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Abstract

We develop a nonstandard approach to exploring polynomials associated with peaks and
runs of permutations. With the aid of a context-free grammar, or a set of substitution rules,
one can perform a symbolic calculus, and the computation often becomes rather simple.
From a grammar it follows at once a system of ordinary differential equations for the gener-
ating functions. Utilizing a certain constant property, it is even possible to deduce a single
equation for each generating function. To bring the grammar to a combinatorial setting, we
find a labeling scheme for up-down runs of a permutation, which can be regarded as a re-
fined property, or the differentiability in a certain sense, in contrast to the usual counting
argument for the recurrence relation. The labeling scheme also exhibits how the substitution
rules arise in the construction of the combinatorial structures. Consequently, polynomials on
peaks and runs can be dealt with in two ways, combinatorially or grammatically. The gram-
mar also serves as a guideline to build a bijection between permutations and increasing trees
that maps the number of up-down runs to the number of nonroot vertices of even degree.
This correspondence can be adapted to left peaks and exterior peaks, and the key step of the
construction is called the reflection principle.

Keywords: Context-free grammars, grammatical calculus, peak polynomials, up-down runs,
alternating permutations, increasing trees.
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1 Introduction

We present a grammatical approach to studying peaks and runs of permutations. This is a
classical topic in enumerative combinatorics, which has been extensively investigated for
decades, see Bóna [1]. By injecting labels or variables into the conventional procedure of
deriving recurrence relations, one obtains a set of substitution rules, or a context-free gram-
mar. A grammar is more than just a recurrence relation, it offers a ground for a grammatical
calculus, or a symbolic calculus in a rigorous sense, which can be quite efficient in acquiring
generating functions. Besides, a grammar may shed light on the construction of a correspon-
dence between two objects that have a grammar in common. Armed with the grammar, we
find a bijection between permutations and increasing trees that maps the number of up-down
runs and the number of peaks to the number of vertices subject to certain degree conditions.

To be more specific, for n≥ 1, let σ = σ1σ2 · · ·σn be a permutation of [n] = {1,2, . . . ,n}.
A left peak of σ is an index i such that 1 ≤ i ≤ n− 1 and σi−1 < σi > σi+1, under the
convention that σ0 = 0. An interior peak of σ is an index i such that 2 ≤ i ≤ n− 1 and
σi−1 < σi > σi+1. An exterior peak or an outer peak of σ is an index 1 ≤ i ≤ n such that
σi−1 < σi > σi+1 with the understanding that σ0 = σn+1 = 0.

For n ≥ 0, the left peak polynomials, interior peak polynomials and the exterior peak
polynomials are denoted by Ln(x), Mn(x) and Wn(x), respectively. Let L(x, t), M(x, t) and
W (x, t) be the exponential generating functions of Ln(x), Mn(x) and Wn(x), respectively.
David-Barton [7] established partial differential equations for L(x, t) and M(x, t), and found a
solution requiring one more step of integration. An explicit expression of L(x, t) was given by
Gessel, see [5, 6, 16]. A formula for M(x, t) can also be deduced from a generating function
of Carlitz-Scoville [3]. Note that W (x, t) can be easily deduced from M(x, t). Alternative
proofs of the formulas for L(x, t) and M(x, t) have been given by Zhuang [16].

The grammar for the left peak polynomials Ln(x) was discovered by Ma [11] via a re-
currence relation and independently by Chen-Fu [5] with a grammatical labeling. Ma [11]
further noticed that this grammar can be employed to generate the interior peak polynomials.
Below is the concerned grammar

G = {x→ xy, y→ x2}. (1.1)

Let D denote the formal derivative with respect to G, or equivalently, D can be perceived as
a differential operator

D = xy
∂

∂x
+ x2 ∂

∂y
. (1.2)

Notice that the operator D is a derivative so that the Leibniz formula holds, and this property
makes it possible to perform the grammatical calculus with combinatorial motivations, see
[4, 5, 8]. As remarked by Dumont [8], there are advantages to view G as a set of substitution
rules. In fact, the setting of a grammar captures the combinatorial significance of a recursive
procedure.
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Despite previous attempts to explore the peak polynomials by means of a grammar, the
story does not seem to be complete. For example, the authors were nearly there in obtaining
a direct derivation of the generating functions solely by conducting the grammatical compu-
tation, but we missed the ultimate goal of reaching a sound understanding of the hyperbolic
functions appearing in the formulas. This regret or oversight is now redeemed by considering
the inverse of a generating function and by exploiting a constant property in a grammatical
sense. It turns out that the constant property often facilitates the computation of a generating
function.

One feature of the grammatical calculus is that we need to work with the bivariate ver-
sions of the peak polynomials. As far as the coefficients are concerned, the variable y is only
a figurehead. But it is just the opposite that in the grammatical calculus the variable y in
its own part is as equally important as x. In fact, with the company of the grammar, it is a
pleasant journey to reach bivariate versions of the generating functions for the three kinds of
peak polynomials. Meanwhile, this explains why the hyperbolic functions crop up with no
need to mention differential equations.

As a bonus of the grammatical calculus, we get a simple relationship between the gen-
erating functions of the left peak polynomials and the exterior peak polynomials. In the
context of peak polynomials, we illustrate how a grammar can be automatically translated
into a system of ordinary differential equations of the generating functions. In light of a cer-
tain constant property, we may even deduce a single ordinary differential equation for each
generating function.

