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Abstract.
The Turán inequalities and the higher order Turán inequalities arise in the s-

tudy of Maclaurin coefficients of the real entire functions in the Laguerre-Pólya
class. A sequence {an}n≥0 of real numbers is said to satisfy the Turán inequali-
ties or to be log-concave, if for n ≥ 1, a2

n−an−1an+1 ≥ 0. It is said to satisfy the
higher order Turán inequalities if for n ≥ 1, 4(a2

n− an−1an+1)(a2
n+1− anan+2)−

(anan+1 − an−1an+2)
2 ≥ 0. For the partition function p(n), DeSalvo and Pak

showed that for n > 25, the sequence {p(n)}n>25 is log-concave, that is, p(n)2−
p(n− 1)p(n+ 1) > 0 for n > 25. It was conjectured by the first named author
that p(n) satisfies the higher order Turán inequalities for n≥ 95. In this paper, we
prove this conjecture by using the Hardy-Ramanujan-Rademacher formula to de-
rive an upper bound and a lower bound for p(n+1)p(n−1)/p(n)2. Consequently,
for n≥ 95, the Jensen polynomials p(n−1)+3p(n)x+3p(n+1)x2 + p(n+2)x3

have only distinct real zeros. We conjecture that for any positive integer m ≥ 4
there exists an integer N(m) such that for n≥ N(m), the Jensen polynomial asso-
ciated with the sequence (p(n), p(n+1), · · · , p(n+m)) has only real zeros. This
conjecture was independently posed by Ono.
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1 Introduction

The objective of this paper is to prove the higher order Turán inequalities for the
partition function p(n) when n≥ 95, as conjectured in [6]. The Turán inequalities
and the higher order Turán inequalities are related to the Laguerre-Pólya class of
real entire functions [14, 44]. In this paper, a sequence {an}n≥0 always means a
sequence of real numbers, and it is said to satisfy the Turán inequalities or to be
log-concave, if

a2
n−an−1an+1 ≥ 0, (1.1)

for n≥ 1. The inequalities (1.1) are also called the Newton inequalities [8, 11, 35,
46]. We say that a sequence {an}n≥0 satisfies the higher order Turán inequalities
or cubic Newton inequalities if for n≥ 1,

4(a2
n−an−1an+1)(a2

n+1−anan+2)− (anan+1−an−1an+2)
2 ≥ 0, (1.2)

see [14, 35, 41]. It is worth mentioning the double Turán inequalities and the
higher order iterated Turán inequalities introduced by Csordas [10], see also [24].
Given a sequence {an}n≥0, for n≥ 1, let

T1(n) = a2
n−an−1an+1,

and for k ≥ 2 and n≥ k, let

Tk(n) = Tk−1(n)2−Tk−1(n−1)Tk−1(n+1).

A sequence {an}n≥0 is said to satisfy the double Turán inequalities if T1(n)≥ 0 for
n≥ 1 and T2(n)≥ 0 for n≥ 2. In general, {an}n≥0 is said to satisfy the l-th order
iterated Turán inequalities if for 1≤ k≤ l and n≥ k, we have Tk(n)≥ 0. It should
be noted that the above notion of higher order iterated Turán inequalities coincides
with the notion of the higher order log-concavity introduced by Moll [34], see also
[3, 4]. In the terminology of Moll, a sequence {an}n≥0 satisfying the l-th order
iterated Turán inequalities is called l-log-concave. A sequence {an}n≥0 is said to
be infinitely log-concave if it is l-log-concave for any l ≥ 1.

It was conjectured by Boros and Moll [3] that for each n ≥ 0, the sequence
of binomial coefficients {

(n
k

)
}n

k=0 is infinitely log-concave. A stronger conjecture
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was proposed independently by Stanley (see [4]), Fisk [17] and McNamara and
Sagan [32], which states that if a0 + a1x+ · · ·+ anxn is a real-rooted polynomial
with nonnegative coefficients, then so is the polynomial b0 + b1x + · · ·+ bnxn,
where b0 = a0, bk = a2

k−ak+1ak−1 for 1≤ k≤ n−1, and bn = an. This conjecture
has been proved by Brändén [4].

A real entire function

ψ(x) =
∞

∑
k=0

γk
xk

k!
(1.3)

is said to be in the Laguerre-Pólya class, denoted ψ(x) ∈L P , if it can be repre-
sented in the form

ψ(x) = cxme−αx2+βx
∞

∏
k=1

(
1+

x
xk

)
e−

x
xk ,

where c, β , xk are real numbers, α ≥ 0, m is a nonnegative integer and ∑x−2
k < ∞.

These functions are the only ones which are uniform limits of polynomials whose
zeros are real. We refer to [29] and [42] for the background on the theory of the
L P class.

Jensen [22] proved that a real entire function ψ(x) belongs to the L P class
if and only if for any positive integer m, the m-th associated Jensen polynomial

gm(x) =
m

∑
k=0

(
m
k

)
γkxk (1.4)

has only real zeros. More properties of the Jensen polynomials can be found in
[8, 11, 12].

Pólya and Schur [39] also obtained the above result based on multiplier se-
quences of the second kind. A real sequence {γk}k≥0 is called a multiplier se-
quence of the second kind if for any nonnegative integer m and every real polyno-
mial ∑

m
k=0 akxk with only real zeros of the same sign, the polynomial ∑

m
k=0 akγkxk

has only real zeros. Pólya and Schur [39] proved that each multiplier sequence
of the second kind satisfies the Turán inequalities. Moreover, they showed that
a real entire function ψ(x) belongs to the L P class if and only if its Maclaurin
coefficient sequence is a multiplier sequence of the second kind. This implies that
the Maclaurin coefficients of ψ(x) in the L P class satisfy the Turán inequalities

γ
2
k − γk−1γk+1 ≥ 0 (1.5)

for k ≥ 1. In fact, (1.5) is a consequence of another property of the L P class
due to Pólya and Schur [39]: Let ψ(x) be a real entire function in the L P class.
For any nonnegative integer n, the n-th derivative ψ(n)(x)of ψ(x) also belongs to
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the L P class. It is readily seen that the m-th Jensen polynomial associated with
ψ(n)(x) is

gm,n(x) =
m

∑
k=0

(
m
k

)
γk+nxk, (1.6)

and hence it has only real zeros for any nonnegative integers m and n. In particular,
taking m = 2, for any nonnegative integer n, the real-rootedness of g2,n(x) implies
the inequality (1.5), that is, the discriminant 4(γ2

n+1− γnγn+2) is nonnegative.

