∼ δrn
r
2
− 3

2 eπ
√

2n
3 ,

where

δr = r! ζ(r − 2)
(
1− 23−r) 6

r−1
2

4
√

3πr−1
.

Using Hardy and Ramanujan’s asymptotic formula

p(n) ∼ 1

4
√

3n
eπ
√

2n
3 , as n→∞,

the r = 2 case of Theorem 5.2 implies Theorem 5.1, since

spt(n) = M+
2 (n)−N+

2 (n).

Bringmann and Mahlburg [45] pointed out that for r = 1, Theorem 5.2 leads to an
asymptotic formula for ospt(n), as defined in (4.19).

Theorem 5.3 (Bringmann and Mahlburg). As n→∞,

ospt(n) ∼ p(n)

4
∼ 1

16
√

3n
eπ
√

2n
3 . (5.2)

Eichhorn and Hirschhorn [66] provided an alternative proof of Theorem 5.1. In fact,
they showed that

spt(n)

p(n)
∼
√

6

π

√
n, as n→∞. (5.3)

Let λ be a partition of n, define ns(λ) to be the number of smallest parts of λ. It is
clear that the left-hand side of (5.3) can be viewed as the mean of the statistic ns(λ)
over all partitions of n. Eichhorn and Hirschhorn [66] obtained formulas for the mean
and the standard deviation of ns(λ).

Theorem 5.4 (Eichhorn and Hirschhorn). As n→∞, the statistic ns(λ) is distributed
roughly as a negative exponential, with mean

µ =

√
6

π

√
n+

3

π2
+ O

(
1√
n

)
(5.4)
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and standard derivation

σ =

√
6

π

√
n− 1

4
+ O

(
1√
n

)
. (5.5)

An asymptotic formula with a power saving error term for spt(n) has been obtained
by Banks, Barquero-Sanchez, Masri, Sheng [31] based on an asymptotic formula for
p(n) due to Masri [107].

In analogy with the explicit formula for p(n) due to Rademacher [118–120], Ahlgren
and Andersen [3] obtained an exact expression for the spt-function.

Theorem 5.5 (Ahlgren and Andersen). For n ≥ 1,

spt(n) =
π

6
(24n− 1)

1
4

∞∑
c=1

Ac(n)

c
(I1/2 − I3/2)

(
π
√

24n− 1

6c

)
,

where Iν is the I-Bessel function, Ac(n) is the Kloosterman sum

Ac(n) =
∑

d mod c
(d,c)=1

eπis(d,c)−2iπ
dn
c ,

and s(d, c) is the Dedekind sum

s(d, c) =
c−1∑
r=1

r

c

(
dr

c
−
⌊
dr

c

⌋
− 1

2

)
.

Asymptotic properties of generalizations and variations of the spt-function have
also been well-studied. Recall that the higher order spt-function sptk(n) introduced by
Garvan is defined in (4.3). Its asymptotic property was first conjectured by Bringmann
and Mahlburg [44], and then confirmed by Bringmann, Mahlburg and Rhoades [46].

Theorem 5.6 (Bringmann, Mahlburg and Rhoades). As n→∞,

sptk(n) ∼ β2kn
k− 1

2p(n),

where β2k ∈
√
6
π
Q is positive.

The following asymptotic formula for Sptj(n), as defined in (4.12), is due to Rhoades
[123].

Theorem 5.7 (Rhoades). As n→∞,

Sptj(n) =
j

2π
√

2n
eπ
√

2n
3 (1 + oj(1)).
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Waldherr [130] obtained an asymptotic property of the j-rank moment jNk(n) de-
fined in (4.11).

Theorem 5.8 (Waldherr). For 1 ≤ j ≤ 12, as n→∞,

jN2k(n) ∼ 2
√

3(−1)kB2k

(
1

2

)
(24n)k−1eπ

√
2n
3 , (5.6)

where Br(·) is a Bernoulli polynomial. Furthermore,

j−1N2k(n)− jN2k(n) ∼
√

3
(2k)!

(2k − 2)!
(−1)k+1B2k−2(24n)k−

3
2 eπ
√

2n
3 . (5.7)

In particular, j−1N2k(n) > jN2k(n) for all sufficiently large n.