Then we move on to the number of up-down runs of a permutation. The peaks and runs
are closely related objects. For a permutation σ of [n], we assume again that a zero is patched
at the beginning, i.e., σ0 = 0. An up-down run of σ is a maximal segment (a subsequence
consisting of consecutive elements) that is either increasing or decreasing. If we drop the
assumption σ0 = 0, then a maximal increasing or decreasing segment is called an alternating
run. For example, the permutation 375861492 has six up-down runs:

0 3 7 , 7 5, 5 8, 8 6 1, 1 4 9, 9 2

and it also has six alternating runs. However, the permutation 21 has two up-down runs and
only one alternating run.

For n ≥ 0, let Λn(x) denote the polynomial associated with the number of permutations
of [n] with k up-down runs, and let Λ(x, t) be exponential generating function of Λn(x). Here
we set our eyes on the Greek letter Λ because it bears an ideal resemblance to the up-down
shape and we do not have to worry about interfering with the customary notation An(x) for
the Eulerian polynomials. As observed by Bóna, Λ(x, t) can be deduced from a formula of
David-Barton on the polynomials associated with the number of permutations of [n] with k
alternating runs. An equivalent formula for Λ(x, t) was obtained by Stanley [13] in regard
with permutations of [n] having a given length of the longest alternating subsequences.
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The grammar that governs the counting of up-down runs was found by Ma [12], that is,

G = {a→ ax, x→ xy, y→ x2}, (1.3)

which is equivalent to the operator

D = ax
∂

∂a
+ xy

∂

∂x
+ x2 ∂

∂y
. (1.4)

In the framework of the grammatical calculus, we are led directly to a relationship between
Λn(x) and the peak polynomials. We notice that this connection also follows from two re-
lations due to Ma [12]. Moreover, we exhibit that the grammar is informative for deriving
exponential formulas on peaks and up-down runs of permutations.

If one asks why there exists a context-free grammar for the enumeration of a combinato-
rial structure, a vague answer would be that the involved quantities amount to local properties
with respect to the growth of the structure. Indeed, this is what a context-free grammar is all
about. For example, when generating permutations of [n+1] out of permutations of [n], the
operation of inserting n+1 has rather a local impact on the number of various peaks. Thus
in a certain sense, a grammar is a way of showing locality or differentiability.

For up-down runs, we give an explicit labeling of permutations, called the up-down la-
beling, which reveals how the insertion operation affects the number of up-down runs during
the procedure of generating a permutation of [n+1] from a permutation of [n]. With this la-
beling scheme in hand, we see that the grammar is more than just a recurrence relation, and
we can make use of it in two ways, either as an apparatus of a grammatical calculus, or as a
bridge to facilitate finding bijections between two objects that have a grammar in common.

This line of thinking yields a bijection between permutations and increasing trees that
maps the number of up-down runs of a permutation to the number of nonroot vertices of
even degree of an increasing tree. The grammar plays a vital role in the justification of the
bijection. For this reason, we call the bijection a grammar assisted bijection. In particular,
when restricted to alternating permutations, we arrive at a grammar assisted correspondence
between alternating permutations and increasing even trees. A construction in this regard
has been given by Kuznetsov, Pak and Postnikov [10].

As for exterior peaks, it is known that the classical bijection between permutations and
increasing binary trees maps the number of the exterior peaks to the number of certain type
of vertices, see Stanley [15]. Stemming from two labeling schemes relative to the same
grammar, we obtain a bijection between permutations and increasing trees connecting the
number of exterior peaks of a permutation to the number of vertices of even degree of an
increasing tree.

It is our hope that this grammatical proposal could be applicable to more occasions.
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2 A grammatical calculus for peaks

The objective of this section is to demonstrate the efficiency of the grammatical calculus in
the study of the three kinds of peak polynomials. All we need is a grammar and the Leibniz
rule relative to the grammar.

For n ≥ 1 and 0 ≤ k ≤ bn/2c, let L(n,k) denote the number of permutations of [n] with
k left peaks. Analogously, M(n,k) and W (n,k) are defined in regard with interior peaks and
exterior peaks, respectively, with k in the valid range. For n = 0, we set L(0,0) = M(0,0) =
W (0,0) = 1. Define

Ln(x) =
bn/2c

∑
k=0

L(n,k)xk, (2.1)

Mn(x) =
b(n−1)/2c

∑
k=0

M(n,k)xk, (2.2)

Wn(x) =
b(n+1)/2c

∑
k=1

W (n,k)xk. (2.3)

In connection with the grammar

G = {x→ xy, y→ x2}, (2.4)

for n≥ 1, the bivariate peak polynomials are defined by

Ln(x,y) =
bn/2c

∑
k=0

L(n,k)x2k+1yn−2k, (2.5)

Mn(x,y) =
b(n−1)/2c

∑
k=0

M(n,k)x2k+2yn−2k−1, (2.6)

Wn(x,y) =
b(n+1)/2c

∑
k=1

W (n,k)x2kyn−2k+1. (2.7)

For n = 0, we define L0(x,y) = x, M0(x,y) = 1 and W0(x,y) = y. Let D be the formal
derivative with respect to G given in (2.4). We have the grammatical interpretations of the
three bivariate peak polynomials, for n≥ 0,

Dn(x) = Ln(x,y), Dn(y) =Wn(x,y)

and, for n≥ 1, Dn(y) = Mn(x,y), respectively.