Dimitrov [14] observed that for a real entire function ψ(x) in the L P class,
the Maclaurin coefficients satisfy the higher order Turán inequalities

4(γ2
k − γk−1γk+1)(γ

2
k+1− γkγk+2)− (γkγk+1− γk−1γk+2)

2 ≥ 0 (1.7)

for k ≥ 1. This fact follows from a theorem of Mařı́k [31] stating that if a real
polynomial

m

∑
k=0

(
m
k

)
akxk (1.8)

of degree m ≥ 3 has only real zeros, then a0,a1, . . . ,am satisfy the higher order
Turán inequalities.

As noted in [6], for k = 1, the polynomial in (1.7) coincides with an invariant

I(a0,a1,a2,a3) = 3a2
1a2

2−4a3
1a3−4a0a3

2−a2
0a2

3 +6a0a1a2a3

of the cubic binary form

a3x3 +3a2x2y+3a1xy2 +a0y3. (1.9)

In other words, the above invariant I(a0,a1,a2,a3) can be rewritten as

I(a0,a1,a2,a3) = 4(a2
1−a0a2)(a2

2−a1a3)− (a1a2−a0a3)
2. (1.10)

We refer to Hilbert [20], Kung and Rota [25] and Sturmfels [43] for the back-
ground on the invariant theory of binary forms. Notice that 27I(a0,a1,a2,a3) is
the discriminant of the cubic polynomial a3x3+3a2x2+3a1x+a0 [33]. For a real
cubic polynomial, the discriminant is positive if and only if the three zeros are
real and distinct. In general, for a real polynomial of degree greater than or equal
to four, the discriminant is positive if and only if the number of non-real roots
is multiple of four. More properties about discriminant can be found in [21] and
[33].

Recall that for a real entire function ψ(x) in the L P class, its n-th deriva-
tive ψ(n)(x) is also a real entire function in the L P class. Thus the real-
rootedness of the cubic Jensen polynomial g3,n(x) associated with ψ(n)(x) implies
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the higher order Turán inequalities (1.7) of Dimitrov, that is, the discriminant
27I(γn,γn+1,γn+2,γn+3) is nonnegative.

Let f (x) be a real polynomial with degree m. If x1,x2, . . . ,xm are the roots of
f (x), let Sk = ∑

m
i=1 xk

i denote the k-th Newton sums of f (x) for k ≥ 1 and S0 = m.
Explicit expressions for these power sums via the coefficients of f (x) are given
by the Waring formulas [30]. The Hermite matrix of f (x) is a symmetric m×m
matrix, defined as

Hm( f (x)) = (Si+ j−2)i, j=1,2,···,m.

It is a Hankel matrix whose entries are polynomials in the coefficients of f (x). We
write Dk( f (x)) for the leading principal minor of Hm( f (x)) of order k. A theorem
of Hermite [37] says that all the zeros of f (x) are real if and only if all the leading
principal minors of Hm( f (x)) are nonnegative. By this theorem, one can state
that much more (higher Turán) inequalities would need to be true in order for
higher degree Jensen polynomials to have only real zeros. Considering m = 4, for
example, the Jensen polynomials g4,k(x), that is, for k ≥ 0,

g4,k(x) = γk +4γk+1x+6γk+2x2 +4γk+3x3 + γk+4x4.

It can be calculated that for k ≥ 0,

D1(g4,k(x)) = 4, D2(g4,k(x)) =
48
(
γ2

k+3− γk+2γk+4
)

γ2
k+4

,

D3(g4,k(x)) =
192A
γ4

k+4
, det(H4(g4,k(x))) =

256(B3−27C2)

γ6
k+4

,

where

A = 6γ
2
k+2γ

2
k+3 + γkγk+2γ

2
k+4 +14γk+1γk+2γk+3γk+4−9γk+4γ

3
k+2

−8γk+1γ
3
k+3−3γ

2
k+1γ

2
k+4− γkγk+4γ

2
k+3,

B = 3γ
2
k+2−4γk+1γk+3 + γkγk+4,

C = γ
3
k+2−2γk+1γk+2γk+3− γkγk+2γk+4 + γkγ

2
k+3 + γ

2
k+1γk+4.

Notice that B,C and B3− 27C2 are actually the invariants of the quartic binary
form with the same coefficients as g4,k(x) [16, 20] and 256(B3− 27C2) is the
discriminant of g4,k(x). By Hermite’s theorem, one of the necessary and sufficient
conditions for g4,k(x) to eventually have only real zeros is that all the leading
principal minors of H4(g4,k(x)) are nonnegative, that is, for k ≥ 0,

γ
2
k+3− γk+2γk+4 ≥ 0, A≥ 0, B3−27C2 ≥ 0. (1.11)

Real entire functions in the L P class with nonnegative Maclaurin coeffi-
cients also received much attention. Aissen, Schoenberg and Whitney [1] proved
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that if ψ(x) is a real entire function in the L P class with nonnegative Maclau-
rin coefficients, then the sequence {γk/k!} associated with ψ(x) forms a Pólya
frequency sequence. An infinite sequence {an}n≥0 of nonnegative numbers is
called a Pólya frequency sequence (or a PF-sequence) if the matrix (ai− j)i, j≥0 is
a totally positive matrix, where an = 0 if n < 0, that is, all minors of (ai− j)i, j≥0
have nonnegative determinants. More properties of totally positive matrices and
PF-sequences can be found in [9, 23].

The L P class is closely related to the Riemann hypothesis. Let ζ denote the
Riemann zeta-function and Γ be the gamma-function. The Riemann ξ -function is
defined by

ξ (iz) =
1
2

(
z2− 1

4

)
π
−z/2−1/4

Γ

(
z
2
+

1
4

)
ζ

(
z+

1
2

)
, (1.12)

see, for example, Boas [2]. It is well known that the Riemann ξ -function is an
entire function of order one and can be represented in the following form[38]:

1
8

ξ

(x
2

)
=

∞

∑
k=0

(−1)kb̂k
x2k

(2k)!
, k = 0,1,2, · · · (1.13)

where

b̂k =
∫

∞

0
t2t

Φ(t)dt and Φ(t) =
∞

∑
n=0

(2n4
π

2e9t−3n2
πe5t)exp(−n2

πe4t).