Kim, Kim and Seo [96] derived an asymptotic expression for ospt(n), as defined in
(4.43).

Theorem 5.9 (Kim, Kim and Seo). As n→∞,

ospt(n) ∼ 1

64n
eπ
√
n ∼ p̄(n)

8
, (5.8)

where p̄(n) denotes the number of overpartitions of n.

The above theorem is a consequence of an asymptotic formula for the difference of
the modified rank and crank moments for overpartitions due to Rolon [125].

Theorem 5.10 (Rolon). As n→∞,

M
+

r (n)−N+

r (n) ∼ δrn
r
2
− 3

2 eπ
√
n, (5.9)

where
δr = r! π−r+12r−5ζ(r − 2)

(
1− 23−r) .

Combining (4.43) and (5.9) with r = 1, we arrive at (5.8).

6 Conjectures on inequalities

In this section, we pose some conjectures on inequalities on the spt-function, which
are reminiscent of inequalities on p(n). We first state some results and conjectures on
p(n). Then we present corresponding conjectures on spt(n).

Recall that a sequence {an}n≥0 is called log-concave if for n ≥ 1,

a2n − an−1an+1 ≥ 0. (6.1)
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It was conjectured in [50] that the partition function p(n) is log-concave for n ≥ 26,
that is, (6.1) is true for p(n) when n ≥ 26. DeSalvo and Pak [58] confirmed this
conjecture by using the Hardy-Ramanujan-Rademacher formula for p(n) and Lehmer’s
error bound.

Theorem 6.1 (DeSalvo and Pak). For n ≥ 26,

p(n)2 > p(n− 1)p(n+ 1). (6.2)

They also proved the following inequalities conjectured in [50].

Theorem 6.2 (DeSalvo and Pak). For n ≥ 2,

p(n− 1)

p(n)

(
1 +

1

n

)
>

p(n)

p(n+ 1)
. (6.3)

Theorem 6.3 (DeSalvo and Pak). For n > m > 1,

p(n)2 ≥ p(n−m)p(n+m). (6.4)

DeSalvo and Pak further proved that the term (1 + 1/n) in (6.3) can be improved
to (1 +O(n−3/2)).

Theorem 6.4 (DeSalvo and Pak). For n ≥ 7,

p(n− 1)

p(n)

(
1 +

240

(24n)3/2

)
>

p(n)

p(n+ 1)
. (6.5)

DeSalvo and Pak [58] conjectured that the coefficient of 1/n3/2 in the inequality
(6.5) can be improved to π/

√
24, which was proved by Chen, Wang and Xie [55].

Theorem 6.5 (Chen, Wang and Xie). For n ≥ 45,

p(n− 1)

p(n)

(
1 +

π√
24n3/2

)
>

p(n)

p(n+ 1)
. (6.6)

Bessenrodt and Ono [37] obtained an inequality on p(n).

Theorem 6.6 (Bessenrodt and Ono). If a, b are integers with a, b > 1 and a + b > 8,
then

p(a)p(b) ≥ p(a+ b), (6.7)

where the equality can occur only if {a, b} = {2, 7}.

We now turn to conjectures on spt(n).

Conjecture 6.7. For n ≥ 36,

spt(n)2 > spt(n− 1) spt(n+ 1). (6.8)
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Conjecture 6.8. For n ≥ 13,

spt(n− 1)

spt(n)

(
1 +

1

n

)
>

spt(n)

spt(n+ 1)
. (6.9)

Like the case for p(n), the term (1 + 1/n) in Conjecture 6.8 can be sharpened to
(1 +O(n−3/2)).

Conjecture 6.9. For n ≥ 73,

spt(n− 1)

spt(n)

(
1 +

π√
24n3/2

)
>

spt(n)

spt(n+ 1)
. (6.10)

The following conjectures are analogous to (6.4) and (6.7).

