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1. Introduction

Throughout this paper, we follow the standard g-series notation in [16]:

o0

(a;9)00 = H(l —aq™) and (a1,a2,...,am;q) H (aj5q

n=0
where |¢| < 1. In the study of congruence properties and identities on partition functions, Radu [35-37]
defined a class of partition functions a(n) by

oo

> am)g" =[]’ ¢")%, (1.1)

n=0 5\M

where M is a positive integer and rs are integers. Many partition functions fall into the framework of
the above definition of a(n), such as the partition function p(n), the overpartition function p(n) [11],
the Ramanujan 7-function [18,19,39], the k-colored partition functions, the t-core partition functions,
the 2-colored Frobenius partition functions and the broken k-diamond partition functions Ag(n) [4].

In this paper, we aim to present an algorithm to compute the generating function

i (mn 4+ t)q (1.2)

for fixed m > 0 and 0 < ¢t < m — 1 by finding suitable modular functions for I'y (N). When M =1
and 1 = —1, a(n) specializes to the partition function p(n). Kolberg [26] proved that for a positive
integer m prime to 6, and 0 <t <m — 1,
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i (mn + t)g™+ = (—1 (m—l)twd t M, 1.3
pimn q _( ) (q q )m+1 € ty ()

where M; = (9—t—i1j)(m-1)x(m—1)>

g = Z ( 1)nq2n(3n+1)

n(3n+1)=t(mod m)

and g; = gs when t = s (mod m). In view of (1.3), he derived some identities on p(n), for example,

ip(m)qn _ @) (@)% (eah e (1.4)
n=0

(¢ 0% (0, 4% )%, (g39)%, ’
and
5 )1(]

S YEs | Lo (@%d)4 Ry
<nz_%p(5n)q > <;p(5n+3)q ) =3 e B

oo o0

Atkin and Swinnerton-Dyer [5] have shown that g; can always be expressed by certain infinite products
for m > 3. Then the left hand side of (1.3) can be expressed in terms of certain infinite products.
Kolberg pointed out that when m > 5, this becomes much more complicated. For m = 11, 13, Bilgici
and Ekin [7,8] used the method of Kolberg to compute the generating function

oo
> p(mn + t)gm
n=0



forall 0 <t <m—1.

Based on the ideas of Rademacher [33], Newman [28,29] and Kolberg [26], Radu [37] developed
an algorithm to verify the congruences

a(mn+1t)=0 (mod u), (1.5)

for any given m, ¢t and w, and for all n > 0, where a(n) is defined in (1.1). Moreover, Radu [35] devel-
oped an algorithm, called the Ramanujan—Kolberg algorithm, to derive identities on the generating
functions of a(mn + t) using modular functions for I'g (V). A description of the Ramanujan-Kolberg
algorithm can be found in Paule and Radu [32]. Smoot [46] developed a Mathematica package RaduRK
to implement Radu’s algorithm. It should be mentioned that Eichhorn [13] extended the technique
in [14,15] to partition functions a(n) defined by

e’} L
Y amg" =[] ¢)%, (1.6)
n=0 j=1

where L is a positive integer and e; are integers, and reduced the verification of the congruences (1.5)
to a finite number of cases. It is easy to see that the defining relations (1.1) and (1.6) are equivalent
to each other. In this paper, we shall adopt the form of (1.1) in accordance with the notation of
eta-quotients.

Recall that the Dedekind eta-function 7(7) is defined by
. oo
n(r)=q» [J(1-q"),
n=1
where ¢ = ¢*™7 7 € H = {7 € C: Im(7) > 0}. An eta-quotient is a function of the form

[T 77 6n),

where M > 1 and each r; is an integer.

The Ramanujan—Kolberg algorithm leads to verifications of some identities on p(n) due to Ra-
manujan [38], Zuckerman [50] and Kolberg [26], for example,

o0 5..,5\5

> plon-+4)q" =54

= 4 4)S

see [38, eq. (18)]. It should be noted that there are some Ramanujan-type identities that are not
covered by the Ramanujan—Kolberg algorithm, such as the identity (1.4).

In this paper, we develop an algorithm to derive Ramanujan-type identities for a(mn + t) for
m > 0 and 0 < ¢t < m — 1, which is essentially a modified version of Radu’s algorithm. We first find
a necessary and sufficient condition for a product of a generalized eta-quotient and the generating
function (1.2) to be a modular function for I'y(N) up to a power of ¢q. Then we try to express this
modular function as a linear combination of generalized eta-quotients over Q.

For example, our algorithm leads to a verification of (1.4) for p(5n). Moreover, we obtain
Ramanujan-type identities for the overpartition functions p(5n + 2) and p(5n + 3) and the broken
2-diamond partition functions Az(25n 4 14) and Ay(25n + 24). We also obtain the following witness
identity with integer coefficients for p(11n + 6).



Theorem 1.1. We have

20 Zp(lln +6)q"

n=0
= 112" + 12128 + 3302° — 48427¢ — 9902 + 4842%¢ + 79227

— 4842%¢ + 4425 + 1089z%¢ — 1322° — 145223%¢ — 4512*

+ 9682%¢ + 7482° — 242z — 42927 + 77z + 11, (1.7)
where

o — (¢:9)%
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Bilgici and Ekin [8] deduced a witness identity for p(11n + 6) with integer coefficients using the
method of Kolberg. Radu [35] obtained a witness identity for p(11n + 6) by using the Ramanujan—
Kolberg algorithm. Hemmecke [20] generalized Radu’s algorithm and derived a witness identity for
p(11n+6). Paule and Radu [31] found a polynomial relation on the generating function of p(11n +6),
which can also be viewed as a witness identity. Moreover, Paule and Radu [30] found a witness identity
for p(11n + 6) in terms of eta-quotients and the Us-operator acting on eta-quotients.

Our algorithm can be extended to a more general class of partition functions b(n) defined by

> bt = (%)% I (@¢" %)%, (1.10)

n=0 8| M S| M
0<g<s

where M is a positive integer and rs, 5,4 are integers. Notice that (1.10) is a generalized eta-quotient
up to a power of q.

Recall that for a positive integer § and a residue class g (mod 0), the generalized Dedekind eta-
function ns 4(7) is defined by

mgm) =¢tE) I - [ a-av. (1.11)

n>0 n>0
n=g(mods) n=—g(mods)

where
Pyt) = {1~ {1} +

is the second Bernoulli function and {t} is the fractional part of ¢, see, for example, [41,43]. Note that

Ns,0(7) = n*(67) and 175’%(7') = (or)” (1.12)



A generalized eta-quotient is a function of the form

[T i), (1.13)

5| M
0<g<sé

where M > 1 and

%Z, ifg:Oorg:g,
T5,9 € .
Z,  otherwise,

see, for example, Robins [41]. In view of (1.12), when g =0 or g = g, if rsq € %Z, then the powers
of the eta-functions in (1.13) are integers.

For partition functions b(n) as defined in (1.10), our algorithm can be extended to derive Ramanujan-
type identities on b(mn +t) for m > 0 and 0 < ¢ < m — 1, such as the Ramanujan-type identities on
Andrews’ singular overpartition functions Q3 ; (974 3) and Q3 ;(9n+6) due to Shen [45]. The extend-
ed algorithm can also be employed to derive dissection formulas, such as the 2-dissection formulas of
Ramanujan, first proved by Andrews [2], and the 8-dissection formulas due to Hirschhorn [22].

2. Finding Modular Functions for I';(N)

For the partition functions a(n) as defined by (1.1), namely,

> am)g =[]’ )%,
n=0

8| M

where M is a positive integer and rs are integers, Radu [37] defined

Gma(T) =g > almn +t)q", (2.1)

where

Let ¢(7) be a generalized eta-quotient, and let F(T) = ¢(7)gm.+(7). The objective of this section
is to give a criterion for F(7) to be a modular function for T';(N). We find that the transformation
formula for g,, ((7) under I'; (N)* is analogous to the transformation formula of Radu [37, Lemma 2.14]
with respect to T'g(N)*. Then we utilize the transformation laws of Newman [29] and Robins [41]
to obtain the transformation formula of F(7). With the aid of the Laurent expansions of ¢(7) and
gm,t(T), we obtain a necessary and sufficient condition for F'(7) to be a modular function for I'; (V).

We first state the conditions on N. In fact, we make the following changes on the conditions on
N given by Definition 34 and Definition 35 in [35]: Change the condition §|mN for every §|M with
rs # 0 to M|N, and add the following condition 7. For completeness, we list all the conditions on N.
Let x = ged(m? — 1,24). Assume that N satisfies the following conditions:

1. MI|N.



2. p|N for any prime p|m.

3. kN > rs =0 (mod 8).
5| M

4. kmN? Y 22 =0 (mod 24).

5. ——24m ____|N, where a(t) = — > s Ors — 24t

ged(ka(t),24m)

6. Let [ §lmsl = 275 where z € N and j is odd. If 2|m, then kN = 0 (mod 4) and Nz = 0
(mod 8), or z =0 (mod 2) and N(j —1) =0 (mod 8).

7. Let S, = {j2 (mod n): j € Z,, ged(j,n) =1, j =1 (mod N)}. For any s € Sogmus,

S

-1
2 ;\;67"5+tst (mod m).