Setting z = −x2 in (1.13), we are led to an entire function of order 1/2, denoted
ξ1(z), that is,

ξ1(z) =
∞

∑
k=0

γ̂k
zk

k!
, (1.14)

where
γ̂k =

k!
(2k)!

b̂k, k = 0,1,2, · · · .

Thus, the Riemann hypothesis holds if and only if ξ1(z) belongs to the L P class.
We note that ξ1(z) has no positive zeros since γ̂k is positive for k ≥ 0. For a real
entire function ψ(x) as defined in (1.3), it is well known that ψ(x) belongs to L P
if and only if the Jensen polynomials gm,n(x) (1.6) have only real zeros [12, 37].
Let ĝm,n(x) denote the Jensen polynomials associated with ξ1(z), that is,

ĝm,n(x) =
m

∑
k=0

(
m
k

)
γ̂k+nxk, m,n = 0,1,2, · · · ,

then Riemann hypothesis is equivalent to the statement that ĝm,n(x) has only real
zeros for m≥ 1 and n≥ 0. For m = 2 and n≥ 0, ĝ2,n(x) has only real zeros if and
only if the discriminant of ĝ2,n(x) is nonnegative, that is, for k ≥ 1,

γ̂
2
k − γ̂k−1γ̂k+1 ≥ 0. (1.15)
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The above inequalities (1.15) were proved by Csordas, Norfolk and Varga [11].
This shows that for each n≥ 0, ĝ2,n(x) has only real zeros. For m = 3 and n≥ 0,
the real-rootness of ĝ3,n(x) can be deduced from the higher order Turán inequali-
ties (1.7), that is, for k ≥ 1,

4(γ̂2
k − γ̂k−1γ̂k+1)(γ̂

2
k+1− γ̂kγ̂k+2)− (γ̂kγ̂k+1− γ̂k−1γ̂k+2)

2 ≥ 0,

as proved by Dimitrov and Lucas [15]. Recently, Griffin, Ono, Rolen, and Zagier
[18] proved that for each m ≥ 1, ĝm,n(x) has only real zeros with at most finitely
many exceptions n.

Let us now turn to the partition function. A partition of a positive integer
n is a nonincreasing sequence (λ1,λ2, . . . ,λr) of positive integers such that λ1 +
λ2 + · · ·+ λr = n. Let p(n) denote the number of partitions of n. A sequence
{ak}k≥0 satisfying the Turán inequalities, that is, a2

k−ak−1ak+1 ≥ 0 for k ≥ 1, is
also called log-concave. DeSalvo and Pak [13] proved the log-concavity of the
partition function for n > 25 as well as the following inequality as conjectured in
[5]: For n≥ 2,

p(n−1)
p(n)

(
1+

1
n

)
>

p(n)
p(n+1)

. (1.16)

DaSalvo and Pak also conjectured that for n≥ 45,

p(n−1)
p(n)

(
1+

π√
24n3/2

)
>

p(n)
p(n+1)

. (1.17)

Chen, Wang and Xie [7] gave an affirmative answer to this conjecture.

It was conjectured in [6] that for large n, the partition function p(n) satisfies
many inequalities pertaining to invariants of a binary form. Here we mention two
of them.

Conjecture 1.1. For n≥ 95, the higher order Turán inequalities

4(a2
n−an−1an+1)(a2

n+1−anan+2)− (anan+1−an−1an+2)
2 ≥ 0 (1.18)

hold for an = p(n).

The following conjecture is a higher order analogue of (1.17).

Conjecture 1.2. Let

un =
p(n+1)p(n−1)

p(n)2 . (1.19)

For n≥ 2,

4(1−un)(1−un+1)<

(
1+

π√
24n3/2

)
(1−unun+1)

2 .
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The objective of this paper is to prove Conjecture 1.1. In fact, we shall prove
the following equivalent form.

Theorem 1.3. Let un be defined as in (1.19). For n≥ 95,

4(1−un)(1−un+1)− (1−unun+1)
2 > 0. (1.20)

The above theorem can be restated as follows.

Theorem 1.4. For any n≥ 95, the cubic polynomial

p(n−1)+3p(n)x+3p(n+1)x2 + p(n+2)x3

has three distinct real zeros.

In general, we propose the following conjecture.

Conjecture 1.5. For any positive integer m ≥ 4, there exists a positive integer
N(m) such that for any n≥ N(m), the Jensen polynomial

m

∑
k=0

(
m
k

)
p(k+n)xk

has only real zeros.

The above conjecture was independently proposed by Ono [36]. For fixed
degree m and large n, recently, Griffin, Ono, Rolen, and Zagier [18] proved that
this conjecture is true. In fact, they showed that for suitable entire functions and
certain sequences, the associated Jensen polynomials have only real and distinct
zeros with at most finite exceptions. To be more precisely, they defined the nor-
malized Jensen polynomials by changing the variable of Jensen polynomials and
proved that for large n, the normalized Jensen polynomials were small perturba-
tions of Hermite polynomials Hm(x). Since all the roots of Hm(x) are real and
distinct [45], the real parts of the roots of the normalized Jensen polynomials are
distinct for large n, which implies that all the roots are real and distinct. According
to the definition of normalized Jensen polynomials, it is easy to see that for large
n, all the roots of such Jensen polynomials are also real and distinct.

Assume that N(m) is the minimum value in Conjecture 1.5. Larson and
Wagner [26] showed that N(3) = 94, N(4) = 206, and N(5) = 381, and that
N(m)≤ (3m)24m(50m)3m2

. They also gave a proof of Conjecture 1.2.

2 Bounding un

In this section, we give an upper bound and a lower bound for

un =
p(n+1)p(n−1)

p(n)2 ,
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as defined in (1.19). DeSalvo and Pak [13] proved that for n > 25,

1− 1
n+1

< un < 1.