Conjecture 6.10. For n > m > 1,

spt(n)2 > spt(n−m) spt(n+m). (6.11)

Conjecture 6.11. If a, b are integers with a, b > 1 and (a, b) 6= (2, 2) or (3, 3), then

spt(a) spt(b) > spt(a+ b). (6.12)

Beyond quadratic inequalities, we observe that many combinatorial sequences in-
cluding {p(n)}n≥1 and {spt(n)}n≥1 seem to satisfy higher order inequalities except for
a few terms at the beginning. Notice that I(a0, a1, a2) = a21 − a0a2 is an invariant of
the quadratic binary form

a2x
2 + 2a1xy + a0y

2.

For a sequence a0, a1, a2, . . . of indeterminates, let

In−1(a0, a1, a2) = I(an−1, an, an+1) = a2n − an−1an+1.

Then Conjecture 6.7 says that for an = spt(n), In−1(a0, a1, a2) > 0 holds when n ≥ 36.

This phenomenon occurs for other invariants as well. For the background on the
theory of invariants, see, for example, Hilbert [81], Kung and Rota [100] and Sturmfels
[128]. A binary form f(x, y) of degree n is a homogeneous polynomial of degree n in
two variables x and y:

f(x, y) =
n∑
i=0

(
n

i

)
aix

iyn−i,

where the coefficients ai are complex numbers.

Let

C =

(
c11 c12
c21 c22

)
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be an invertible complex matrix. Under the linear transformation

x = c11x+ c12y,

y = c21x+ c22y,

the binary form f(x, y) is transformed into another binary form

f(x, y) =
n∑
i=0

(
n

i

)
ai x

i yn−i,

where the coefficients ai are polynomials in ai and cij. Let g be a nonnegative integer.
A polynomial I(a0, a1, . . . , an) in the coefficients a0, a1, . . . , an is an invariant of index
g of the binary form f(x, y) if for any invertible matrix C,

I(a0, a1, . . . , an) = (c11c22 − c12c21)gI(a0, a1, . . . , an).

For example,

I(a0, a1, a2, a3) = 3a21a
2
2 − 4a31a3 − 4a0a

3
2 − a20a23 + 6a0a1a2a3 (6.13)

is an invariant of the cubic binary form

f(x, y) = a3x
3 + 3a2x

2y + 3a1xy
2 + a0y

3. (6.14)

Note that 27I(a0, a1, a2, a3) is called the discriminant of (6.14). The polynomial I(an−1, an, an+1, an+2)
is related to the higher order Turán inequality. Recall that a sequence {an}n≥0 satisfies
the higher order Turán inequality if for n ≥ 1,

4(a2n − an−1an+1)(a
2
n+1 − anan+2)− (anan+1 − an−1an+2)

2 > 0, (6.15)

and we say that {an}n≥0 satisfies the Turán inequality if it is log-concave.

A simple calculation shows that for n = 1, the polynomial in (6.15) reduces to the
invariant I(a0, a1, a2, a3) in (6.13), namely,

3a21a
2
2 − 4a31a3 − 4a0a

3
2 − a20a23 + 6a0a1a2a3

= 4(a21 − a0a2)(a22 − a1a3)− (a1a2 − a0a3)2.

Csordas, Norfolk and Varga [57] proved that the coefficients of the Riemann ξ-
function satisfy the Turán inequality. This settles a conjecture of Pólya. Dimitrov
[60] showed under the Riemann hypothesis, the coefficients of the Riemann ξ-function
satisfy the higher order Turán inequality. Dimitrov and Lucas [61] proved this assertion
without the Riemann hypothesis.

Numerical evidence indicates that both p(n) and spt(n) satisfy the high order Turán
inequality.
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Conjecture 6.12. For n ≥ 95, p(n) satisfies the higher order Turán inequality (6.15),
whereas spt(n) satisfies (6.15) for n ≥ 108.

We next consider the invariant of the quartic binary form

f(x, y) = a4x
4 + 4a3x

3y + 6a2x
2y2 + 4a1xy

3 + a0y
4. (6.16)

It appears that for large n, both p(n) and spt(n) satisfy the inequalities derived from
the following invariants of (6.16):

A(a0, a1, a2, a3, a4) = a0a4 − 4a1a3 + 3a22,

B(a0, a1, a2, a3, a4) = −a0a2a4 + a32 + a0a
2
3 + a21a4 − 2a1a2a3,

I(a0, a1, a2, a3, a4) = A(a0, a1, a2, a3, a4)
3 − 27B(a0, a1, a2, a3, a4)

2.