To perform the grammatical calculus, we need to consider the generating function of a
Laurent polynomial f in x and y with respect to the operator D, as defined by

Gen( f , t) =
∞

∑
n=0

Dn( f )
tn

n!
. (2.8)
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The formal derivative D is related to the derivative with respect to the variable t of the gen-
erating function Gen( f , t) via the following relation:

Gen(D( f ), t) = Gen′( f , t), (2.9)

where the prime signifies the derivative relative to t.

To see how the grammatical approach works, we give a simple relation for the generating
functions L(x,y, t) and W (x,y, t), that is,

L(x,y, t) = Gen(x, t), W (x,y, t) = Gen(y, t).

Then we present a combinatorial interpretation of this fact.

Theorem 2.1. We have
Gen2(x, t) = Gen2(y, t)+ x2− y2. (2.10)

Proof. It is easily checked that x2− y2 is a constant relative to D, that is, D(x2) = D(y2), see
[5]. Thus we have Dn(x2) = Dn(y2) for n≥ 1, and hence

Gen(x2, t) = x2 +
∞

∑
n=1

Dn(x2)
tn

n!
= x2 +

∞

∑
n=1

Dn(y2)
tn

n!
, (2.11)

which is the right-hand side of (2.10), as claimed.

Unlike the approach of David-Barton by means of partial differential equations, in virtue
of the above relation (2.10), we may aim at ordinary differential equations for L(x,y, t) and
W (x,y, t), which are within the reach of Maple. Note that we need the constant property
in deriving the equations. This way of deriving ordinary differential equations may suit
other instances. For example, for the grammar G = {x→ xy, y→ xy}, which generates the
Eulerian polynomials, x− y is a constant. For the grammar G = {x→ xy, y→ x}, which
generates the André polynomials, y2− 2x is a constant. In each case, one can deduce an
ordinary differential equation from the grammar. In fact, once an equation for Gen(x, t) is
obtained, we may treat y merely as a parameter and set y = 1 for the purpose of computing
the generating function only involving x. We also remark that the relation (2.9) enables us
to read off a system of ordinary differential equations on the generating functions for all
the variables. As for the peak polynomials, we come to the following system of equations
reminiscent of the grammar,  L′(t) = L(t)W (t),

W ′(t) = L2(t),
(2.12)

with boundary conditions L(0) = x and W (0) = y, where the parameters x and y in L(x,y, t)
and W (x,y, t) are suppressed to emphasize that the derivative is taken with respect to t.

Theorem 2.2. The following ordinary differential equations hold with boundary conditions
L(x,y,0) = x and W (x,y,0) = y:

L′(t) = L(t)
√

L2(t)− x2 + y2, (2.13)
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W ′(t) = W 2(t)+ x2− y2. (2.14)

There is a combinatorial explanation of the fact that Dn(x2) = Dn(y2) for n ≥ 1. Since
D(y) = x2, Dn(x2) can be rewritten as Dn+1(y). Thus, the combinatorial reason behind the
relation (2.10) lies in the following two convolution formulas for n≥ 1,

Wn+1(x,y) =
n

∑
k=0

(
n
k

)
Wk(x,y)Wn−k(x,y), (2.15)

Wn+1(x,y) =
n

∑
k=0

(
n
k

)
Lk(x,y)Ln−k(x,y). (2.16)

For a permutation σ , we use L(σ), M(σ) and W (σ) to denote the number of left peaks,
interior peaks and exterior peaks of σ , respectively. A bijective argument for (2.15) and
(2.16) goes as follows. For n ≥ 1, let σ be a permutation of [n+ 1]. Write σ = π1τ . It is
readily seen

W (σ) =W (π)+W (τ).

Thus we arrive at (2.15).

On the other hand, let us write σ = π(n+1)τ , and let τ ′ denote the reverse of τ . We find
that

W (σ) = L(π)+L(τ ′)+1,

since n+1 is always an exterior peak. This special exterior peak is counted by the exponent
of x in the definition of Ln(x,y), with each contributing a factor x.

With the above two interpretations of Wn+1(x,y), we may burn the bridge after having
crossed the river. In doing so, we get a direct correspondence between the right-hand sides
of (2.15) and (2.16).

The next theorem gives the generating function of x−1 with respect to D, which is the
inverse of the bivariate form of Gessel’s formula.

Theorem 2.3. We have

Gen(x−1, t) =

√
y2− x2 cosh(t

√
y2− x2)− ysinh(t

√
y2− x2)

x
√

y2− x2
. (2.17)

Proof. As noted in [5],

D(x−1) =−x−1y, D2(x−1) = x−1(y2− x2).

Now the following pattern emerges. For n≥ 0,

D2n(x−1) = x−1(y2− x2)n, (2.18)

D2n+1(x−1) = −x−1y(y2− x2)n. (2.19)
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Taking the parity into account, we find that

∞

∑
n=0

D2n(x−1)
t2n

(2n)!
= x−1 cosh(t

√
y2− x2), (2.20)

∞

∑
n=0

D2n+1(x−1)
t2n+1

(2n+1)!
= − x−1y√

y2− x2
sinh(t

√
y2− x2). (2.21)

Putting the above sums together completes the proof.