On the other hand, Chen, Wang and Xie [7] showed that for n≥ 45,

1− π√
24n3/2 +π

< un.

Nevertheless, the above bounds for un are not sharp enough for the purpose of
proving Theorem 1.3. To state our bounds for un, we adopt the following notation
as used in [28]:

µ(n) =
π

6

√
24n−1. (2.1)

For convenience, let

x = µ(n−1), y = µ(n), z = µ(n+1), w = µ(n+2). (2.2)

Define

f (n) = ex−2y+z

(
x10− x9−1

)
y24 (z10− z9−1

)
x12 (y10− y9 +1)2 z12

, (2.3)

g(n) = ex−2y+z

(
x10− x9 +1

)
y24 (z10− z9 +1

)
x12 (y10− y9−1)2 z12

. (2.4)

Then we have the following bounds for un.

Theorem 2.1. For n≥ 1207,

f (n)< un < g(n). (2.5)

In order to give a proof of Theorem 2.1, we need the following upper bound
and lower bound for p(n).

Lemma 2.2. Let

B1(n) =

√
12eµ(n)

24n−1

(
1− 1

µ(n)
− 1

µ(n)10

)
,

B2(n) =

√
12eµ(n)

24n−1

(
1− 1

µ(n)
+

1
µ(n)10

)
,

then for n≥ 1206,
B1(n)< p(n)< B2(n). (2.6)
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The proof of Lemma 2.2 relies on the Hardy-Ramanujan-Rademacher formu-
la [19, 40] for p(n) as well as Lehmer’s error bound for the remainder of this
formula. The Hardy-Ramanujan-Rademacher formula reads

p(n) =

√
12

24n−1

N

∑
k=1

Ak(n)√
k

[(
1− k

µ(n)

)
eµ(n)/k +

(
1+

k
µ(n)

)
e−µ(n)/k

]
+R2(n,N), (2.7)

where Ak(n) is an arithmetic function and R2(n,N) is the remainder term, see, for
example, Rademacher [40]. Lehmer [27, 28] gave the following error bound:

|R2(n,N)|< π2N−2/3
√

3

[(
N

µ(n)

)3

sinh
µ(n)

N
+

1
6
−
(

N
µ(n)

)2
]
, (2.8)

which is valid for all positive integers n and N.

Proof of Lemma 2.2. Consider the Hardy-Ramanujan-Rademacher formula (2.7)
for N = 2, and note that A1(n) = 1 and A2(n) = (−1)n for any positive integer n.
Hence (2.7) can be rewritten as

p(n) =

√
12eµ(n)

24n−1

(
1− 1

µ(n)
+T (n)

)
, (2.9)

where

T (n) =
(−1)n
√

2

((
1− 2

µ(n)

)
e−µ(n)/2 +

(
1+

2
µ(n)

)
e−3µ(n)/2

)
+

(
1+

1
µ(n)

)
e−2µ(n)+(24n−1)R2(n,2)/

√
12eµ(n). (2.10)

In order to prove (2.6), we proceed to use Lehmer’s error bound in (2.8) to show
that for n > 1520,

|T (n)|< 1
µ(n)10 . (2.11)

Let us begin with the first three terms in (2.10). Evidently, for n≥ 1,

0 <
1

µ(n)
<

1
2
,

so that (
1− 2

µ(n)

)
e−µ(n)/2 < e−µ(n)/2, (2.12)
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(
1+

2
µ(n)

)
e−3µ(n)/2 < 2e−3µ(n)/2, (2.13)

(
1+

1
µ(n)

)
e−2µ(n) < 2e−2µ(n). (2.14)

As for the last term in (2.10), we claim that for n > 350,∣∣∣∣(24n−1)R2(n,2)√
12eµ(n)

∣∣∣∣< e−µ(n)/2. (2.15)

Applying (2.8) with N = 2, we obtain that∣∣∣∣(24n−1)R2(n,2)√
12eµ(n)

∣∣∣∣= ∣∣∣∣36µ(n)2R2(n,2)√
12π2eµ(n)

∣∣∣∣
<

µ(n)2e−µ(n)

22/3 +
12 3
√

2e−µ(n)/2

µ(n)
− 12 3

√
2e−3µ(n)/2

µ(n)
−12 3
√

2e−µ(n)

<
µ(n)2e−µ(n)

22/3 +
12 3
√

2e−µ(n)/2

µ(n)

<
24e−µ(n)/2

µ(n)
+µ(n)2e−µ(n). (2.16)

To bound the first term in (2.16), we find that for n > 350,

24e−µ(n)/2

µ(n)
<

e−µ(n)/2

2
, (2.17)

which simplifies to

µ(n) =
π

6

√
24n−1 > 48, (2.18)

which is true for n > 350. Concerning the second term in (2.16), it will be shown
that for n > 22,

µ(n)2e−µ(n) <
e−µ(n)/2

2
, (2.19)

which can be rewritten as
eµ(n)/4

µ(n)/4
> 4
√

2. (2.20)

Let

F(t) =
et

t
. (2.21)
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Since F ′(t) = et(t−1)/t2 > 0 for t > 1, F(t) is increasing for t > 1. Thus,

F
(

µ(n)
4

)
=

eµ(n)/4

µ(n)/4
> F(3) =

e3

3
> 4
√

2.

Here we have used the fact that for n > 22, µ(n)/4 > 3. This proves (2.20).
Applying the estimates (2.17) and (2.19) to (2.16), we reach (2.15).

Taking all the above estimates into account, we deduce that for n > 350,

|T (n)|< 6e−µ(n)/2. (2.22)

To obtain (2.11), we have only to show that for n > 1520,

6e−µ(n)/2 <
1

µ(n)10 , (2.23)

which can be recast as
eµ(n)/20

µ(n)/20
> 20 10

√
6. (2.24)

Since µ(n)/20 > 5 for n > 1520, by the monotone property of F(t), we have that
for n > 1520,

F
(

µ(n)
20

)
=

eµ(n)/20

µ(n)/20
> F(5) =

e5

5
> 20 10

√
6,

as asserted by (2.24). Thus (2.11) follows from (2.22) and (2.23). In other words,
for n > 1520,

− 1
µ(n)10 < T (n)<

1
µ(n)10 . (2.25)

Substituting (2.9) into (2.25), we see that (2.6) holds for n > 1520. It is routine to
check that (2.6) is true for 1206≤ n≤ 1520, and hence the proof is complete.