Note that there always exists IV satisfying the above conditions, because N = 24mM would make a

feasible choice. From now on, we denote by ~ the matrix (Z S)

Theorem 2.1. For a given partition function a(n) as defined by (1.1), and for given integers m and
t, suppose that N is a positive integer satisfying the conditions 1-7. Let

(1) = ¢(7) gm +(7),

where

o) = [[n=6r) I ne . (2.2)

SIN 5N
0<g<18/2)

and as and as 4 are integers. Then F (1) is a modular function with respect to I'1(N) if and only if as
and as.q satisfy the following conditions:

(1) Yas+ > rs=0,

5N §|M

(2) N> 242N Y L4 Nm ) 2 =0 (mod24),

SN S|IN S| M
0<g<|é/2]

3) Y das+12 Y 6Py (L) asy+m Y drs + =0eW = o (mod 24),

5N SIN 5| M
0<g<[5/2]

(4) For any integer 0 < a < 12N with ged (a,6) =1 and a =1 (mod N),

> wi($-14)(a—1as,

5 las| m5 [rs] < )
(:) (%) < =1
SN 5|M

L8/2]
™



For example, consider the overpartition function p(n). Recall that an overpartition of a positive
integer n is a partition of n where the first occurrence of each distinct part may be overlined, and the
number of overpartitions of n is denoted by p(n) for n > 1 and p(0) = 1. As noted by Corteel and
Lovejoy [11], the generating function of p(n) is given by

- B(n n __ (q2,q2)00
nzz%p( = o

For the overpartition function p(5n + 2), we see that N = 10 satisfies the conditions 1-7. Next we
proceed to find a generalized eta-quotient ¢(7) such that ¢(7)gs 2(7) is a modular function for I';(10).
By the above theorem, the function

[Tne6n) T 5 (r) gsa(r)

510 5110
0<g<(5/2]

is a modular function for I'; (10) if and only if a5 and as 4 fulfill the following conditions:
ay +ag +as +ap—1=0,
10a; + 5a9 + 1004271 + 2as5 + 4@5,1 + 4(15,2 + ayg + 20,10,1

—|—2a10’2 + 2@1073 + 2@1074 + 2@1075 —-3=0 (mod 24),

a1 + 2a2 — 2a21 + Sas + 2“% - %;2 + 10a10 + 46(’% (2.3)
plotoe s Mdios q0q, 0448 =0 (mod 24),
[o/2]
> % wi($-1)(a—1Das,
() TT ()" et = 2 =,

5|10
for any 0 < a < 120 with ged(a,6) =1 and a =1 (mod 10). We find that
(a1,a2,a2,17 as, 05,1, 05,2, a10, @10,1,210,2, @10,3, @10,4, a10,5)

= (0,0,0,0,0,0,1,0,0,0,—8,9)

is an integer solution of (2.3). Let

107)n?
é(r) = n( ;’)7710,5(7').
7710,4(7')
Since
g52(7) =% Y _D(5n+2)q",
n=0
we find that
F(r)=q¢(r) > p(5n+2)q" (2.4)
n=0

is a modular function with respect to I'1(10).



Let

I (N) = {(Z;) €T1(N): ged (a,6) = 1, ac > 0}.

The following lemma asserts that the invariance of the function f(7) under I'; (V) is equivalent to the
invariance under I't (N)*.

Lemma 2.2. Let k be an integer, N be a positive integer and f: H — C be a function such that
f(r) = (er +d)* f(7) (2.5)

for any v € T1(N)*. Then f is weight-k invariant under T'y(N).

Proof. Let
A= {<Z db) € T1(N): ged(a, 6) = 1}.

By Lemma 3 of Newman [29], we know that I'y (V) is generated by A. Hence it suffices to show that
FOyr) = (e + d)* f(7)

for any v € A. By the condition of Lemma 2.2, we may restrict our attention only to two cases. (1)
vyeA a>0and ¢c<0. (2)y€ A, a<0and ¢c>0. Here we only consider the first case, and the
second case can be justified in the same manner. For the first case, since a > 0 and ¢ < 0, there exists
a positive integer x such that ax + & > 0. Let

_ 1 0 and - a b
M=\ Ne 1 2= Nax +c¢ Nbx+d )’

Then 5 = y1y and 7, € 'y (IV)*. Therefore,

f(e7) = F(n(y7)) = (Na(yr) + 1)F f(9m). (2.6)

Since v € A, we have ged(a,6) = 1, and so y2 € T'1(N)*. Applying (2.5) with v, € T'1 (IV)*, we get
f(7) = (Naz + )7 + (Nbz + d)* f(7). (2.7)

Combining (2.6) and (2.7), we deduce that

F(rm) = (er + )" f(7),

as claimed. m

The following transformation formula for gy, ((7) under I'; (N)* is analogous to the transformation
formula of Radu [37, Lemma 2.14] with respect to I'o(N)*. The proof parallels that of Radu, and
hence it is omitted.

Lemma 2.3. For a given partition function a(n) as defined by (1.1), and for given integers m and t,
let N be a positive integer satisfying the above conditions 1-7. For any v € T'1(N)*, we have

> s
Gma(y7) = (er+d)” T O TT L(mode, a)l™s! gy o(7),
S|M



where

(6. oo
L(c,a) =
(}g) , otherwise,
(=) is the Jacobi symbol,
ab(m? — 1)« abm cm 5, sen(0)(e—1)
¢(v) = 12m 26 v 226 Z”’

§|M

and «(t) is defined as in the condition 5

Next we derive a transformation formula for F(7) under I'y (N)*. Recall the notation of Schoeneberg
[43]:

s miPy ()T 2niT m 2mit
DL r) = ao(R)em P37 T (1= ¢he®™m) T (1 - ¢he®Fm), (2.8)
m=g(mods) m="ymods)

where (5 is a primitive d-th root of unity,

(1- (gh)empl(%), if g =0 (mod ¢) and h # 0 (mod §),
ag(h) = :
1, otherwise,

the first Bernoulli function P (z) is given by

Py(x) = v—|z] -3, fzdZ,
(x) =
0, otherwise,

and |z | is the greatest integer less than or equal to x. Since

mg(m) =3 T a-¢n ] -qv

n>0 n>0
n=g(mods) n=—g(mods)
we have
M.9(T) = 1y (67). (2.9)

Lemma 2.4. For a given partition function a(n) as defined by (1.1), and for given integers m and t,
let N be a positive integer satisfying the conditions 1-7, and

=[In@r) I 955 () gma(r), (2.10)

SIN sIN
0<g<|é/2]

where a5 and as 4 are integers. Then for any v € I'1(N)*,

-IIz (57(1)‘” [T L(mdc, a)lrelemit-ean)
S|IN 0 §|M

"t a )F(T), (2.11)



where

v = Y (g - ;) (a - 1)as, (2.12)

5|N
0<g<l|é/2]

and

£(y) = a_lsgn (Za5+zra>

5IN S|M

o<g<L5/2J

+ ab 51a2‘s+ Z 6P2( )a(;,q+zm5” (m _22 (t)) (2.13)

O<g<L5/2J

(St LW )
SIN 5| M
2

Proof. For any v = (ZZ) e I'1(N)*, we have

) =]In"@vr) [[ 75 (7 gmalyr). (2.14)
SIN O<y§§“[]5/2j

For any 0|N, let 75 = (5 ) Since v € I'1(N)*, we have N|c and so d|c for any 6| N. It follows that
~v5 € T'. Thus (2.14) can be written as

=[] s0m) T w55 () gma(y7). (2.15)
N 0<95§UL\]5/2J

The transformation formula of Newman [29, Lemma 2] states that for any v € T with a > 0, ¢ > 0
and ged(a,6) =1,

niyr) = (5) e B (ier + ) (o).

a

Therefore, for any v € I' with ac > 0 and ged(a, 6) = 1, we have

n(y7) = L(c,a) emii5 (= (et + d)%n(T). (2.16)

Since v € I'1(NV)*, we see that ged(a,6) =1 and ac > 0. Applying the transformation formula (2.16)
to each 75, we deduce that

[T (hom) = [T £ (Goa) ™ erilisiss

5N 8N

(©)as (cr 4+ d)F e (57). (2.17)

Using the transformation formula of Robins [41, Theorem 2]:

7i(6abPz(4)— 28 +(a—1)(£—-3))

ns,9(YT) = € N6,9(T)s

10



we find that

H 77;1729 (’Y’T) _ H eTri(&lez(%)—%"F(G_l)(%_%))a&g n;‘;’g (7-> (218)
S§|N SN
0<g<|d/2] 0<g<l|é/2]

Substituting the transformation formulas in (2.17), (2.18) and Lemma 2.3 into (2.15), we reach the
transformation formula (2.11). O

To prove Theorem 2.1, we need the Laurent expansions of g, .(y7) and ¢(y7) for v € I'. Let us
recall the two maps p: I' X Z,,, — Q and p: I' — Q defined by Radu [37], namely, for v € T" and
A E Ly,

1 Z ged?(8(a + kXe), me)

rs (2.19)
8| M

and for y €T,
p(y) = min{p(y,A): A=0,1,...,m —1}. (2.20)

The parabolic subgroup of I' is defined by

1b
=4+ beZy.
{eon) 0=
For any v € T', the (I'1(IV), ' )-double coset of ~ is given by

Fl(N)’YFoo = {71\77'7005 IN € FI(N)a Yoo € Foo}~

Assume that I' has the following disjoint decomposition
I=JT1(N)yilw, (2.21)
i=1

where R = {71,72,.-.,7%} € I'. Denote the set of (I'1(N),'s)-double cosets in T by I'1 (N)\I'/I's.
Then (2.21) can be written as

I (N\I'/Too = {I1(N)'w: v € R}.
We say that R is a complete set of representatives of the double cosets I'y (N)\I'/T .

The following lemma gives a Laurent expansion of g, (y7), and the proof is similar to that of
Lemma 3.4 in Radu [37], and hence it is omitted.

Lemma 2.5. For a given partition function a(n) as defined by (1.1), and for given integers m and
t, let N be a positive integer satisfying the conditions 1-7, and R = {v1,72,...,7.} be a complete set
of representatives of the double cosets T'y (N)\I'/Tw. For any v € T, assume that v € T'1(N)v;L oo for
some 1 < i <e. Then there exists an integer w and a Taylor series h(q) in powers of qi, such that

1
2

> TS
Gt (77) = (eT +d) " P R(q).
The following lemma gives a Laurent expansion of ¢(y7) for any v € I'.

11



Lemma 2.6. Let

o(r)=In"6r) [ w0,

5N SIN
0<g<|5/2]

where as and as g are integers. For any v € I', there ewists a positive integer w and a Taylor series
h*(q) in powers of qw such that

>as
d(y7) = (et +d) ™ ¢" Dh*(g),

[N

where

1 ged? (0, ¢) 1 ged? (4, ¢) ag
()= — § B P .
PM=g2 T o wty ) 5 2\ ged(s,0) ) 09

5N SIN
0<g<15/2]

Furthermore, for any v1 € T and vo € T'1(N)11 T o0, we have p*(v1) = p*(72)-

Proof. For any v = (Zs) € I', we have

o(yr)=[]n@vr) [ n5s ().