Corollary 2.4. We have

Gen(x, t) =
x
√

y2− x2√
y2− x2 cosh(t

√
y2− x2)− ysinh(t

√
y2− x2)

. (2.22)

Let L(x, t) be the exponential generating function of Ln(x). Dividing both sides by x,
replacing x2 by x and setting y = 1 yields Gessel’s formula:

L(x, t) =
√

1− x√
1− xcosh(t

√
1− x)− sinh(t

√
1− x)

. (2.23)

Given the above formula for Gen(x, t), the generating function Gen(y, t) for exterior peaks
can be deduced from the relation

Gen′(x, t) = Gen(x, t)Gen(y, t),

or equivalently,

Gen(y, t) =
Gen′(x, t)
Gen(x, t)

. (2.24)

Corollary 2.5. We have

Gen(y, t) =
y
√

y2− x2 cosh(t
√

y2− x2)− (y2− x2)sinh(t
√

y2− x2)√
y2− x2 cosh(t

√
y2− x2)− ysinh(t

√
y2− x2)

. (2.25)

There are alternative ways to derive the above formula for Gen(y, t). Analogous to
Gen(x−1, t), it is easy to compute Gen(x−1y, t).

Theorem 2.6. We have

Gen(x−1y, t) = x−1ycosh(t
√

y2− x2)− x−1
√

y2− x2 sinh(t
√

y2− x2). (2.26)

Notice that the above relation also implies the formula (2.25) for Gen(y, t), since

Gen(y, t) = Gen(x, t)Gen(x−1y, t). (2.27)

One more way to relate Gen(y, t) to Gen(x, t) is to utilize the relation (2.10).
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Let M(x,y, t) be the exponential generating function of Mn(x,y). Owing to the fact

Dn(y) = Mn(x,y),

for n≥ 1, and the initial value M0(x,y) = 1, we see that

M(x,y, t) = 1− y+Gen(y, t), (2.28)

which implies the David-Barton formula in the bivariate form.

Corollary 2.7. We have

∞

∑
n=0

Mn(x,y)
tn

n!
=

√
y2− x2 cosh(t

√
y2− x2)+(1− y)sinh(t

√
y2− x2)√

y2− x2 cosh(t
√

y2− x2)− ysinh(t
√

y2− x2)
. (2.29)

Let M(x, t) be the exponential generating function of Mn(x). Setting y = 1 and replacing
x2 by x, we get

M(x, t) =
√

1− xcosh(t
√

1− x)√
1− xcosh(t

√
1− x)− sinh(t

√
1− x)

. (2.30)

Considering a grammar

H = {a→ ay, x→ xy, y→ x2}, (2.31)

we find that Ln(x) and Wn(x) satisfy an exponential relation. It is not hard to see that Dn(a)
relative to H coincides with Dn(x) relative to G = {x→ xy, y→ x2}.

Theorem 2.8. We have
∞

∑
n=0

Ln(x)
tn

n!
= exp

(
∞

∑
n=0

Wn(x)
tn+1

(n+1)!

)
. (2.32)

Next, we seek a combinatorial interpretation of (2.32). To this end, we introduce a de-
composition of a permutation, called the LW -decomposition, which is essentially the cycle
decomposition, or Foata’s first fundamental transformation of a permutation. Assume that
σ is a permutation of [n]. If 1 appears at the end of σ , then nothing needs to be done.
Otherwise, write σ = πτ , where π ends with 1. Now we make π the first block of the de-
composition and repeat the process for τ . If τ ends with the minimum element, then we
are done. Otherwise, we continue to decompose τ in the same manner. For example, the
permutation 261384795 is decomposed into four segments:

2 6 1 | 3 | 8 4 | 7 9 5.

Notice that the blocks are displayed in the increasing order of their minimum elements.

Proof of Theorem 2.8. Let σ be a permutation of [n], where n≥ 1, and let σ = π1|π2|· · · |πk

be the LW -decomposition of σ . For 1≤ i≤ k, let π ′i be the permutation obtained from πi by
removing the minimum element at the end. We proceed to show that

L(σ) =W (π ′1)+W (π ′2)+ · · ·+W (π ′k). (2.33)
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Asssume that the minimum element of πi is the element σ j. We claim that j cannot be a left
peak in σ . Otherwise, the element σ j+1 would be smaller than σ j, which is contradictory to
the construction of the W -decomposition.

On the other hand, assume that σ j is not at the end of any segment πi of the LW -
decomposition of σ , say σ j is an element of π ′i . It is evident that j is a left peak of σ if
and only if the corresponding position is an exterior peak of π ′i . Thus we arrive at (2.33).
This completes the proof.

3 A grammatical calculus for up-down runs

Up-down runs of a permutation are intuitively related to peaks. It is also known that the
number of up-down runs of a permutation of [n] equals the length of the longest alternating
subsequences, see Stanley [13]. From the viewpoint of grammars, the structure of up-down
runs can be understood as an exponential structure built on left peaks. This connection will
be made precise in Theorem 3.2. This section is devoted to a grammatical calculus for the
number of permutations of [n] with k up-down runs.