We are now ready to prove Theorem 2.1 by Lemma 2.2.

Proof of Theorem 2.1. Since B1(n) and B2(n) are all positive for n≥ 1, using the
bounds for p(n) in (2.6), we find that for n≥ 1207,

B1(n−1)B1(n+1)
B2(n)2 <

p(n−1)p(n+1)
p(n)2 <

B2(n−1)B2(n+1)
B1(n)2 .

This proves (2.5).

3 An inequality on f (n) and g(n)

In this section, we establish an inequality between f (n) and g(n+ 1) which will
be used in the proof of Theorem 1.3.

12



Theorem 3.1. For n≥ 2,

g(n+1)< f (n)+
110

µ(n−1)5 . (3.1)

Proof. Let µ(n) be defined as in (2.1), that is,

µ(n) =
π
√

24n−1
6

,

and let

x = µ(n−1), y = µ(n), z = µ(n+1), w = µ(n+2),

as defined in (2.2).

Since x≥ 0 for n≥ 2, we proceed to show that for n≥ 2,

f (n)x5−g(n+1)x5 +110 > 0.

Let

α(t) = t10− t9 +1, β (t) = t10− t9−1. (3.2)

By the definitions of f (n) and g(n) as given in (2.3) and (2.4), we obtain that

f (n)x5−g(n+1)x5 +110 =
−ew+y−2zt1 + ez+x−2yt2 +110t3

t3
, (3.3)

where

t1 = x12z36
α(y)3

α(w), (3.4)

t2 = y36w12
β (x)β (z)3, (3.5)

t3 = x7y12z12w12
α(y)2

β (z)2. (3.6)

Since t3 > 0 for n≥ 2, (3.1) is equivalent to

− ew+y−2zt1 + ez+x−2yt2 +110t3 > 0, (3.7)

for n≥ 2. To verify (3.7), we shall estimate t1, t2, t3,ew+y−2z and ex−2y+z in terms
of x. Noting that for n≥ 2,

y =

√
x2 +

2π2

3
, z =

√
x2 +

4π2

3
, w =

√
x2 +2π2, (3.8)

13



we have

y = x+
π2

3x
− π4

18x3 +
π6

54x5 −
5π8

648x7 +
7π10

1944x9 −
7π12

3888x11 +o
(

1
x12

)
,

z = x+
2π2

3x
− 2π4

9x3 +
4π6

27x5 −
10π8

81x7 +
28π10

243x9 −
28π12

243x11 +o
(

1
x12

)
,

w = x+
π2

x
− π4

2x3 +
π6

2x5 −
5π8

8x7 +
7π10

8x9 −
21π12

16x11 +o
(

1
x12

)
.

It is readily checked that for x≥ 4,

y1 < y < y2, (3.9)

z1 < z < z2, (3.10)

w1 < w < w2, (3.11)

where

y1 = x+
π2

3x
− π4

18x3 +
π6

54x5 −
5π8

648x7 +
7π10

1944x9 −
7π12

3888x11 , (3.12)

y2 = x+
π2

3x
− π4

18x3 +
π6

54x5 −
5π8

648x7 +
7π10

1944x9 , (3.13)

z1 = x+
2π2

3x
− 2π4

9x3 +
4π6

27x5 −
10π8

81x7 +
28π10

243x9 −
28π12

243x11 , (3.14)

z2 = x+
2π2

3x
− 2π4

9x3 +
4π6

27x5 −
10π8

81x7 +
28π10

243x9 , (3.15)

w1 = x+
π2

x
− π4

2x3 +
π6

2x5 −
5π8

8x7 +
7π10

8x9 −
21π12

16x11 , (3.16)

w2 = x+
π2

x
− π4

2x3 +
π6

2x5 −
5π8

8x7 +
7π10

8x9 . (3.17)

With these bounds of y,z and w in (3.9), (3.10) and (3.11), we are now in a
position to estimate t1, t2, t3,ew+y−2z and ex−2y+z in terms of x.

First, we consider t1, t2, and t3. By the definition of α(t),

α(w) = w10−w9 +1.

Noting that w9 = (x2 +2π2)4
√

x2 +2π2, which involves a radical, to give a feasi-
ble estimate for w9 without a radical, we may make use of (3.11) to deduce that
for x≥ 4,

w1w8 < w9 < w2w8.

14



Let
η1 = w10−w1w8 +1,

so that for x≥ 4,
α(w)< η1. (3.18)

Similarly, set

η2 =y30−3y1y28 +3y28− y1y26 +3y20−6y1y18 +3y18 +3y10−3y1y8 +1,

η3 =z30−3z2z28 +3z28− z2z26−3z20 +6z1z18−3z18 +3z10−3z2z8−1,

η4 =y20−2y2y18 + y18 +2y10−2y2y8 +1,

η5 =z20−2z2z18 + z18−2z10 +2z1z8 +1.

Then we have for x≥ 4,

α(y)3 < η2, β (z)3 > η3, α(y)2 > η4, β (z)2 > η5. (3.19)

Employing the relations in (3.18) and (3.19), we deduce that for x≥ 4,

t1 = x12z36
α(y)3

α(w)< x12z36
η1η2, (3.20)

t2 = (x10− x9−1)y36w12
β (z)3 > (x10− x9−1)y36w12

η3, (3.21)

t3 = x7y12z12w12
α(y)2

β (z)2 > x7y12z12w12
η4η5. (3.22)

We continue to estimate ew+y−2z and ez+x−2y. Applying (3.9), (3.10) and
(3.11) to w+ y−2z, we see that for x≥ 4,

w+ y−2z < w2 + y2−2z1, (3.23)

which implies that
ew+y−2z < ew2+y2−2z1. (3.24)

In order to give a feasible upper bound for ew+y−2z, we define

Ω(t) = 1+ t +
t2

2
+

t3

6
+

t4

24
+

t5

120
+

t6

720
, (3.25)

and it can be proved that for t < 0,

et < Ω(t). (3.26)