5N 5|N

0<g<(5/2]
It follows from (2.9) that
as 5)%%.9
o(vr) =[] 0vr) TI a5 " 0vr). (2.22)
5IN 51N
0<g<l6/2]

Since ged(a, ¢) = 1, for any 6| N, there exist integers x5 and ys such that

daxs + cys = ged(da, ¢) = ged(6, ¢),

(m 6b) _ <g§(‘3) ya) (gcd(fi c) obxs ;deé) (2.23)
c d ds T 0 £ed(5.)

da
e = (gcd(M) —y6> and Ty — (ng((Sa c) obxs +dy5> .
0

c )
ged(d,c) s ged(d,¢)

and hence

Set

Note that 75 € I'. Combining (2.22) and (2.23), we deduce that

s)%s.9
o(yr) = [T (sTsr) [T oS " (vsTsr). (2.24)
5|N S|IN
0<g<|6/2]

By the transformation law for 7(7) under I' [34, p. 145], namely, there exists a map ¢: I' — C such
that for any v € T,

n(yr) = €' (7)(er + d)Fn(r),

12



and the transformation formula for ns(if)L(T) under I in [43, p. 199 (30)], namely, when 0 < g < §, there
exists a map €1: I' — C such that for any v € T,
nff%(w) =e(7) nfﬁ,)h/ (1),

where ¢’ = ag + ch, ' = bg + dh, it follows from (2.24) that there is a map e: T' — C such that for
any v €I,

3> as

o(yr) =e()(er +d) % [Ty T o " Tyr). (2.25)

Sa
9,—Ysg
SIN SIN ged(3,e)
0<g<15/2]

Substituting the g-expansions of the eta-function and the generalized eta-function into (2.25), we see
that there exists a positive integer w and a Taylor series h*(q) in powers of q% such that

5y as
P(y7) = (et +d) TV g” Dp*(q).

Next we aim to show that p*(y1) = p*(y2) for any 71 € T and 79 € T'1(N)y1lw. Under the
assumption that v5 € 'y (V)71 ', there exist 43 € T'1 (V) and 74 € T's such that

V2 = Y3V1V4- (2.26)

- a1 bl . as b2 o as bg - +1 b4
n= crd)’ = cady)’ 7= c3ds)’ M=o +1)

Owing to (2.26), we find that

Write

ag = :I:(alag + bgCl) (227)
and
Cy = :I:(alcg + Cld3). (228)

For any | N, since v3 € T'1(IV), we see that a3 = 1 (mod 0), d|cs and ged(d,ds) = 1. Using (2.27), it
can be verified that

asg = ta1g (mod ged (4, ¢1)). (2.29)
In view of (2.28), we obtain that
ged(d, e2) = ged(6, ¢q). (2.30)

Combining (2.29) and (2.30), we arrive at

arg az9
P|———— )| =FPh| ———— 2.31
2<@a&qﬂ 2(g«&@07 (231
here we have used the fact that Po(—a) = Pa(e) for any a € R. Combining (2.30) and (2.31), we
conclude that p*(v1) = p*(72), as claimed. O

We are now ready to complete the proof of Theorem 2.1.
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Proof of Theorem 2.1. Assume that

=1]n06r JI 755 ) gma(r) (2.32)
5N s|N
0<g=15/2)
is a modular function with respect to I'y (), where a5 and a; 4 are integers. We proceed to show that
the conditions (1)—(4) are fulfilled by the integers as and a; 4.
Since I'1 (N)* CT'1 (V) and F(7) is a modular function for T'y (N), for any v € I'1 (IV)*, we have

F(yr) = F(7). (2.33)

*

To compute F(v7), we need the transformation formula for F(7) under I'y (V)
2.4, that is, for any v € T'1 (N)*,

-IIz (g,a)”‘; [T L(mdc, a)lrslemit-ecn

5|N 5| M

as given in Lemma

3 as+ 3 Ts
x (c1 + d) (= )F(T), (2.34)

where v() and £(v) are defined in (2.12) and (2.13). Combining (2.33) and (2.34), we see that

Zag—er(; =0,

§|N 5| M

thus (1) is satisfied. Consequently, £(7) reduces to

SO TP TS prccy

SIN 5N 5[M
0<g<l|6/2]
das m6r5 (m? — 1)a(t)
+ab(z B T )a59+z _Da)y,
‘ O<g<L6/2j

To prove (2), consider the matrix v = (N 0) € T1(N)*. In this case, (2.34) becomes

i a5 5 Y ey mm)
_ N(é%:v 125+6\N 92:31 60 +§% 1206
F(yr)=e F(r). (2.35)

Hence (2) follows from (2.33) and (2.35). Setting v = (]1, ) e I'1(N)*, (2.34) becomes

SIN SN g=1

L8/2] mér
m'( SR Y X 0P ($)as,t T ﬁ+%)
Flyr)=e T E(r),

which, together with (2.33), implies (3). Using the conditions (1)—(3), it can be checked that £(vy) =
(mod 2) for any v € T'y (NV)*. It follows that

™) — 1,
and so (2.34) reduces to
a , (S a5t X )
= H L (%, a) ’ H L(mée,a)l™le™ ) (er + d) R F(r). (2.36)

8N 8| M

14



By the definition of L, we find that for any J|N,
c B e
L(g,d) = L((;C, a) = (M) y

L(méec,a) = <m5|c> .

lal

and for any 6|M,

Hence (2.36) is equivalent to

Sle las| mdle [rs] i %( > a5+_2 rg)
Fon =11 (||> 1] ( |a| l) O (erd) ¥ A TR, (2.37)
5|IN S|M

In view of the condition (1), it is easily verified that

3 ( 6% a6+5\21%/1 7'5) _
(e + d) 1 (2.38)

51;[\, (E)laél 51;\[4 (:Z)IT& =1 (2.39)

Substituting (2.38) and (2.39) into (2.37) yields

Fom =11 (@l) - 11 <T|Z(|s)| e F (). (2.40)

5N

and

Comparing (2.33) with (2.40), we deduce that

5 >a5 <m§>ra| »

— — e =1 (2.41)
mGa) T

for all integers a with ged (a,6) = 1 and @ = 1 (mod N). Invoking the interpretation of the Jacobi
symbol, we conclude that (2.41) holds for all integers 0 < a < 12N with ged (a,6) = 1 and a = 1
(mod N). This confirms (4).

Conversely, assume that the integers as, as g (6|N,0 < g < |§/2]) satisfy the conditions (1)-(4).
We proceed to show that

Firy=1]n"06r) [ n52°() gma(r)

5N sIN
0<g<|8/2]

is a modular function for I'; (IV). It is clear that F(7) is holomorphic on H.

Based on the conditions (1)—(3), it follows from Lemma 2.4 that the transformation formula (2.40)
for F'(7) holds for any v € I'; (N)*. Given the condition (4), we see that (2.41) holds for all integers a
with ged (a,6) = 1landa =1 (mod N). Combining (2.40) and (2.41), we find that for any v € T';(N)*,

F(yt) = F(1).

15



In view of Lemma 2.2, we conclude that F(vy7) = F (1) for any v € I'1(N).

It remains to show that for any v € I', F(y7) has a Laurent expansion with a finite principal
part in powers of g~ . Let v €T and R = {v1,72,.--,7} be a complete set of representatives of the
double cosets I'1 (N)\I'/T'w. By the decomposition of I" in (2.21), there exist an integer 1 <14 < e and
matrices yn € I'1(N), Yoo € I'o such that v = yn7YiYeo. By Lemma 2.5 and Lemma 2.6, there exist
a positive integer w and Taylor series h(q) and h*(gq) in powers of qw such that

X as+X rs .
F('YT) _ (CT + d)2 (5\1\7 FIpY ) qP(’Yz:)-‘rP (v4) h(q) h*(q). (2.42)
In view of the condition (1), (2.42) reduces to
F(yr) = "0 00 h(g) h*(q), (2.43)

which implies that there exists a positive integer k such that F'(y7) has the Laurent expansion with
a finite principal part in powers of ¢%. Since we have shown that F (7) is invariant under I'y (IV), by
Lemma 1.14 in [48], we obtain that for any v € I', F(y7) is invariant under v~1T'; (N)~. Notice that

(BI\{) € 7 IT'1(N)y. So F(y7) has period N, namely,
F(y(r+ N)) = F(y7).

Thus F(vy7) has a Laurent expansion in powers of q~. By (2.43), we see that this Laurent expansion
has at most finitely many negative terms. So we reach the assertion that F(7) is a modular function
for T1(N). O

Given a generating function of a(n) as defined in (1.1) and integers m and ¢, we can find an integer
N satisfying the conditions 1-7. If we are lucky, we may use Theorem 2.1 to find integers as, as,q4
(0|N,0 < g < |/2]) satistying the conditions (1)—(4), which lead to a generalized eta-quotient

o(r)=[In6r) [ wus ()

SIN 0<921L\i5/2j
such that
F(1) = ¢(7) gm e (T) (2.44)

is a modular function. It should be noted that such a modular function F(7) may be not unique.
To derive a Ramanujan-type identity for a(mn + t), we aim to express F'(7) as a linear combination
of generalized eta-quotients over Q. To this end, we first investigate the behavior of F(7) at each
cusp of T'1(N). Let us recall some terminology of modular functions, see, for example [12,48]. For

v = (Z Z) € I', the width w, of 2 relative to I'1 (V) is the minimal positive integer h such that
1h 1
1 (N)y.
(0 1) ey Ti(N)y

Let f(7) be a modular function for T'y(N). It is known that f(y7) is invariant under v~ 1T (N)v,
see [48, Lemma 1.14]. So f(7) has period w., which implies that f(y7) has a Laurent expansion in
powers of ¢'/%+. Since f (1) is a modular function, this Laurent expansion has at most finitely many
negative terms. Write

For) = bag"/m, (2.45)

n—=—oo
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where b, = 0 for almost all negative integers n. Let n, be the smallest integer such that b, # 0. We
call n, the y-order of f at 2, denoted by ord,(f). Denote the smallest exponent of ¢ on the right
hand side of (2.45) by v, so that

ord, (f) = vyws. (2.46)
Furthermore, the order of f at the cusp ¢ € QU {oo} is defined by
ord, . (f) = ord,(f) (2.47)

for some 7 € I" such that yoo = %. It is known that ord,.(f) is well-defined, see [12, p. 72].

The following theorem gives estimates of the orders of F'(7) at cusps of I'; ().