For n ≥ 2, let Λ(n,k) denote the number of permutations of [n] with k up-down runs. In
particular, define Λ(0,0) = Λ(1,1) = 1 and Λ(0,k) = Λ(n,0) = 0 whenever n,k ≥ 1. For
n≥ 0, write

Λn(x) =
n

∑
k=1

Λ(n,k)xk. (3.1)

The following grammar was discovered by Ma [12]:

G = {a→ ax, x→ xy, y→ x2}. (3.2)

For n≥ 0, the bivariate form of Λn(x) is defined by

Λn(x,y) =
n

∑
k=1

Λ(n,k)xkyn−k. (3.3)

In view of the recurrence relation

Λ(n,k) = kΛ(n−1,k)+Λ(n−1,k−1)+(n− k+1)Λ(n−1,k−2), (3.4)

for n,k≥ 1, Ma obtained the following expression for Λn(x,y) in terms of the above grammar
G.

Theorem 3.1 (Ma [12]). For n≥ 0, we have

Dn(a) = aΛn(x,y). (3.5)
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The first few values of Dn(a) are given below:

D(a) = ax,

D2(a) = axy+ax2,

D3(a) = axy2 +3ax2y+2ax3,

D4(a) = axy3 +7ax2y2 +11ax3y+5ax4,

D5(a) = axy4 +15ax2y3 +43ax3y2 +45ax4y+16ax5,

D6(a) = axy5 +31ax2y4 +148ax3y3 +268ax4y2 +211ax5y+61ax6.

As observed by Bóna [1, 2], see also Stanley [14], Λn(x) can be expressed in terms of the
polynomials Rn(x) associated with alternating runs, and in turn Rn(x) can be expressed in
terms of the Eulerian polynomials as shown by David-Barton [7], see also Knuth [9]. More
precisely, for n≥ 1 and 1≤ k ≤ n, let R(n,k) denote the number of permutations of [n] with
k alternating runs. For n≥ 0, let

Rn(x,y) =
n

∑
k=1

R(n+1,k)xkyn−k. (3.6)

Ma [12] showed that for n≥ 0,

Dn(a2) = a2Rn(x,y). (3.7)

Let R(x, t) denote the exponential generating function of Rn(x,y) with y set to 1, and let
Λ(x, t) denote the exponential generating function of Λn(x). With respect to the grammar G,
the relation

Gen(a2, t) = Gen2(a, t)

takes the form of the following identity on generating functions, which seems to have been
unnoticed before, at least not explicitly,

R(x, t) = Λ
2(x, t). (3.8)

The grammatical labeling to be given in the next section can be regarded as a combinato-
rial interpretation of Theorem 3.1.

To explore the connections between Λn(x) and the peak polynomials from the aspect of
the grammar G, we present an exponential formula for Λn(x) and Ln(x). Then we provide a
grammatical derivation of a relation on Λn(x,y), Ln(x,y) and Wn(x,y). Moreover, we find a
transformation of grammars leading to a relation on Λn(x) and Mn(x) due to Ma [12].

Theorem 3.2. We have

∞

∑
n=0

Λn(x)
tn

n!
= exp

(
∞

∑
n=0

xLn(x2)
tn+1

(n+1)!

)
. (3.9)
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To give a combinatorial interpretation of the above theorem, we present a decomposition
of a permutation σ such that the number of up-down runs of σ can be computed from the
numbers of left peaks of its components. This decomposition is called the AL-decomposition.
Let n≥ 0 and let σ be a permutation of [n]. First, we observe that the number of up-down runs
of the permutation π = σ(n+1) equals 2L(σ)+1. Therefore, xLn(x2) equals the generating
function of permutations of [n+1] ending with the maximum element n+1 with respect to
the number of up-down runs.

Given a permutation σ of [n], we may write σ = π1π2 · · ·πk such that π1 ends with the
maximum element of σ , π2 ends with the maximum element of π2 · · ·πk, and so forth. This
decomposition can be considered as a combinatorial interpretation of (3.9).

The LW -decomposition and the AL-decomposition can be reckoned as the dual of each
other. The following identity is a bivariate form of a relation observed by Ma [12].

Theorem 3.3. We have

(x+ y)Gen(a, t) = a(Gen(x, t)+Gen(y, t)) , (3.10)

or equivalently, for n≥ 0,

(x+ y)Λn(x,y) = Ln(x,y)+Wn(x,y). (3.11)

As a matter of fact, it is a direct consequence of following relations also given by Ma
[12]. For n≥ 1 and 1≤ k ≤ b(n−1)/2c, we have

L(n,k) = Λ(n,2k)+Λ(n,2k+1), (3.12)

and for n≥ 1 and 0≤ k ≤ b(n−2)/2c,

M(n,k) = Λ(n,2k+1)+Λ(n,2k+2). (3.13)

We now proceed to compute Gen(a, t) using the grammatical calculus.

Proof. Observe that x+y
a is a constant with respect to grammar, that is,

D
(

x+ y
a

)
= 0.

Consequently,

Gen(x, t)+Gen(y, t) = Gen(x+ y, t) = Gen
(

a · x+ y
a

, t
)
=

x+ y
a

Gen(a, t),

as claimed.