Notice that 256I(a0, a1, a2, a3, a4) is the discriminant of f(x, y) in (6.16). To be more
specific, we have the following conjectures: Setting an = p(n),

A(an−1, an, an+1, an+2, an+3) > 0, for n ≥ 185, (6.17)

B(an−1, an, an+1, an+2, an+3) > 0, for n ≥ 221, (6.18)

I(an−1, an, an+1, an+2, an+3) > 0, for n ≥ 207. (6.19)

Setting an = spt(n),

A(an−1, an, an+1, an+2, an+3) > 0, for n ≥ 205, (6.20)

B(an−1, an, an+1, an+2, an+3) > 0, for n ≥ 241, (6.21)

I(an−1, an, an+1, an+2, an+3) > 0, for n ≥ 227. (6.22)

In general, it would be interesting to further study higher order inequalities on p(n)
and spt(n) based on polynomials arising in the invariant theory of binary forms.

After the submission of an early version for the proceedings of the 26th British
Combinatorial Conference (Surveys in Combinatorics 2017, A. Claesson, M. Dukes,
S. Kitaev, D. Manlove and K. Meeks, Eds., Cambridge University Press, Cambridge,
2017), we observed that the above conjectured inequalities on p(n) and spt(n) seem to
permit companion inequalities analogous to (6.6) and (6.10).

Conjecture 6.13. Let

un =
p(n+ 1)p(n− 1)

p(n)2
. (6.23)

For n ≥ 2, (
1 +

π√
24n3/2

)
(1− unun+1)

2 > 4 (1− un) (1− un+1) . (6.24)
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Conjecture 6.14. Let

vn =
spt(n+ 1) spt(n− 1)

spt(n)2
. (6.25)

For n ≥ 2, (
1 +

π√
24n3/2

)
(1− vnvn+1)

2 > 4 (1− vn) (1− vn+1) . (6.26)

As for the inequalities (6.17), (6.18), (6.20) and (6.21) for p(n) and spt(n) based
on the invariants A(a0, a1, a2, a3, a4) and B(a0, a1, a2, a3, a4) of the quartic binary form
(6.16), it appears that there exist similar companion inequalities.

Conjecture 6.15. We have

4
(

1 +
π2

16n3

)
anan+2 > an−1an+3 + 3a2n+1 (6.27)

for an = p(n) when n > 217 and for an = spt(n) when n > 259.

Conjecture 6.16. We have(
1 +

π3

72
√

6n9/2

)
(2anan+1an+2 + an−1an+1an+3)

> a3n+1 + an−1a
2
n+2 + a2nan+3 (6.28)

for an = p(n) when n > 243 and for an = spt(n) when n > 289.
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[101] K. Kursungöz, Counting k-marked Durfee symbols, Electron. J. Combin. 18 (1) (2011)
#P41.

[102] R.P. Lewis, On the ranks of partitions modulo 9, Bull. London Math. Soc. 23 (5) (1991)
417–421.

[103] R.P. Lewis, The ranks of partitions modulo 2, Discrete Math. 167/168 (1997) 445–449.

[104] J. Lovejoy, Rank and conjugation for the Frobenius representation of an overpartition,
Ann. Combin. 9 (3) (2005) 321–334.

[105] J. Lovejoy, Rank and conjugation for a second Frobenius representation of an overpar-
tition, Ann. Combin. 12 (1) (2008) 101–113.

[106] R. Mao, Asymptotic inequalities for k-ranks and their cumulation functions, J. Math.
Anal. Appl. 409 (2) (2014) 729–741.

[107] R. Masri, Fourier coefficients of harmonic weak Maass forms and the partition function,
Amer. J. Math. 137 (4) (2015) 1061–1097.

57



[108] J.N. O’Brien, Some properties of partitions, with special reference to primes other than
5, 7 and 11, Ph. D. thesis, Durham University, 1965.

[109] K. Ono, Parity of the partition function in arithmetic progressions, J. Reine Angew.
Math. 472 (1996) 1–15.