Theorem 2.7. For a given partition function a(n) as defined by (1.1), and for given integers m and
t, let

(1) = ¢(7) gm 1 (7),

where
a
=]In"6r) I n52 (),
SIN 5N
0<g<|5/2]
as and a4 are integers. Assume that F(7) is a modular function for I'1(N). Let {s1,s2,...,5.} be a

complete set of inequivalent cusps of T'1(N), and for each 1 <i <, let a; € T' be such that a;00 = s;.
Then

ords, (F(7)) > wa, (p(c:) + p* (), (2.48)
where p(7y) is given by (2.20) and p*(v) is defined in Lemma 2.6.

To compute the right hand side of (2.48), we need the following formula due to Cho, Koo and
Park [10]:

(2.49)

Rt if N =4 and ged(c,4) =2,
= otherwise,

_N
ged(e,N)?

where v = (Z 2) € I'. For example, consider the modular function

107’
F(T):q% 77105 Zp 5n + 2)g
7]104

for T'1(10) as given in (2.4). A complete set S(N) of inequivalent cusps of I'1(IN) has been found
in [10, Corollary 4]. In particular, for N = 10, we have

5(10)2{0, 113131 } (2.50)

54100 3 5 2
Employing Theorem 2.7, we obtain the following lower bounds of the orders of F(7) at cusps of I'; (10):

ordg(F (7)) > =3, ordy5(F (7)) > %9, ordy /4(F(1)) > =2,

ords/10(F(7)) = —%87 ordy /3(F (7)) > =3, ordss(F(7)) > %
ordy o(F (7)) > 2, orde (F(7)) > %,

17



Notice that F'(7) may have poles at some cusps not equivalent to infinity.
We are now ready to prove Theorem 2.7.

Proof of Theorem 2.7. 1t is known that there exists a bijection from the set of all inequivalent cusps
of T'1 (V) to the double coset space I'1 (IV)\I'/T'w, as given by

1 (N)(a/c) — T1(N) (i Z) e,

see [12, Proposition 3.8.5]. Since {s1,S2,...,8.} is a complete set of inequivalent cusps of I'1 (V)
and a;o0 = s; for 1 < ¢ < ¢, we see that {aq,@s,...,a.} is a complete set of representatives of
1 (N)\I'/T+. Applying Lemma 2.5 with 7; = a;, we find that there exists an integer w; and a Taylor

series h(q) in powers of qw% such that

> s
gmi(ouT) = (et +d) ™ Pl @Dh(q). (2.51)

[N

By Lemma 2.6, there exists a positive integer wy and a Taylor series h*(g) in powers of qw%, such that

7Y as
¢(a;T) = (et +d) * P @Dp*(q). (2.52)

Combining (2.51) and (2.52), we get

-

5( > as+ > rs)

Flagr) = (er+d) % ol 7 grled®pr(ed p(qg) h*(g). (2.53)
Since F(7) is a modular function for I'; (), using the condition (1) in Theorem 2.1, (2.53) reduces to
Fa;7) = g" (%) h(q) h*(q). (2.54)

Let v,, denote the smallest exponent of ¢ on the right hand side of (2.54). The relation ord, (f) = vyw,
as given in (2.46) yields

vy, = 2 (F(T) (2.55)

i Wer
Since h(q) and h*(q) are Taylor series, it follows from (2.54) that
Vo, 2> plai) +p" (). (2.56)
Combining (2.55) and (2.56), we conclude that
ordg, (F(7)) 2 wa, (p(:) + p*(ai)). (2.57)
By the definition (2.47), we have
ords, (F (7)) = ordg, (F(7)). (2.58)

Thus the estimate (2.48) follows from (2.57) and (2.58). O
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3. Sketch of the Algorithm

In this section, we give a sketch of our algorithm. Given a generating function of a(n) as defined in
(1.1) and integers m and ¢, we can find an integer N satisfying the conditions 1-7. Assume that we
have found a generalized eta-quotient ¢(7) such that

() = ¢(7) gm 1 (T) (3.1)

is a modular function for T';(N). To derive an expression of F(7), we consider a class of modular
functions: the set of generalized eta-quotients which are modular functions for I'y (V) with poles only
at infinity, denoted by GE*(N). Note that the notation E*°(N) is used by Radu [35] to denote the
set of modular eta-quotients with poles only at infinity for T'g(N). Our goal is to derive an expression
of F(7) in terms of the generators of GE®°(N). Then we are led to a Ramanujan-type identity for
a(mn +t).

Our algorithm consists of the following steps:

Step 1. Use Theorem 2.1 to find a generalized eta-quotient ¢(7) for which F(7) in (3.1) is a modular
function for T'y (N).

Step 2. Find a finite set {21, 22,..., 2} of generators of GE*(N) by utilizing a formula of Robins
and the theory of Diophantine inequalities.

Step 3. Let (GE*(N))g be the vector space over Q generated by generalized eta-quotients in GE*(N).
Employ the Algorithm AB of Radu for I'y (N) on {z1, 22, ..., 2t} to generate a modular function
z and a Q[z]-module basis 1,e1, ..., e, of (GE>®(N))g.

Step 4. Find a generalized eta-quotient A in terms of generators of GE*(N) for which the modular

function hF has a pole only at infinity. Theorem 2.7 can be used to compute the lower bounds
of the orders of hF at all cusps of I'1(N).

Step 5. Determine whether AF is in (GE*™(N))g by applying the Algorithm MW of Radu to hF, z

and 1,eq,...,e,. If this goal can be achieved, then F' can be expressed as a linear combination
of generalized eta-quotients over Q.

For example, let us consider the overpartition function p(5n + 2). In Sect. 2., we found N = 10
satisfies the conditions 1-7.

Step 1. As shown in (2.4),

n(107)
F(T):q% 17105 Zp (5n + 2)q
7710 4

is a modular function with respect to I'; (10).
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Step 2. We obtain the following generators of GE*°(10):

L n(r)n(57) R COLICU G

2 (20T (1)” 1 ()P (A0m)nky (1)’
o n*(57)n5 1 (7) L n(T)ng 1 (7)n*(107) (3.2)
2T n(rm@r)n0n)ndy (1) T 2@r)n(Grn (1) '
B3 U R1C)

773(27)77(107)774110,1(7)'

Step 3. Applying the Algorithm AB of Radu to {z, 21, 22, 23, 24}, we find that 1 is a z-module basis
of (GE*(10))g. Thus

(GE*(10))g = (Igp - (3.3)

Step 4. We obtain that

_ Za2 _ n(m)nga(r)n™®(107) (3.4)
2z T2 Gr)nig (1) '
for which hF has a pole only at infinity.
Step 5. Applying Radu’s Algorithm MW to hF, z and 1, we see that hF' € (GE*(10))q and
hF = 42° 4+ 42° — 322 + 32. (3.5)

The relation (3.5) can be restated as the following theorem. The implementations of the above
steps will be described in the subsequent sections.

Theorem 3.1. We have

oo
y Y P(on +2)q" = 42° 4+ 42% — 322 4 32, (3.6)
n=0

where
(@ )3 (a*% 1) 5(q, ¢*; ) 2 (4% ') 18
(@07 (0% 4°) 200, 6% ') L2 (g%, 455 ¢10)8,’
(49) (4% 4°)
a(q, 9% 4°)% (4% ¢*) 2 (4,45 ¢'9) o

4. Generators of GE™(N)

In this section, we show how to implement Step 1 as in the sketch of the previous section, that is,
finding a finite set of generators of GE>(N).

In light of the symmetry
15,9(T) = N5,5-9(7),
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for any 6 > 0 and [0/2] < g < J, we may rewrite the generalized eta-quotient h(7) in GE*(N) in the
following form

I 7. (4.1)

S|IN
0<g<l|d/2]

where

%Z, ifg:Oorg:%7
as,g € (4.2)
Z otherwise.

Throughout this section, we assume that the generalized eta-quotients are of the form (4.1).

To find a set of generators of GE*(N), we first give a characterization of generalized eta-quotients
h(7) in GE*(N), which involves the orders of h(7) at all cusps of I'y (V). For any cusp s of I'y (IV),
in order to apply a formula of Robins [41, Theorem 4] to compute the order of h(7) at a cusp s, we
need to find a cusp of the form 2 that is equivalent to s, where | N and

e
ged(A, N) = ged(\, 1) = ged(p, N) = 1. (4.3)
The existence of such a cusp in the above form is ensured by Corollary 4 of Cho, Koo and Park [10].

The following theorem gives a characterization of generalized eta-quotients in GE*(N).

Theorem 4.1. Let
S(N) ={s1,82,...,8c}

be a complete set of inequivalent cusps of T1(N) and sc = co. Assume that for any 1 < i <, s; is

equivalent to /j‘a , where g;|N and
1<

ged(Ag, N) = ged(Ai, pi) = ged(ps, N) = 1. (4.4)

Then a generalized eta-quotient h(T) in the form of (4.1) is in GE*(N) if and only if the following
conditions hold:

Z as.0 = Oa

S|N
ﬂ‘ Z ngz(‘S,El)P Mg eN
2 deq 2\ ged(s,e1) ) %0.9 ’

S|N
0<g<[6/2]

N gcd?(8,6c_1) Ae—1g
2 4%:\7 0gc—1 P ged(d,ee—-1) 5.9 € N,
0<g<|é/2]

N ged?(d,ec) Aeg
D 3e. PZ(gcd(6,66)>a5vg €Z.

5IN
0<g<lé/2]

Proof. Assume that the generalized eta-quotient h(7) as given by (4.1) is in GE*(N). By the trans-
formation formula of Schoeneberg [43, p. 199 (30)] for n;f,)l(T), we have

> a5 =0, (4.6)

8N
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and so the first condition in (4.5) is satisfied. To show that the remaining conditions in (4.5) are
satisfied, we proceed to compute the order of h(7) at each cusp in S(N). Since h(1) € GE>(N), for
all1 <i<e-—1,

ords, (h(7)) €N (4.7)
and
ords, (h(7)) € Z. (4.8)
A

For any 1 <1 <¢, since s; is equivalent to =, we get

Hi€q

ordg, (h(7)) = ordy, /e, (h(7)).