Note that

w2 + y2−2z1 =−
π4(108x8−216π2x6 +375π4x4−630π6x2−224π8)

972x11 < 0
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holds for x≥ 5, since
108x8−216π

2x6 > 0

for x >
√

2π ≈ 4.443, and

375π
4x4−630π

6x2−224π
8 > 0

for x > π

5

√√
2443/3+21≈ 4.422. Thus, by (3.26), we obtain that for x≥ 5,

ew2+y2−2z1 < Ω(w2 + y2−2z1). (3.27)

Combining (3.24) and (3.27) yields that for x≥ 5,

ew+y−2z < Ω(w2 + y2−2z1). (3.28)

Similarly, applying (3.9), (3.10) and (3.11) to z+x−2y, we find that for x≥ 4,

z1 + x−2y2 < z+ x−2y, (3.29)

so that
ez+x−2y > ez1+x−2y2. (3.30)

Define

ω(t) = 1+ t +
t2

2
+

t3

6
+

t4

24
+

t5

120
+

t6

720
+

t7

5040
. (3.31)

It is true that for t < 0,
ω(t)< et . (3.32)

We now give a lower bound for ez1+x−2y2 . Since

z+ x−2y =

√
x2 +

4π2

3
+ x−2

√
x2 +

2π2

3

=
−
(√

x2 +4π2/3− x
)2

√
x2 +4π2/3+ x+2

√
x2 +2π2/3

,

which is negative for n≥ 2, by (3.29), we deduce that for x≥ 4,

z1 + x−2y2 < 0. (3.33)

Thus, applying (3.32) to (3.33) gives us that for x≥ 4,

ez1+x−2y2 > ω(z1 + x−2y2). (3.34)

Combining (3.30) and (3.34), we find that for x≥ 4,

ez+x−2y > ω(z1 + x−2y2). (3.35)
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Using the above bounds for t1, t2, t3,ew+z−2y and ez+x−2y, we obtain that for
x≥ 5,

− ew+y−2zt1 + ez+x−2yt2 +110t3

>−Ω(w2 + y2−2z1)x12z36
η1η2 +ω(z1 + x−2y2)(x10− x9−1)y36w12

η3

+110x7y12z12w12
η4η5. (3.36)

To verify (3.7), we show that for x≥ 358,

−Ω(w2 + y2−2z1)x12z36
η1η2 +ω(z1 + x−2y2)(x10− x9−1)y36w12

η3

+110x7y12z12w12
η4η5 > 0. (3.37)

Substituting y,z and w with
√

x2 +2π2/3,
√

x2 +4π2/3 and
√

x2 +2π2 respec-
tively, the left hand side of the inequality (3.37) can be expressed as H(x)/G(x),
where

H(x) =
171

∑
k=0

akxk

and

G(x) = 39686201656473354776757087428535162639482880x88.

Here we just list the values of a169,a170 and a171:

a169 = 734929660305062125495501619046947456286720

×
(

35640+261360π
2−194π

6−249π
8
)
,

a170 = 5879437282440497003964012952375579650293760
(

7π
6−2970

)
,

a171 = 4409577961830372752973009714281684737720320
(

990−π
6
)
,

which are all positive.

Given that G(x) is always positive, we aim to prove that H(x)> 0. Apparently,
x≥ 2 for n≥ 2 and hence

H(x)≥
170

∑
k=0
−|ak|xk +a171x171. (3.38)

Moreover, numerical evidence indicates that for any 0≤ k ≤ 168,

−|ak|xk >−a169x169 (3.39)
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holds for x≥ 181. It follows that for x≥ 181,

170

∑
k=0
−|ak|xk +a171x171 > (−170a169−a170x+a171x2)x169. (3.40)

Combining (3.38) and (3.40), we obtain that for x≥ 181,

H(x)> (−170a169−a170x+a171x2)x169. (3.41)

Thus, H(x) is positive provided

−170a169−a170x+a171x2 > 0, (3.42)

which is true if

x >

√
a2

170 +680a169a171 +a170

2a171
≈ 357.867.

Hence we conclude that H(x) is positive when x≥ 358. This proves (3.37).

Combining (3.36) and (3.37), we find that for x ≥ 358, or equivalently, for
n≥ 19480, (3.7) holds, that is,

− ew+y−2zt1 + ez+x−2yt2 +110t3 > 0. (3.43)

For 2≤ n≤ 19480, (3.43) can be directly verified. This completes the proof.

4 An inequality on un and f (n)

In this section, we present an inequality on un and f (n) that is also needed in the
proof of Theorem 1.3.

Theorem 4.1. Let un be defined as (1.19), that is,

un =
p(n+1)p(n−1)

p(n)2 .

For 0 < t < 1, let

Q(t) =
3t +2

√
(1− t)3−2
t2 . (4.1)

Then for n≥ 85,

f (n)+
110

µ(n−1)5 < Q(un). (4.2)
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The proof of this theorem is based on the following Lemma, which gives an
upper bound of f (n). Recall that

f (n) = ex−2y+z

(
x10− x9−1

)
y24 (z10− z9−1

)
x12 (y10− y9 +1)2 z12

,

where x,y,z,w are defined in (2.2).

Lemma 4.2. Let Ω(t) be defined as in (3.25), that is,

Ω(t) = 1+ t +
t2

2
+

t3

6
+

t4

24
+

t5

120
+

t6

720
,

and let y1,y2,z1 and z2 be defined as in (3.12), (3.13), (3.14), and (3.15). For
n≥ 4, we have

f (n)<
Ω(x−2y1 + z2)y24(x10− x9−1)

(
z10− z8z1−1

)
x12z12(y20−2y18y2 + y18 +2y10−2y8y2 +1)

< 1. (4.3)

Proof. To prove (4.3), we proceed to give estimates of the factors
(
y10− y9 +1

)2,
z10− z9− 1 and ex−2y+z that appear in f (n). The third inequality in (3.19) gives
an estimate of

(
y10− y9 +1

)2, that is, for x≥ 4,(
y10− y9 +1

)2
> y20−2y2y18 + y18 +2y10−2y2y8 +1. (4.4)

Using the bounds for y and z as given in (3.9) and (3.10), we are led to the follow-
ing estimates for z10− z9−1 and ex−2y+z when x≥ 4,

z10− z9−1 < z10− z8z1−1, (4.5)

ex−2y+z < ex−2y1+z2 . (4.6)

To give an upper bound for ex−2y1+z2 , write

x−2y1 + z2 =−
π4 (216x8−216π2x6 +210π4x4−210π6x2−7π8)

1944x11 . (4.7)

For x > π , we have
216x8−216π

2x6 > 0,

and for x > π

√
(
√

17/15+1)/2≈ 3.192, we have

210π
4x4−210π

6x2−7π
8 > 0.