[110] K. Ono, Distribution of the partition function modulo m, Ann. of Math. (2) 151 (1)
(2000) 293–307.

[111] K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and
q-Series, CBMS Regional Conference Series in Mathematics, 102, American Mathemat-
ical Society, Providence, RI, 2004.

[112] K. Ono, Congruences for the Andrews spt function, Proc. Natl. Acad. Sci. USA 108
(2) (2011) 473–476.

[113] A.E. Patkowski, A strange partition theorem related to the second Atkin–Garvan mo-
ment, Int. J. Number Theory 11 (7) (2015) 2191–2197.

[114] A.E. Patkowski, Another smallest part function related to Andrews’ spt function, Acta
Arith. 168 (2) (2015) 101–105.

[115] A.E. Patkowski, An interesting q-series related to the 4-th symmetrized rank function,
arXiv:1310.5282.

[116] P. Paule and C.-S. Radu, A new witness identity for 11|p(11n+ 6), Preprint, 2017.

[117] P. Paule and C.-S. Radu, A unified algorithmic framework for Ramanujan’s congruences
modulo powers of 5, 7, and 11, Preprint, 2017.

[118] H. Rademacher, On the partition function p(n), Proc. London Math. Soc. S2-43 (4)
241.

[119] H. Rademacher, Fourier expansions of modular forms and problems of partition, Bull.
Amer. Math. Soc. 46 (1940) 59–73.

[120] H. Rademacher, On the expansion of the partition function in a series, Ann. of Math.
(2) 44 (1943) 416–422.

[121] C.-S. Radu, A proof of Subbarao’s conjecture, J. Reine Angew. Math. 672 (2012) 161–
175.

[122] S. Ramanujan, Some properties of p(n), the number of partitions of n, Proc. Cambridge
Philos. Soc. 19 (1919) 207–210.

[123] R.C. Rhoades, Soft asymptotics for generalized spt-functions, J. Combin. Theory Ser.
A 120 (3) (2013) 637–643.

[124] R.C. Rhoades, On Ramanujan’s definition of mock theta function, Proc. Natl. Acad.
Sci. USA 110 (19) (2013) 7592–7594.

[125] J.M.Z. Rolon, Asymptotics of higher order ospt-functions for overpartitions, Ann. Com-
bin. 20 (1) (2016) 177–191.

[126] N. Santa-Gadea, On some relations for the rank moduli 9 and 12, J. Number Theory
40 (2) (1992) 130–145.

[127] I.R. Sarma, K.H. Reddy, S.R. Gunakala and D.M.G. Comissiong, Relation between the
smallest and the greatest parts of the partitions of n, J. Math. Research 3 (4) (2011)
133–140.

58



[128] B. Sturmfels, Algorithms in Invariant Theory, Texts and Monographs in Symbolic Com-
putation, Springer-Verlag, Vienna, 1993.

[129] M.V. Subbarao, Some remarks on the partition function, Amer. Math. Monthly 73
(1966) 851–854.

[130] M. Waldherr, Asymptotic for moments of higher ranks, Int. J. Number Theory 9 (3)
(2013) 675–712.

[131] L. Wang, New congruences for partitions related to mock theta functions, J. Number
Theory 175 (2017) 51–65.

[132] G.N. Watson, Ramanujans Vermutung über Zerfällungszahlen, J. Reine Angew. Math.
179 (1938) 97–128.

[133] L. Winquist, An elementary proof of p(11m + 6) ≡ 0 mod 11, J. Combin. Theory 6
(1969) 56–59.

59


	Introduction
	The spt-crank
	The spt-crank of an S-partition
	The spt-crank of a doubly marked partition
	The unimodality of the spt-crank

	More congruences
	Generalizations and variations
	The higher order spt-function of Garvan
	Generalized higher order spt-functions of Dixit and Yee
	The ospt-function of Andrews, Chan and Kim
	The first variation of Ahlgren, Bringmann and Lovejoy
	The second variation of Bringmann, Lovejoy and Osburn
	The third variation of Andrews, Dixit and Yee

	Asymptotic properties
	Conjectures on inequalities