Using the formula of Robins [41, Theorem 4] for the order of h(7) at the cusp A;/p;e;, namely,

N ged?(8, ;) Aig
oy e () = 5 D0 EE RS as,

SIN
0<g<|6/2]
we find that
N gcd2(6 €;) Aig
dy. (h(7)) = — “i) p ( ) : 4.9
ords, (h(7)) = 3 Z il e T L (4.9)
IN
0<g<|6/2]
For 1 <i < e—1, combining (4.7) and (4.9), we obtain that
N ged? (3, ;) Aig
= P ( ) N. 4.10
2 Sz: S *\ged(5, &) a.g € (4.10)
IN
0<g<16/2]
Setting ¢ = € in (4.9), it follows from (4.8) that
N gcd2(6 Ec) Aeg
= c) p, ( ) € Z. 411
2 Z dee *\ged (5, &) 4.9 (4.11)
5IN
0<g<|8/2)

Combining (4.6), (4.10) and (4.11), we are led to (4.5).
Conversely, assume that the conditions in (4.5) are satisfied. From (4.5) and (4.9), we see that
ordg(h(7)) € Z and ords(h(7)) € Z. (4.12)

The first condition of (4.5) says that

> aso=0. (4.13)

5N

Robins [41] showed that if a generalized eta-quotient h(7) satisfies (4.12) and (4.13), then for any
v e Fl(N)7

h(y71) = h(7). (4.14)
By (4.9) and the conditions in (4.5), we see that for any s € S(IV) \ {0},

ord,(h(7)) € N. (4.15)
Combining (4.14) and (4.15), we conclude that h(7) € GE*(N). O
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Based on the above theorem, the generalized eta-quotients in GE*°(N) are determined by the
solutions of (4.5). Next we show that (4.5) can be solved by transforming the conditions in (4.5) to a
system of Diophantine inequalities, so that we can obtain a finite set of generators of GE>(N).

Set )
N ged®(d, ;) Aig
Y 2 sz: de; *\ged(s, ;) .9
IN
0<g<(5/2]

for 1 <4 <e. It follows from (4.5) that y; € Nfor 1 <i<e—1and y. € Z. Let

2, ifgzOorg:%,

xs(9) =
1, otherwise,

and ag , = xs(9) as,q for any 0|V and 0 < g < |6/2]. By (4.2), it can be easily checked that each aj

9
is an integer. Then by Theorem 4.1, k(1) € GE*(N) if and only if aj , (6|N,0 < g < |6/2]) and y;
(1 <i <€) is an integer solution of the following Diophantine inequalities:

> a:;,o =0,

SIN

N ged®(8e1) Mg ) g
> 2 T Planiey )t =0
0<g<|s/2]

N ged?(J,ee—1) Ae—1g asy _
2 %\r o1 Py ged(6ec—1) ) xalg) Y1 = 0,
0<g<|é6/2]

N ged?(8,e0) Aeg g
2 a%:v dee P ged(0.e0) ) xolg) e = 0,
0<g<|5/2]

9120,

(4.16)

Ye—1 Z 0.

Notice that different cusps may have the same order for h(7), there may exist redundant relations in
above system of relations. More precisely, if for two cusps s;,s; € S(N) \ {oo},

ords, (h(r)) = ords, (h()),

then we may ignore the relations contributed by s;. We now assume that after the elimination of
redundant relations, the remaining relations are still in the same form as in (4.16). It is known that
there exist integral vectors ay, ..., a such that the set of integer solutions of (4.16) is given by

{uraq + - +ugag: ug, ..., up € N},

see [44, p. 234], which implies that GE*(N) has a finite set of generators 21, ..., z;x. One can use the
package 4ti2 [1] in SAGE to find such a set of integral vectors ag, ..., ag.

Let us consider the case N = 10 as an example. Notice that for any generalized eta-quotient h(7),

ordy /4(h(7)) = ordy j2(h(7))
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and
ordg(h(7)) = ordy /3(h(7)).

By (4.16), we obtain the following Diophantine inequalities after eliminating the relations contributed
by the cusps 1/2 and 1/3:

! ! / Vi _
aig+azg+asy+agy =0,

! ’
5aj ¢ 5ay g 51121

: : %70%1 m
12+24+ +12+ +

!’
@10,0 aio,1 aip,2 a10,3 aip,4 a105 o
+5r Tt T % Tt y1 =0,

5aj, 5“20 5a5,

o T _24+24+12+12

(4.17)

12 12 12 6 —ys =0,

_,'_“10,0 alo,l a10,2 “10,3 ‘110,4 al() 5

’ ! !
a0 a3,0 ’12 1 5‘15 0 “5 1 1las o
24 + 12 24 + 24 + 60

5al,0 23 a3, alo,2 13“‘10.3 1lalg, 5“10 5
Tt~ t3 " T3 —Ys=0

ylZOa

ys > 0.

Each solution (a} g, ..,a395,¥1,---,¥6) of (4.17) can be expressed as

5 6
D i+ Y di, (4.18)
i=1 i=1

where cq, ..., c5 are nonnegative integers, di, ..., ds are integers and
1,2,0,1,2,0,—2,—4,0,0,0,0,0,1,0,0,0, —2),

1,-1,0,3,4,0,—1,-3,0,0,0,0,0,0,1,0,0, 1),

)

1,-2,0,-1,2,0,2,—4,0,0,0,0,0,0,0,0,1,—1),

=(1,0,0,1,-2,0,—2,-1,0,0,0,0,0,0,0,1,0,—1),
0,0,0,—1,0,0,1,0,0,0,0,1,0,0,0,0,0,0),
1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0),

= (-

(=

= (

(

= (4,-3,0,0,2,0,~1,-4,0,0,0,0,1,0,0,0,0,-2),
= (

= (-

(=

By = (0,-1,0,0,1,0,1,-1,1,0,0,0,0,0,0,0,0,0),
(=

1,1,0,1,0,0,-1,1,0,1,0,0,0,0,0,0,0,0),
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86 = (0,0,0,0,—1,0,0,1,0,0,1,0,0,0,0,0,0,0).

Since a5y = aj,/Xxs(g), we obtain eleven generalized eta-quotients. It can be checked that the
generalized eta-quotients corresponding to f1,..., 8¢ are equal to 1. For example, the generalized
eta-quotient corresponding to (3 is given by

h(r) = =222 2200 © (4.19)

Invoking (1.12), namely,

775,0(7—) = 7)2(57) and 776,%(7-) = ’172((57') :

we obtain that h(7) = 1. The generalized eta-quotients corresponding to as, ..., a5 are the generators
21, 22, 23, 2, 24 as given in (3.2).

5. Radu’s Algorithm AB

In the previous section, it was shown that GE*°(N) admits a finite set of generators zi,...,zk.
Radu [37] developed the Algorithm AB to produce a module basis of (E°°(N))g, based on a finite
set of generators of E°°(N). In this section, we demonstrate how to apply Radu’s Algorithm AB to
a finite set of generators of GE*(N) to derive a modular function z and a module basis 1,e1, ..., €y
of the Q[z]-module (GE>(N))q.

We first give an overview of Radu’s Algorithm AB. Given modular functions z1, ...,z for To(NV)
with poles only at infinity, Radu’s Algorithm AB aims to produce a modular function z € Q|z1, ..., 2]
and a z-reduced sequence ey, ..., e, € Q[z1,..., 2] such that

Qlz1, .-, 2z1) = Q2] + Q[z]ler + - - - + Q[z]ew. (5.1)

The condition on a z-reduced sequence ensures that 1,e1, ..., e, form a Q[z]-module basis of Q[z1, . . ., zk].
The right hand side of (5.1) is denoted by (1,e1,...,€w)q[-

Let (E°°(N)), denote the vector space over Q generated by £°°(N). As pointed out by Radu [35],
(E°°(N))q does not have a finite basis as a vector space over Q, but it has a finite basis when considered
as a Q[z]-module for some z in (E°°(N))q. To obtain such a modular function 2 and a Q[z]-module
basis, Radu applied the Algorithm AB to the generators z1,...,z; of E°°(N), then obtained a z-
module basis 1, €1, ..., e, of the Q[z]-module (E*°(N))q for some z € (E*°(N))q.

As will be seen, Radu’s Algorithm AB can be adapted to I';(N). The output of Algorithm AB
consists of a modular function z € Q[z1,. .., 2;] and a z-reduced sequence ey, ..., e,. The output of
the Algorithm AB will be carried over to the Algorithm MC and the Algorithm MW, which require
the input of a z-reduced sequence. Thus, for the purpose of this paper, we do not need to elaborate
on the definition of a z-reduced sequence, which can be found in [35].

It is known that if f is a modular function for I'g(/V) such that ord,,.(f) > 0 for every cusp a/c
of To(N), then f is a constant, see Newman [28, Section, Proof of Lemma 3], Knopp [25, Chapter 2,
Theorem 7], and Radu [35, Lemma 5]. Notice that this assertion also holds for I'y (V). Thus the Algo-
rithm AB applies to modular functions with poles only at infinity for I'y (V). It is worth mentioning
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that the Algorithm AB is based on the algorithms MC, VB and MB, which are also valid for modular
functions with poles only at infinity for I'; (N). Since the Algorithm MW of Radu is a refinement of
the Algorithm MC, it also works for I'y (V).

We proceed to find a modular function z and a module basis of Q[z]-module (GE*(N))q. Let
{#z1,...,2} be a finite set of generators of GE*° (). Note that

<GEOO(N)>Q :Q[Zh,Zk] (52)

Applying the Algorithm AB to z1,22,..., 2, we obtain a modular function z € (GE*(N))q and a
z-reduced sequence e, ..., e, € (GE®(N))q such that

Qlz1,. -5 2ze) = (L,e1,. .., ew)q- (5.3)
Combining (5.2) and (5.3), we find that
<GEOO(N)>Q = (Ler,... 76w>@[5]‘

Using the property that eq,es,.. ., e, form a z-reduced sequence, we deduce that 1,eq, ..., e, consti-
tute a Q[z]-module basis of (GE™(N))q.

For example, applying the Algorithm AB for T';(N) to the generators z, 21, 22, 23, 24 of GE®°(10)
given by (3.2), we obtain that

(GE=(10))g = Q[2]. (5.4)

6. Finding a Generalized Eta-Quotient

In this section, we present an implementation of Step 4 in the algorithm outlined in Sect. 3.. Assume
that {z1, 22,..., 2} is a set of generators of GE*(N) and F'(7) is a modular function for I'; (N) as
given in (3.1). Our objective is to find a generalized eta-quotient h(7) of the form

k
ner) =[] 2. 6.1)

such that the modular function hF' has a pole only at infinity, that is, for any cusp s # oo,
ords(hF) > 0, (6.2)

where ¢; are integers. To find the integers t; for which the relation (6.2) holds, we shall establish a
system of linear inequalities any solution of which leads to a desired generalized eta-quotient h. The
linear inequalities are derived by the lower bounds of ord,(hF) for all cusps s # oc.