Substituting (2.22) and (2.25) into (3.10) and using the exponential forms for sinh and
cosh, we obtain the following formula.

12



Corollary 3.4. We have

Gen(a, t) = a(y− x)
y+
√

y2− x2 +2xe
√

y2−x2t +(y−
√

y2− x2)e2
√

y2−x2t

y2− x2 + y
√

y2− x2 +(y2− x2− y
√

y2− x2)e2
√

y2−x2t
. (3.14)

Setting a = y = 1 yields Stanley’s formula [14]:

Λ(x, t) = (1− x)
1+ρ +2xeρt +(1−ρ)e2ρt

1+ρ− x2 +(1−ρ− x2)e2ρt , (3.15)

where ρ =
√

1− x2.

We conclude this section with a grammatical derivation of the following relation on Λn(x)
and Mn(x) due to Ma [11]. For n≥ 0,

Λn(x) =
x(1+ x)n−1

2n−1 Mn

(
2x

1+ x

)
. (3.16)

Grammatical Proof of (3.16). Set

u = x+ y, v =
√

x(x+ y).

The grammar G = {x→ xy, y→ x2} is transformed into

G =
{

u→ v2, v→ uv
2

}
.

Using the grammatical interpretation of the interior peak polynomials Mn(x,y), we find that

Dn(u) = v2
b(n−1)/2c

∑
k=0

1
2n−1−k M(n,k)un−1−2kv2k. (3.17)

By Theorem 3.3, we see that

Dn(a) =
a

x+ y
Dn(x+ y), (3.18)

which yields

Dn(a) = ax
b(n−1)/2c

∑
k=0

1
2n−1−k M(n,k)(x+ y)n−1−2k(x(x+ y))k

= ax
(x+ y)n−1

2n−1

b(n−1)/2c

∑
k=0

M(n,k)
(2x)k

(x+ y)k .

Setting a = y = 1 completes the proof.
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4 A grammatical labeling for up-down runs

For a permutation σ of [n], the up-down labeling of σ can be described as follows. Like the
L-labeling given in [6], the labels are assigned to the positions next to each element of σ .
For 1 ≤ i ≤ n+1, by a position i we mean the position immediately before σi, whereas the
position n+1 is meant to be the position after σn. Associated with a labeling, the weight of
a permutation is referred to the product of the labels.

To define the labeling for up-down runs of a permutation σ , which we call the A-labeling,
we first patch a zero at the beginning of σ , or equivalently, set σ0 = 0. Then the labels are
given by the following procedure.

Case 1. For each up run σiσi+1 · · ·σ j possibly with i = 0, where i < j ≤ n, two possibilities
arise. If j < n, that is, σ j is not the last element of σ , we label the positions i+1, . . . , j−1
by y and label the position j by x.

If j = n, that is, σ j is the last element of σ , then label the position n by a and position
n+1 by x, and the other positions by y. This case looks a little peculiar, but that is perhaps
the way it is.

Case 2. For each down run σiσi+1 · · ·σ j, where i < j, we always label the position i+1 by x,
and label the other positions i+2, . . . , j by y. Moreover, if j = n, we label the position n+1
by a.

For example, below is the A-labeling of a permutation ending with a down run:

0 y 3 x 7 x 5 x 8 x 6 y 1 y 4 x 9 x 2 a.

The weight of the above permutation equals ax6y3. For an example of σ ending with an up
run, let n = 9 and σ = 375861249. Below is the A-labeling,

0 y 3 x 7 x 5 x 8 x 6 y 1 y 2 y 4 a 9 x.

In this case the weight of σ equals ax5y4.

A labeling of a permutation is called a grammatical labeling with respect to G, we mean
that when generating the permutations of [n+ 1] by inserting the element n+ 1 into a per-
mutaiton σ of [n], the substitution rules are applied to each label exactly once. This property
makes it possible to compute the total weight (sum of the products of labels) of permutations
of [n+ 1] from the total weight of permutations of [n] by taking the formal derivative with
respect to the grammar. Moreover, the labels can be treated as ingredients of the grammatical
calculus. The notion of a grammatical labeling was introduced in [5], which says that the
combinatorial structure is differentiable in a certain sense. The following theorem justifies
the grammatical labeling for the purpose of updating the weights of permutations upon the
insertion operations.

14



Theorem 4.1. Let n≥ 1 and let σ be a permutation of [n]. Assume that 1≤ i≤ n+1. Let π

be the permutation obtained from σ by inserting n+1 in σ at position i. Then the weight of
π can be derived from that of σ by applying the substitution rule to the label of the element
of σ at position i.

Before presenting the proof, let us give an example. Let n = 5 and σ = 25413. In the
table below, an underlined label signifies where the element 6 is inserted which is also the
label to which the substitution rule is applied.