Therefore, it follows from (4.7) that for x≥ 4,

x−2y1 + z2 < 0,
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which, together with (3.26), yields that for x≥ 4,

ex−2y1+z2 < Ω(x−2y1 + z2). (4.8)

Combining (4.6) and (4.8), we find that for x≥ 4,

ex−2y+z < Ω(x−2y1 + z2). (4.9)

By means of the estimates in (4.4), (4.5) and (4.9), we arrive at the first inequality
in (4.3).

To prove the second inequality in (4.3), recall the expressions of y and z in
(3.8), namely,

y =

√
x2 +

2π2

3
, z =

√
x2 +

4π2

3
.

It can be checked that

Ω(x−2y1 + z2)y24(x10− x9−1)
(
z10− z8z1−1

)
=

I(x)
x77 ,

and
x12z12(y20−2y18y2 + y18 +2y10−2y8y2 +1) = N(x),

where I(x) is a polynomial in x of degree 121 and N(x) is a polynomial in x of
degree 44. Thus we may assume that

Ω(x−2y1 + z2)y24(x10− x9−1)
(
z10− z8z1−1

)
x12z12(y20−2y18y2 + y18 +2y10−2y8y2 +1)

=
K(x)
J(x)

,

where K(x) and J(x) are both polynomials of degree 121. Write

K(x) =
121

∑
k=0

bkxk, J(x) =
121

∑
k=0

ckxk. (4.10)

Here are the values of bk and ck for 116≤ k ≤ 121:

b116 =−1398983398232765780459520π
4 (5181+41π

2) ,
b117 = 25181701168189784048271360π

2 (21+151π
2) ,

b118 =−4196950194698297341378560π
2 (258+π

2) ,
c116 =−7197769583907579940464230400π

4,

c117 = 75545103504569352144814080π
2 (7+50π

2) ,
c118 =−1082813150232160714075668480π

2,
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b119 = c119 = 12590850584094892024135680
(
3+44π

2) ,
b120 = c120 =−75545103504569352144814080,

b121 = c121 = 37772551752284676072407040.

We claim that for x≥ 135,
J(x)> 0, (4.11)

and
J(x)−K(x)> 0. (4.12)

It can be shown that for 0≤ k ≤ 118,

−|ck|xk >−c119x119, (4.13)

when

x > π

√
6(7+50π2)

3+44π2 ≈ 8.232.

It follows that for x≥ 9,

J(x)> (−120c119 + c120x+ c121x2)x119. (4.14)

Since
−120c119 + c120x+ c121x2 > 0 (4.15)

when
x > 1+

√
11(11+160π2)≈ 133.255,

we find that J(x)> 0 for x≥ 134.

Similarly, to prove (4.12), we observe that for 0≤ k ≤ 115,

−|ck−bk|xk >−(c116−b116)x116 (4.16)

when

x >
1
2

π

√
5616+3127π2

108+123π2 ≈ 8.232.

Let
θ(x) =−117(c116−b116)+(c117−b117)x+(c118−b118)x2.

Then (4.16) implies that for x≥ 9,

J(x)−K(x) =
118

∑
k=0

(ck−bk)x118 > θ(x)x116. (4.17)

Given that θ(x) is positive when x≥ 135, we arrive at (4.12).
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Combining (4.11) and (4.12), we deduce that the second inequality (4.3) is
valid for x ≥ 135, or equivalently, for n ≥ 2771. The case for 4 ≤ n ≤ 2771 can
be directly verified, and hence the proof is complete.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Recall that the theorem states that for n≥ 85,

f (n)+
110

µ(n−1)5 < Q(un). (4.18)

It can be checked that (4.18) is true for 85≤ n≤ 35456. We now show that (4.18)
is true for n≥ 35457. Recall that

Q(t) =
3t +2

√
(1− t)3−2
t2 ,

and so

Q′(t) =
t
(√

1− t−3
)
−4
√

1− t +4
t3 . (4.19)

Setting t = 1− τ , we get

Q′(t) =
1(√

τ +1
)3 ,

thus (4.19) can be rewritten as

Q′(t) =
1(√

1− t +1
)3 . (4.20)

As Q′(t) is positive for 0 < t < 1, Q(t) is increasing for 0 < t < 1. By Theorem
2.1, we know that f (n)< un for n≥ 1207, so that for n≥ 1207,

Q( f (n))< Q(un). (4.21)

Thus (4.18) is justified if we can prove that for n≥ 35457,

f (n)+
110

µ(n−1)5 < Q( f (n)). (4.22)

Let

ϑ(t) = Q(t)− t =
3t +2

√
(1− t)3− t3−2

t2 . (4.23)

In this notation, (4.22) says that for n≥ 35457,

ϑ( f (n))>
110

µ(n−1)5 . (4.24)
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To prove the above inequality, we shall use the polynomials J(x) and K(x) as
given by (4.10). More specifically,

K(x) =
121

∑
k=0

bkxk, J(x) =
121

∑
k=0

ckxk.

Note that

ϑ
′(t) =−t3 +4(1− t)3/2 +3t +3t

√
1− t−4

t3 . (4.25)

Setting t = 1− τ , (4.25) becomes

ϑ
′(t) =−

√
τ
(
τ +3

√
τ +3

)(√
τ +1

)3 ,

leading to the expression

ϑ
′(t) =−

√
1− t

(
3
√

1− t +4− t
)(√

1− t +1
)3 ,

which is negative for 0 < t < 1. Thus, ϑ(t) is decreasing for 0 < t < 1.