Now we utilize Theorem 2.7 to obtain the lower bound of ords(hF'). Let
S(N) ={s1,82,...,8¢}

be a complete set of inequivalent cusps of I'1(N) and s¢ = co. For any 1 <i <eand 1 < j <k,
denote ords, z; by b;;. By the definition (6.1), we have for each cusp s;,

k
ord,, (hF) = " t;b;; + ord,, (F). (6.3)
j=1
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By Theorem 2.7, we see that for any 1 <1 <,
ords, (F(1)) = d;, (6.4)

where
di = wa, (p(ei) +p* (i),
and «; is defined in Theorem 2.7. Combining (6.3) and (6.4), we get

k
ordsi(hF) > Z tjbij + d;. (65)
j=1
Consider the Diophantine inequalities

k
Z tjblj +dy > -1,
j=1

(6.6)

o

tjb(g_l)j +de_q1 > —1.
=1

J

Now, if we can find integers t1,...,t; such that (6.6) holds, then (6.5) implies that the generalized
eta-quotient h(7) determined by z1, 29, ...,2; and t1,ts, ..., 1t satisfies (6.2). Hence we deduce that
any integer solution of (6.6) leads to a generalized eta-quotient h(7) such that hF has a pole only at
infinity.

We note that different generalized eta-quotients h may lead to different expressions for F. In
order to get a relatively simple expression for F', we impose a further condition that the order of
hF at infinity is as large as possible. While we cannot rigorously describe what a simple expression
means, intuitively speaking, the above condition appears to play a role in getting a relatively simple
expression for F. Next we state how to find such a generalized eta-quotient h(7).

It is known that there exist integral vectors ag,...,,B1,.-.,8; such that the set of integer
solutions of (6.6) is given by

{a; +vipr1+--+upfi:1<i<wanduv,...,u €N} (6.7)
see [44, p. 234].

The following theorem shows how to find a generalized eta-quotient h such that ord., (hF') attains
the maximum value among all the h satisfying (6.6).

Theorem 6.1. For 1 <i <w, let
Qg = (Oéil, iy ..ty aik)a
as given in (6.7). Let h; be the generalized eta-quotient determined by z1, 22, ..., 2k and «;, that is
k
hi(r) =] = (6.8)
j=1

Assume that

orde (h1F') > orde (hi F') (6.9)
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for 2 < i < w. For any integer solution p = (u1,pe,...,ux) of (6.6), let g be the generalized
eta-quotient

k
g(r) =12 (6.10)
j=1
Then we have

ordeo (R F') > ordo (gF).

Proof. By (6.7), there exist an integer 1 < ¢ < w, and nonnegative integers vy, ..., v; such that
w=o;+viB+ - Fufb. (6.11)
For 1 <5<, let

6] = (/lea/Ban cee 7Bjk)-
and let f; be the generalized eta-quotient defined by

fi(r) = [T (6.12)

Combining (6.8), (6.11) and (6.12), we obtain that

l
g(r) =h [] 1}
j=1

Thus,

l

ordeo (gF) = ordeo (R F') + Z vjordes (f;). (6.13)
j=1

Under the condition (6.9), it follows from (6.13) that

l

ordeo (¢F) < ordeo(h1 F) + Z vj0rdo (fj)- (6.14)
j=1

We claim that for each 1 < j <1,
ords(f;) < 0. (6.15)
There are two cases.
Case 1. If f;(7) is a constant, then ords(f;) = 0.

Case 2. If f;(7) is not a constant, we shall show that ord.(f;) < 0. Assume to the contrary that
ordes(fj) > 0. Since f;(7) is not a constant, there exists a cusp s # oo such that ord,(f;) < 0. By the
assumption (6.2), we have ords(hi1F) > 0. Let d = ords(h1F'). By (6.7), we see that oy + (d + 1)3; is
a solution of (6.6). It follows that the generalized eta-quotient f]‘“lhl satisfies (6.2), and so

ord,(f{*'h F) > 0. (6.16)
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However, since ord,(f;) < 0, we have
ordy (f§T'h F) = (d + L)ord,(f;) + d <0,

which contradicts (6.16). Thus we deduce that orde(f;) < 0, as claimed. Combining the above two
cases, we find that (6.15) holds for each 1 < j <. In view of (6.14), we conclude that

orde (gF) < orde (b1 F), (6.17)
and this completes the proof. O

For the overpartition function p(5n + 2), we have found a modular function F'(7) for I';(10) as
given in (2.4). For the generators z, z1, 22, 23, 24 of GE*°(10) as given in (3.2), we obtain the following
system of linear inequalities (6.6):

ts —3 > —1,
ts+ 2> -1,
tg—2>—1, (6.18)
ty — % > —1,
t+ & > -1

Each integer solution (t1,te, t3,t4,t5) of (6.18) can be expressed as

5
ap + Z ;i Bi, (6.19)

where v1,...,v5 are nonnegative integers, and
=(-6,2,—4,3,3),
=(1,0,0,0,0),
=(0,1,0,0,0),
Bg =(0,0,1,0,0),
B4 =(0,0,0,1,0)
=(0,0,0,0,1).

)

The generalized eta-quotient corresponding to a; is

2.3.3 11 T 12 T 15 107
. zl§3Z4 _ 777 ( )775191( n 1£ ) (6.20)
LD n*(27)n (57)7710,1(7')
and hF has a pole only at infinity. Consider a different solution p = a3 + 282 = (6,4, —4,3,3) of
(6.18), we get a generalized eta-quotient

. z%zg’z;} _ 779(7')77%,61(7)7711(107) (6.21)
2z w32 (G)nig (1)
and h'F has a pole only at infinity. The orders of hF and h'F at infinity are —3 and —7, respectively.

As will be seen in the next section, the Ramanujan-type identity derived from AF takes a simpler
form than that derived from h'F.
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7. Ramanujan-Type Identities

Given a partition function a(n) as defined by (1.1), and integers m and t, let

F(7) = ¢(T) g +(7) (7.1)

be a modular function as given in (3.1), where ¢(7) is a generalized eta-quotient of the form (2.2),
and

oo
¢
gmt TZ mn+t

as given in (2.1).

Assume that we have found a generalized eta-quotient h(7) such that hF' has a pole only at infinity.
In Sect. 5., we derived a modular function z € (GE* (N))Q and a z-reduced sequence e, ..., e, such
that

(GE™(N))q = Q[z] + Q[zler + - - - + Q[z]ew

In this section, we aim to derive an expression for hF in terms of z and the module basis 1,eq,..., €.
This leads to a Ramanujan-type identity for a(mn + t).

We first adapt Radu’s Algorithm MC, original designed for To(NV), to I'1(N), and apply it to
hE, z and e1,... €, to determine whether hF belongs to (GE*(N))g. By Radu [35, Lemma 5],
the Algorithm MC requires the non-positive parts of the g-expansion of hF', and finite parts of the
g-expansions of z, and ey, ..., e,. More precisely, by (7.1), the non-positive parts of the g-expansion
of hF can be computed via the generating function (1.1) of a(n) and the g-expansions of h(7) and
¢(7). If the algorithm confirms that hF" € (GE*(N))q, then we may utilize the I'1(IV) version of
Algorithm MW to express hF as

hF =po(z) + p1(z)er + - + puw(2)ew, (7.2)
where p;(z) € Q[z] for 0 < i < w.

To this end, we first utilize the Radu’s Algorithm MC for I'; (V) to determine whether hF' belongs
0 (GE*(N))q- Once we have confirmed that hF" € (GE®(N))q, we may utilize the Algorithm MW
of Radu for I'; (V) to derive a Ramanujan-type identity for a(mn + t).

We now give an algorithmic derivation of the Ramanujan-type identity for p(5n + 2), as stated in
Theorem 3.1.

For F, z and h given in (2.4), (3.2) and (6.20), we have

4 28 56
hEF = — + = + — + 140+ O(q),
¢ ¢ g

1 .
z:§+2+2q+q2+0(q3).
Applying Radu’s Algorithm MC to hF and z, we deduce that

hF € (GE™(10)),
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With the input AF and z, the Algorithm MW yields
hF = 42° 4+ 42% — 322 + 32. (7.3)

Substituting F', z and h into (7.3), we obtain the Ramanujan-type identity in Theorem 3.1. However,
if we take h' as given in (6.21), then we get

R'F =427 — 425 — 442° + 1002 — 202% — 9222 + 322 4 32. (7.4)

In the same vain, we obtain a Ramanujan-type identity for p(5n + 3).

Theorem 7.1. We have
y Y p(dn+3)q" = 82° — 1227 4 162 — 16,

n=0
where z is given in Theorem 5.1 and
_ (@02 ¢°)2(¢% 0" % (a*, ¢% ")
¢*(¢% ¢*)%(4, 4% ¢°)% (4" ¢") (% ¢10) 58

Notice that Theorem 3.1 and Theorem 7.1 can be considered as witness identities for the following
congruences of Hirschhorn and Sellers [24]:

p(bn+2)=0 (mod 4),

p(bn+3)=0 (mod 4).