σ π Substitution

0 y 2 x 5 x 4 y 1 a 3 x 0 x 6 x 2 x 5 x 4 y 1 a 3 x y→ x2

0 y 2 x 5 x 4 y 1 a 3 x 0 y 2 x 6 x 5 y 4 y 1 a 3 x x→ xy

0 y 2 x 5 x 4 y 1 a 3 x 0 y 2 y 5 x 6 x 4 y 1 a 3 x x→ xy

0 y 2 x 5 x 4 y 1 a 3 x 0 y 2 x 5 x 4 x 6 x 1 a 3 x y→ x2

0 y 2 x 5 x 4 y 1 a 3 x 0 y 2 x 5 x 4 y 1 x 6 x 3 a a→ ax

0 y 2 x 5 x 4 y 1 a 3 x 0 y 2 x 5 x 4 y 1 y 3 a 6 x x→ xy

Proof of Theorem 4.1. It is readily seen that the Theorem is valid for n = 1,2. Now assume
that n ≥ 2 and σ is a permutation of [n]. Suppose that π is a permutation of [n+ 1] created
from σ by inserting the element n+ 1 at the position before σi, where 1 ≤ i ≤ n, or at the
position n+1, that is, at the end of σ .

First, we consider the case when i < n. If the position is labeled by x, it can be seen that
if n+1 is inserted in σ at position i, the change of weights is connected with the substitution
rule x→ xy. The two possibilities are illustrated in Figure 1, where ∗ stands for the element
n+1 and a dotted line indicates the position of insertion.

x x →

∗
x

x
y

x→ xy

x x →

∗
x

y
x

x→ xy

Figure 1: Insertion at a position labeled by x.

If the position i is labeled by y, no matter whether it is in an up run or a down run, the
change of weights is always consistent with the substitution rule y→ x2, as illustrated in
Figure 2.

We are left with three cases regarding the last two elements of σ . Keep in mind that if σ

ends with an up run, the last two labels must be ax.
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y →

∗

x
x

y→ x2

y →

∗

x
x

y→ x2

Figure 2: Insertion at a position labeled by y.

Case 1. σ ends with a down run and the last two labels are x and a. As discussed before, the
insertion at the position labeled by x is in accordance with the rule x→ xy and the insertion
at the position of a is reflected by the rule a→ ax, see Figure 3.

x x a →

∗
x

y
x

a

x→ xy

x x a →
a

∗

x x

x

a→ ax

Figure 3: The labeling of σ ends with xa.

Case 2. The labeling of σ ends with ya. As shown in Figure 4, the changes of weights caused
by the insertions are coded by the corresponding substitutions.

y a
→

∗
x

x
a

y→ x2

y a
→

∗

a
y

x

a→ ax

Figure 4: The labeling of σ ends with ya.

Case 3. σ ends with an up run, that is, the last two labels are a and x. As depicted in Figure
5, in either case, the change of weights is in compliance with the grammar, namely, the rules
a→ ax and x→ xy.

a
x

→

∗

x
x a

a→ ax

a
x

→

∗
a

y

x

x→ xy

Figure 5: The labeling of σ ends with ax.

Summing up all the cases completes the proof.

Once we have the above up-down labeling of a permutation, we see that Dn(a)= aΛn(x,y)
for all n. The up-down labeling also gives rise to a labeling for alternating runs. Let n ≥ 1,
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and let σ be a permutation of [n]. Assume that σ = π1τ . Then the alternating labeling of σ

consists of the up-down labelings of π ′ and τ , where π ′ is the reverse of π . For example, the
alternating labeling of the permutation 735861492 is given by

(x 7 a 3 y 5 x 8 x 6 y 1) (1 y 4 x 9 x 2 a).

However, we shall not dwell further in this respect.

5 Grammar assisted bijections

In this section, we present a bijection between permutations and increasing trees that maps
the number of up-down runs to the number of even degree nonroot vertices of the correspond-
ing increasing tree. While the existence of such a bijection is assured by the two grammatical
labelings of the same grammar, a direct construction is less obvious. We shall work out an
explicit correspondence.

We begin with a labeling scheme for increasing trees, which we call the parity labeling.
Let n ≥ 1, and let T be an increasing tree on {0,1, . . . ,n}. The degree of a vertex of T is
understood to be the number of its children. Then the root of T is labeled by a. If v is not the
root, then it is labeled by x if it is of even degree, and it is labeled by y if it is of odd degree.
For example, an increasing tree along with the parity labeling is shown in Figure 6.

0(a)

1(y)

2(y)

4(x) 8(x) 9(x)

3(x)

5(x)
6(y)

7(x)

Figure 6: An increasing tree with the parity labeling.

The grammar implies the following bijection.

Theorem 5.1. For n ≥ 1, there is a bijection φ between the set of permutations σ of [n]
and the set of increasing trees T on {0,1, . . . ,n} such that the number of up-down runs of σ

equals the number of even degree nonroot vertices of φ(σ).

Proof. We proceed to describe the construction of the map φ . For n = 1, there is noth-
ing to be said. For n = 2, the correspondence is unique subject to the weight preserving
requirement, and it is shown in Figure 7.
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1 2 → 0 y 1 a 2 x →

0(a)

1(y)

2(x)

2 1 → 0 x 2 x 1 a →
0(a)

1(x) 2(x)

Figure 7: The correspondence for n = 2.

We now assume that n≥ 3. Let σ be a permutation of [n], and let σ (i) be the permutation
obtained from σ by removing all the elements that are greater than i. In order to construct
an increasing tree T on {0,1, . . . ,n} from σ with the weight preserving property, we devise
a procedure to generate a sequence of increasing trees T (2), T (3), . . ., T (n), where T (2) is the
increasing tree corresponding to σ (2). As will be seen, for any 2 ≤ i ≤ n, σ (i) and T (i) not
only have the same weight, but also share the same labeling that will be made clear later in
the course of the construction. We say that the labeling of σ (i) is coherent with the labeling
of T (i) provided that the following conditions are satisfied. Set π = σ (i).