It can be seen from Lemma 4.2 that 0 < f (n) < K(x)/J(x) < 1 for n ≥ 4, so
that for n≥ 35457,

ϑ( f (n))> ϑ

(
K(x)
J(x)

)
. (4.26)

Because of (4.26), to verify (4.24), it is sufficient to show that for n≥ 35457,

ϑ

(
K(x)
J(x)

)
>

110
x5 . (4.27)

This goal can be achieved by finding an estimate for ϑ (K(x)/J(x)). We first
derive the following range of K(x)/J(x) for x≥ 134,

√
5−1
2

<
K(x)
J(x)

< 1. (4.28)

By Lemma (4.2), we know that K(x)/J(x)< 1 for x≥ 4 and J(x)> 0 for x≥ 134.
To justify (4.28), we only need to show that for x≥ 134,

2K(x)− (
√

5−1)J(x)> 0. (4.29)

Note that
b119 = c119, b120 = c120, b121 = c121,

and it can be shown that for 0≤ k ≤ 118,

−|2bk− (
√

5−1)ck|xk >−(3−
√

5)c119x119 (4.30)
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when

x > π

√√√√π2
(√

5+303
)
+42

3+44π2 ≈ 8.303.

It follows that for x≥ 9,

2K(x)− (
√

5−1)J(x)> (3−
√

5)(−120c119 + c120x+ c121x2)x119. (4.31)

Since
−120c119 + c120x+ c121x2 > 0

for x >
√

11(11+160π2) + 1 ≈ 133.255, we arrive at (4.29), and so (4.28) is
proved.

The above range of K(x)/J(x) enables us to bound ϑ (K(x)/J(x)). Recalling
that

ϑ(t) =
3t +2

√
(1− t)3− t3−2

t2 ,

we obtain that

ϑ(t)− (1− t)
3
2 =−t3 + t2(1− t)

3
2 −2(1− t)

3
2 −3t +2

t2 . (4.32)

Set t = 1− τ to get

ϑ(t)− (1− t)
3
2 =−

τ
3
2
(
τ +
√

τ−1
)(√

τ +1
)2 ,

Thus

ϑ(t)− (1− t)
3
2 =

(1− t)
3
2
(
t−
√

1− t
)(√

1− t +1
)2

=
(1− t)

3
2

(
t +

√
5+1
2

)(
t−

√
5−1
2

)
(√

1− t +1
)2
(
√

1− t + t)
,

which is positive for
√

5−1
2 < t < 1, and hence, for

√
5−1
2 < t < 1 we have

ϑ(t)> (1− t)
3
2 . (4.33)

In view of (4.28) and (4.33), we infer that for x≥ 134,

ϑ

(
K(x)
J(x)

)
>

(
1− K(x)

J(x)

) 3
2

. (4.34)
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We continue to show that for x≥ 483,(
1− K(x)

J(x)

) 3
2

>
110
x5 . (4.35)

Since J(x) > 0 for x ≥ 134, the above inequality can be reformulated as follows.
For x≥ 483,

x10(J(x)−K(x))3−1102J(x)3 > 0. (4.36)

The left hand side of (4.36) is a polynomial of degree 364, so that we may write

x10(J(x)−K(x))3−1102J(x)3 =
364

∑
k=0

γkxk. (4.37)

The values of γ364,γ363 and γ362 are given below:

γ364 = 272310553
π

12,

γ363 =−273310753 (490050+π
12) ,

γ362 = 272310553 (52925400+144π
12 +41π

14) .
For 0≤ k ≤ 361, we find that

−|γk|xk >−γ362x362, (4.38)

provided that

x >
793881000+2328717600π2 +3996π12 +4392π14 +π16

317552400+864π12 +246π14 ≈ 20.126.

Thus, for x≥ 21,

x10(J(x)−K(x))3−1102J(x)3 > (−363γ362 + γ363x+ γ364x2)x362,

which is positive, since

−363γ362 + γ363x+ γ364x2 > 0

as long as

x >

√
1452γ362γ364 + γ2

363− γ363

2γ364
≈ 482.959.

Hence (4.35) is confirmed. Combining (4.34) and (4.35), we are led to (4.27). The
proof is therefore complete.
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5 Proof of Theorem 1.3

In this section, we present a proof of Theorem 1.3 based on the intermediate in-
equalities in the previous sections. The theorem states that for n≥ 95.

4(1−un)(1−un+1)− (1−unun+1)
2 > 0, (5.1)

where

un =
p(n+1)p(n−1)

p(n)2 .

Proof of Theorem 1.3. We shall make use of the fact that un < 1 for n ≥ 26, as
proved by DeSalvo and Pak [13]. In order to prove (5.1), we define ϕ(t) to be a
function in t:

ϕ(t) = 4(1−un)(1− t)− (1−unt)2. (5.2)

Then (5.1) says that for n≥ 95,

ϕ(un+1)> 0. (5.3)

For 95≤ n≤ 1206, (5.3) can be directly checked. We proceed to prove that (5.3)
holds for n≥ 1207. Let Q(t) be as defined in (4.1), that is,

Q(t) =
3t +2

√
(1− t)3−2
t2 .

We claim that ϕ(t)> 0 for un < t < Q(un). Rewrite ϕ(t) as

ϕ(t) =−u2
nt2 +(6un−4)t−4un +3.

The equation ϕ(t) = 0 has two solutions:

P(un) =
3un−2

√
(1−un)3−2
u2

n
, Q(un) =

3un +2
√

(1−un)3−2
u2

n
,

so that ϕ(t)> 0 for P(un)< t < Q(un). Furthermore, we see that

ϕ(un) = (1−un)
3(un +3)> 0,

which implies P(un) < un < Q(un). Therefore, ϕ(t) > 0 for un < t < Q(un), as
claimed.

To verify (5.3), it remains to show that for n≥ 1207,

un < un+1 < Q(un). (5.4)
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Recall that un < un+1 holds for n ≥ 116, as proved by Chen, Wang and Xie [7].
By Theorem 2.1, we know that un+1 < g(n+ 1) for n ≥ 1207. But Theorem 3.1
asserts that for n≥ 2,

g(n+1)< f (n)+
110

µ(n−1)5 .

Furthermore, Theorem 4.1 states that for n≥ 2,

f (n)+
110

µ(n−1)5 < Q(un).

Thus we conclude that un+1 < Q(un) for n≥ 1207, as claimed.
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