8. A Witness Identity for p(11n + 6)

In this section, we demonstrate how our algorithm gives rise to a witness identity for p(11n + 6).
We begin with an overview of the witness identities due to Bilgici and Ekin [8], Radu [35] and
Hemmecke [20]. Bilgici and Ekin [8] used the method of Kolberg to deduce the generating functions
of p(11n +¢t) for all 0 < ¢ < 10. In particular, they obtained the following witness identity:

oo
Zp(lln +6)¢" = Na(—2iry — abrs — viws — ahw) — v3205 — 14aTny
n=0

— 1435%1‘5 — 143031‘2 — 14.27%5(51 — 1435%:53 — 292124
—292915 — 29x9x4 — 292123 — 29325 + 106) , (8.1)

where

q* (g g )L
(q: )12

)

r]p = —

(% % "2 (%, % ")
(4, ¢'% ¢")2 (63, 6% ¢ ) oo
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(0, a"% "2 (6%, 6% ¢ )

T3 = )
(¢*, 4% 4" )04, 45 )2,
_ (@8 a0 )@, 0% a5
1(¢%, 4% q") oo (@3, % ¢11)2
vy = 0750 oo (@ % 01N
(¢*, 4% ¢")2.(4, 4% ¢" ) o

Using the Ramanujan—Kolberg algorithm, Radu [35] derived a witness identity for p(11n + 6). A set
{My, Ms, ..., M7} of generators of E>°(22) can be found in [35]. For example,

P
M= ey 22n)

Let
1, giny11
> Zp(11n+6)q”.

n=0

(4:0)22(q% ¢*)% (g

F =
4 (¢%2;¢*)2%2

Radu showed that
F = 11(98* + 1263t + 2877¢> + 1019t — 1997)

+ 1121 (17t + 490> 4 54t — 871)

+ 112o(t + 2512 + 488t — 614), (8.2)
where
t= %Ml + %Mz - %M47
B = My + My — M -3,
SR VARE YRR I7N

Noting that (1 — ¢™)'' =1 — ¢''" (mod 11) and (1 — ¢")® = (1 — ¢*")* (mod 8), we see that (8.2)
implies the Ramanujan congruence for p(11n + 6). Hemmecke [20] generalized Radu’s algorithm and
derived the following witness identity:

F =117 - 3068 M7 + 112 - (3M; + 4236) M
411 - (285M + 11 - 5972) M5 + 11(1867M; + 11 - 2476) M,
11

(M3 +1011 M7 + 11 - 6588 M + 117 - 10880)

(M3? 411 - 4497 My + 11% - 3156) M. (8.3)

8
L1
8

We are now ready to give an algorithmic derivation of the identity for p(11n + 6) as stated in
Theorem 1.1.
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Proof of Theorem 1.1. Notice that N = 11 satisfies all the conditions 1-7. We proceed with the
following steps.

Step 1. By Theorem 2.1, we find that

is a modular function for T';(11).

Step 2. Solving the system of Diophantine inequalities (4.16) for N = 11, we obtain a set of 27
generators of GE*(11) including z and e as given in (1.8) and (1.9).

Step 3. Applying Radu’s Algorithm AB, we deduce that

(GE=(11))q = (1, €)q[2)-

Step 4. By virtue of Theorem 2.7 and Theorem 6.1, we get

UG

h =
n*4 (117)77%%1 (7)77%?,2 (7')77%%,3 (7')77%1,4(7)

for which hF has a pole only at infinity.

Step 5. Employing Radu’s Algorithm MC and Algorithm MW, we deduce that hF' € (GE*(11))g

and
hF = 11219 + 12128 + 33027 — 48427 — 99028 + 4842%¢ + 79227
— 4842%¢ + 442% + 1089z2%¢ — 1322° — 145223¢ — 45124
+ 968z2%¢ 4 74823 — 242z¢ — 42922 + 772 + 11.
This completes the proof. O

9. Further Examples

In this section, we derive Ramanujan-type identities on the broken 2-diamond partition function. The
notion of the broken k-diamond partitions was introduced by Andrews and Paule [4] in their study
of MacMahon’s partition analysis. The number of broken k-diamond partitions of n is denoted by
Ag(n). They showed that the generating function of Ag(n) is given by

iAk(n)q" _ (@07 M o
2 (@ O (@ 7).

Andrews and Paule conjectured that

As(25n+14) =0 (mod 5). (9.1)
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Chan [9] proved this conjecture and also showed that
As(25n +24) =0 (mod 5). (9.2)

Define a(n) by
i o= (G950
- ("% 4"

Since (1 —¢")° =1 — ¢ (mod 5), we see that As(n) = a(n) (mod 5). By the Ramanujan-Kolberg
algorithm, Radu [35] obtained the following identity:

(6% ¢*)o (@ oo (i a(25n + 14)q”> (i a(25n+24)q">

20
0*(¢: )% (¢"% ¢" )2 \ =, oy

= 25 (2t + 28t + 155t + 400t + 400) , (9.3)
where

_ (3950 ¢
(4% ¢*)se (4" ¢"0)%,

The congruences (9.1) and (9.2) are easy consequences of (9.3). Let

_ (2%6%) (0 0°)%
a(4; 0)o0 (%05 ¢10)3,

Using the package RaduRK, Smoot [46] deduced that

126 70
qsg((;lv’qq) )Oo(?q 4 q)m)wo <Z Ay (250 + 14)q ) (Z Ag(25n + 24)q )

n=0 n=0

is a polynomial in z of degree 58 with integer coefficients divisible by 25. It is not hard to see that
the above relation implies the congruences (9.1) and (9.2).

Our algorithm provides the following witness identities for Ag(25n + 14) and Ay (25n + 24).
Theorem 9.1. Let

(4 D)oo (0% ¢°) o

Zz =
a(q,9% ¢°)% (1% ¢*)2 (¢, ¢°; ¢**)

Then
(@ 0)22(¢°; ¢°) 2(q, a*; 4°)22(q*, 4% ') %
a57(¢% 4?)38(q'%; ') 28 (q, ¢%; ¢1°) L9%(¢5; ¢10) 19 ZAz (26n + 14)¢" ©-4)
and

(4:9)22(q, 4 ¢°)%2(4°; ¢*)5,
(% 4*)22(4%; ¢°)2. (4% ¢*°)22(q, ¢°; ¢*°) 12%(q*, 4% ¢*0)

. f: Ay (25n + 24)q" (9.5)

X n=0

are both polynomials in z of degree 57 with integer coefficients divisible by 5.

34



More precisely, (9.4) equals
104452°7 + 650725052°¢ + 298851917002°° + 29095650723752°*
4 582327623179502°% — 7719099642706352°% — 89761962732015902°!
+ 168096305999838525250 — 5527040714295487502
— 628513325475335662521% 4 760771647501827244002*7
— 3508536058181040404002¢ + 4308441062119101840002%°
+ 43326657891404560200002** — 319655169776950101440002*3
+ 1165984870856275614784002%? — 2544989802546247081344002*
+ 2262397861509851067840002%° + 63014401034012071232000023°
— 327083593030021537996800023% + 78733775614487432738816002°7
— 1218875358870093434818560023¢ + 114091051869845027778560002%°
— 185337029584033105920000023* — 12922596637778941349888000233
+ 199938429750853276028108802%2 — 41366950013392606514380802°
— 405852585939203666870272002° + 10760797541397067019059200022°
— 1891702466672534538944512002%% + 2906737333779065141303705602>7
— 4294815009818847728998809602%° + 6146534261077993771237376002%°
— 8259581103375986563481600002%4 + 101409541784418149780684800022
— 11250281768666705483005952002%2 + 11293114594826080047071232002!
— 103362333839967646855987200022° + 8691367781774660101734400002"°
— 6720280635512210723962880002'® + 4734384419493687001612288002'7
— 2991900139595447777886208002'¢ + 1677984683379269702778880002*°
— 842235645088123951513600002* + 390067011017261281443840002"*
— 169496597078329259982848002'% + 65258041021420659539968002 1
— 19533587893358092615680002' + 4085678539007852544000002°
— 906723799096843304960002° + 4313298571561583771648027
— 138375332538683804876802° + 786549936580722688002°

4 7768401493958328320002* — 4829055069192192002°
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— 319604280743323238402% — 16124997728311705602

— 7036874417766400.

The explicit expression for (9.5) is omitted.

We end this section by noting that our algorithmic approach can be used to derive dissection
formulas on quotients in the form of (1.1), that is,

[ d%), (9.6)

5| M

where M is a positive integer and rs, 75, are integers. Let a(n) be the partition function defined
by (1.1), and let m be a positive integer. If our algorithm can be utilized to find a formula for the
generating function of a(mn + t) for each 0 < ¢ < m — 1, then we are led to an m-dissection formula
on the quotient (9.6). For example, the algorithm is valid to produce the 5-dissection formulas for

(¢;9) oo and m, see Berndt [6, p. 165].

10. More General Partition Functions

While many partition functions a(n) are of the form (1.1), there are partition functions that do
not seem to fall into this framework, such as Andrews’ (k,i)-singular overpartition function Q) ;(n).
Andrews [3] derived the generating function

o ki k—i. k
I (10.1)

In general, it is not always the case that a quotient on the right hand side of (10.1) can be expressed
in the form of (1.1).

The objective of this section is to extend our algorithm to partition functions b(n) defined by
oo
> by =[5 )2 [ (@ %)%, (10.2)
n=0 §|M s|M

0<g<s

where M is a positive integer and rs, 75 4 are integers. In fact, for any £ and 1 <i < %, (10.1) can be
written in the form of (10.2):

2k—2i. 2k
47" ) oo

, (10.3)

i@k (n)q" = (quQk)oo(QQ?,q _
= (4300 (0%, 4F 13 ¢F)

where M = 2k,
-1, 6=1, -1, d=k,g=1,
rs =141, 6=k, and 754 =11, 6 =2k, g = 2i,
0, otherwise, 0, otherwise.
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Analogous to the generating function g,, +(7) in Sect. 2. as given by Radu [37], we adopt the same
notation for the generating function of b(mn + t):

t—¢ e
gmi(T) =¢q™ Z b(mn +t)q", (10.4)

n=0

where ) 5
g
{=—— 5’/’5 — 7P2 (*) Ts,g-

0<g<sé

As before,

1
R0 = (1~ () +
and {t} is the fractional part of ¢.

To derive a Ramanujan-type identity for b(mn + t), we follow the same procedure as in Sect. 3..
There are only a few modifications that should be taken into account in order to extend Theorem
2.1 and Theorem 2.7 to the generating function g, ¢(7) in (10.4). The proofs are similar to those of
Theorem 2.1 and Theorem 2.7 and hence are omitted.

Let ¢(7) be a generalized eta-quotient and F' = ¢(7)gm,(7). Similar to Theorems 2.1, we give a
criterion for F(7) to be a modular function for I'y(N). Let x = ged(m? — 1,24). First, we assume
that NNV satisfies the following conditions:

1. M|N.
2. p|N for any prime p|m.

3. kN > 4rs;4=0 (mod 2).
024%s

4. kN > 7154 =0 (mod 4).
0Lo<s

5. kmN? Y %2 =0 (mod 12).
0do<s

6. kN > rs =0 (mod 8).
SIM

7. kmN? Y T8 =0 (mod 24).
SIM

24m M
8. ged(ka(t),24mM) |N’ where

alt) = -MY brs—12M S 6Py (%) rs.g — 24Mt.

SIM 5|
0<g<s

9. Let [Ism §Imsl = 275 where z € N and j is odd. If 2|m, then kN = 0 (mod 4) and Nz = 0
(mod 8), or z =0 (mod 2) and N(j —1) =0 (mod 8).
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10. Let S,, = {j% (mod n): j € Zy, ged(j,n) =1, j=1 (mod N)}. For any s € Sosmur,

8;1125T5+(5_1) > 5P2 (%)Ts,g-ktszt (mod m).

2
S|M 5| M
0<g<sé

For a given partition function b(n), and given integers m and ¢, such a positive integer N always
exists, because N = 24mM satisfies the conditions 1-10. For example, for Andrews’ (3,1)-singular
overpartition function @371 (n), and for m = 9 and t = 3 we have N = 6. Compared with the conditions
in Sect. 2., the conditions 3-5 are required to deal with the generalized eta-quotients.

Theorem 10.1. For a given partition function b(n) as defined by (10.2), and for given integers m
and t, suppose that N is a positive integer satisfying the conditions 1-10. Let

(1) = ¢(7) gm 1 (7),

where

o(r)=]In"@r) JI us5 ().

SN SIN
0<g<[5/2]

and as and as 4 are integers. Then F(7) is a modular function with respect to T'1(N) if and only if as
and as g satisfy the following conditions:

(1) Sas+ > rs=0,

S5IN 8| M

(2) N> % 42N Y L4 Nmd Z+2Nm > 22 =0 (mod 24),

6N SN 5| M 5| M
0<g<lé/2] 0<g<sé

(3) Ydas+12 > P (%) as,g +m Yy ors

5| SN 5| M
0<g<15/2]

+12m Y 6Py (€) s+ (m*~Da(t) _ g (mod 24),

mM
S|M
0<g<é
where g
alt) = ~MY brs —12M S 6P, (5) rs.g — 24Mt,
S|M 5|M
0<g<s

(4) For any integer 0 < a < 12N with ged (a,6) =1 and a =1 (mod N),

Jas] Irol 52 5 mi(§- 1) a1 S mi(4-4) a1
H <5> H (M) 6zS|N 92:: m 572 (ll_ )aévg—‘ré%{gz::lﬂl s 2 ((1— )Ts,g
a

1

a

§|N 5| M

In the notation p(vy,A) and p(v) in (2.19) and (2.20), we define the map p: I' x Z,,, — Q by

1 ged?(8(a + kXe), me)
p(f}/’ >‘) - 24 Z rs

om
S|M
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1 ged?(8(a + kXe), me) (a+ kAc)g
= P
+ 52“; om *\ ged(8(a + KAc), me) o9
0<g<s
and define p(vy) by
p(y) = min{p(y,A) : A=0,1,...,m — 1}. (10.5)

Parallel to Theorem 2.7, we obtain lower bounds of the orders of F(7) at cusps of I'; (V).

Theorem 10.2. For a given partition function b(n) as defined by (10.2), and for given integers m
and t, let

where
. a
o(r)=]In"@m) I w5y (),
5N 3N
0<g<lé/2
as and a4 are integers. Assume that F'(1) is a modular function for I'1(N). Let {s1,52,...,5.} be a

complete set of inequivalent cusps of T'1(N), and for each 1 <i <, let a; € " be such that a;00 = s;.
Then

ords, (F(7)) 2 wa, (p(es) + p* (), (10.6)
where p(7y) is given by (10.5) and p*(v) is defined in Lemma 2.0.

For a given partition function b(n), and given integers m and ¢, assume that we have found a
generalized eta-quotient ¢(7) such that

F(7) = ¢(T) gm i (T) (10.7)

is a modular function for I'1 (N). Utilizing the algorithm in Sect. 3., we try to express F(7) as a linear
combination of generalized eta-quotients with level N. If we succeed, then we obtain a Ramanujan-
type identity for b(mn +¢). Note that Theorem 10.2 is needed to find a generalized eta-quotient h(7)
such that hF" has a pole only at infinity.

For example, we can derive Ramanujan-type identities on the singular overpartition function in-
troduced by Andrews [3]. The number of (k,i)-singular overpartitions of n is denoted by @ ;(n)
(1<i< %) For k=3andi=1, (10.3) specializes to

i@ (n)g" = (0% ¢%)oc(?, 4% ¢%)
) = .
= (4 9)0 (4, % ¢*) o

When applied to the above generating function, our algorithm produces the Ramanujan-type identities
on 3 1(9n +3) and Q3 1(9n + 6) due to Shen [45].

Theorem 10.3. We have

(g:9) %2 o~ n
(a2 42)3 (a3 3)8. (¢ ¢°)3, 2_ Qo (9n+3)q" =62+ 9

n=0
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and

(g;0)82 — =
Q3 1(9n 4+ 6)¢" = 24z + 96,
(P P @)L 2 O

where

(0% 0*)3. (6% ¢*)2

Z = .
q(4;9)3.(q% %)%

Our extended algorithm can also be used to derive dissection formulas on the quotients in the form
of (10.2), that is,

T2 T (@0 %), (10.8)

s1M 0Z9<s
where M is a positive integer and rs, r5, are integers. Let b(n) be the partition function defined
by (10.2), and let m be a positive integer. If our algorithm can be utilized to find a formula for the
generating function of b(mn+t) for each 0 <t < m—1, then we are led to an m-dissection formula on
the quotient in (10.8). For example, we get the 2-, 4-dissections of the Rogers—Ramanujan continued
fraction [2,21,27,40], the 8-dissections of the Gordon’s continued fraction [22,49] and the 2-, 3-, 4-,
6-dissections of Ramanujan’s cubic continued fraction [23,47].

We now demonstrate how to deduce the 2-dissection formula for the Rogers-Ramanujan continued
fraction: ) 5
q q
T + T + .

Rogers [42, p. 329] showed that
(4% 4% ¢%) o
R(q) = ——F——F—. 10.9
@ (4,9%6°)os (109)

The following 2-dissection formulas of Ramanujan [40, p. 50] were first proved by Andrews [2]. With
respect to the quotient in (10.9), we have to count on the extended algorithm because (10.9) cannot
be expressed in the form of (1.1).

Theorem 10.4. We have

R(q) _ (q87q12; qQO)Zc ey (q27 q18; qZO)OO(qS’ q12; q20)oo (10 10)
((]6’(114;q20)00(q10,qlo;q20)oo (qzl’qlﬁ;q20)00(q107qlo;q20)oo
and
4 16, ,20)\2 4 16. ,20 6 14. 20
R(q)fl: (q,q 5 4 )oo 7q(Qaq Y )OO(Qﬂq 5 4 )OO (1011)

(,0"%:0%) (0", 0"% ¢*) e (0%,¢"%:6%°) 0 (0", ¢"%5 ¢%°)

Proof. As far as (10.9) is concerned, we have M =5, r5 1 = —1 and r52 = 1. We find that N = 10
satisfies the conditions 1-10. Let r(n) be defined by

R(g) =Y r(n)q".

n=0
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Employing our algorithm, we obtain that

o0

2

2123 "o, (7)
Z T(Qn)qn — 3 S R
222 7710,4(7)

n=0
and
8
i r(2n +1)¢" = 20 Moalr)
— 223 iy 5(7)

where z, z1, 2o and 23 are given in (3.2). A direct computation yields (10.10). Similarly, we get
(10.11). This completes the proof. O

Gordon [17] showed that

2 4 6 3 5.8

q q q (°,4°:0%) 0
1 = 1088 Joo 10.12
+q+1+q3+1+q5+1+q“r (4,475 ¢%) o ( )

Using our algorithm, we deduce the following 8-dissection formulas of Hirschhorn for (10.12) and
its reciprocal, see [22, pp. 373-374].

Theorem 10.5 (Hirschhorn [22]). We have

(*,¢%d%) ,  (—a* —a** —a®, 4", ¢* ¢** ¢™)
(4,473 4%) oo (4%, %%, ¢5,¢%4, 432, ¢32%; ¢32)
(_q16’ g2, gl g8 51 464, qﬁ4>oo
(q19, 4%, 4%, ¢**, ¢*%, ¢%4, ¢5%; ¢5%)
(7q16’ T (R L q64)oo
(q8 q16 q16 q24 q32 q64. q64. q64)
b b 9 b b b b o0
1o (=% —q"% =%, =%, 4%, %% ¢5)
(4%,¢%, ¢, ¢**, 432,432, ¢32)
s (=% —q"% =", =%, ¢%*, %% ¢")
(@%, 6%, ¢®, ®*, °2, %%, ¢3?) o
o (=% —q"% =", =%, ¢%*, %% ¢5) _
(qS’ qu7 q16 q24’ q32 q32. q32) 4
) ) Y o0
(0:0%4%) o (—=4"% —a*, =" —¢*,¢%*, ¢*% ¢%)

(@3,¢° %) o (@3, 6%, ¢**, ®*, *%, 3%, ¢3?) o

(—qlﬁ, g, g™, g8, 5t g5, q64>oo
(4%, 4%, ¢, %, ¢%2, 432 ¢%2)

5 (=% =% —¢* =%, 4%, %% ¢

(4%, 4%, ¢", ¢4, ¢%2, %%, ¢%2)

+4q

+q2

_2q

—q

—4q

—q

t4q
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g (=% —4", =, 4%, ¢, ¢*4: ¢**)
(03,65, ¢®*, ®*, ¢*2,¢°2; ¢3?) o

P (=% 4", =", —¢%, ¢, ¢*% %)
(¢, 4%, 15, ¢%4, ¢%2, 432, ¢32)

. (—q24, g0, B4 g g6 g6a q(m)Oo

(43,4, ¢, ¢, 432,432, ¢%2)

_2q

Ramanujan’s cubic continued fraction is defined by

a+¢ P+t
_|_ 1 + 1 _|_...7

1
1

which equals

(¢:4%4°%) .

’ 10.13
(3,63 4%) ( )

see [40, p. 44]. Applying our algorithm to (10.13) and its reciprocal, we are led to the 2-, 3-, 4- and
6-dissection formulas in Theorem 1.1-Theorem 1.4 in [23].
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