• If πi−1 > πi, then for 1≤ k ≤ i, the position k of π has the same label as the vertex πk

in T (i) and the position i+1 has the same label a as the root of T (i).

• If πi−1 < πi, then for 1≤ k≤ i−1, the position k of π has the same label as the vertex
πk in T (i), the position i has the same label a as the root of T (i) and the position i+1
of π has the same label x as the vertex πi in T (i).

Let us now describe the construction of T (i+1) from T (i). Let π = σ (i). Assume that
σ (i+1) is obtained from π by inserting i+ 1 at position k, where 1 ≤ k ≤ i+ 1. We need to
distinguish two main cases. First, we assume that π ends with a down run, that is, π has
an even number of up-down runs, and so the number of x labels of π is even. Then the
increasing tree T (i+1) is generated via the following procedure.

1. Assume that the position k of π is labeled by x and k is on the rise, then the next
position must be a down step labeled by x, which implies that k ≤ i− 1. We call the
position k+ 1 the dual position of k and adjoin the vertex i+ 1 to the vertex πk+1 of
T (i) as a child to obtain T (i+1) for which the label of πk+1 changes from x to y, see
Figure 8, where the square vertex signifies where to attach the vertex i+ 1 to T (i).
Intuitively, for a position k labeled by x that is on the rise, we need to look at the next
position for corresponding operation on the increasing tree. Fortunately, one finds that
the assumption that the position k+1 is labeled by x is the very property required for
the procedure to work. Once it has been noticed, it is not hard to see that it is valid all
along.

2. Assume that the position k of π is labeled by x and k is on the fall. We call the position
k− 1 the dual position of k, and adjoin the vertex i+ 1 to the vertex πk−1 of T (i) as
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πk

πk−1 πk+1

x x →

πk−1

πk

πk+1

∗

x
y

x

x→ xy

⇐⇒ πk+1(x)→

πk+1(y)

∗(x)

x→ xy

Figure 8: x is on the rise.

a child to obtain T (i+1), see Figure 9, where and throughout the proof the symbol ∗
stands for the element i+1 to be added into σ (i) and T (i). As before, there is no danger
to assume that the vertex πk−1 is labeled by x.

πk−1

πk−2
πk

x x →
πk−1

πk−2
πk

∗
x

y x

x→ xy

⇐⇒ πk−1(x)→

πk−1(y)

∗(x)

x→ xy

Figure 9: x is on the fall.

3. Assume that the position k of π is labeled by y. Then adjoin i+ 1 to the vertex πk in
T (i) as a child, see Figures 10 and 11.

πk+1

πk

πk−1

y
→

πk−1

πk

πk+1

∗

x
x

y→ x2

⇐⇒ πk(y)→

πk(x)

∗(x)

y→ x2

Figure 10: y is on the rise.

πk−2

πk−1

πk

y
→

πk−1

πk−2

πk

∗

x
x

y→ x2

⇐⇒ πk(y)→

πk(x)

∗(x)

y→ x2

Figure 11: y is on the fall.
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4. If k = i+1, then adjoin i+1 to the root of T (i). In this case, the involved substitution
is a→ ax.

In any of the above cases, it is observable that after the update of T (i), the labeling of
σ (i+1) is consistent with the labeling of T (i+1). In other words, all the assumptions in the
above argument are well-grounded.

We are now left with the case that π has an odd number of up-down runs, that is, the
labels of π end with ax. Here we encounter three possibilities.

1. If i+1 is inserted at position i, namely, at the position before πi, then adjoin the vertex
i+1 to the root 0. In this case, the vertex i+1 is labeled by x and the root remains to
be labeled by a, see Fig. 12.

πi

πi−1

0
a

x
→

πi−1

πi 0

∗

x ax

a→ ax

⇐⇒ 0(a) →

0(a)

∗(x)

a→ ax

Figure 12: The case k = i and πi−1 < πi.

2. If i+ 1 inserted into π at position i+ 1, that is, i+ 1 is inserted at the end of π , then
adjoin i+1 to the vertex πi of T (i). In this case, i+1 is labeled by x in T (i+1) and the
the label of πi is switched from x to y, see Fig. 13.

πi

πi−1

0
a

x
→

πi

πi−1

∗
a

y

x

x→ xy

⇐⇒ πi(x) →

πi(y)

∗(x)

x→ xy

Figure 13: The case k = i+1 and πi−1 < πi.

3. If i+1 is inserted at position k with k≤ i−1, then we may follow the above procedure
for the case when π has an even number of up-down runs to generate an increasing tree
T (i+1). It should be pointed out that there are no worries even when the position k is on
the rise and labeled by y, in which case π1π2 · · ·πk has an odd number of up-down runs,
since under this circumstance the x label still appear in pairs in π before the position
k.
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Up till now, we have provided a procedure to build an increasing tree T from a permuta-
tion σ . To see that the process is reversible, we may extract from T a sequence of increasing
trees T (2), T (3), . . ., T (n), where T (i) is obtained from T by removing all the vertices that are
greater than i.

As T (2) is in one-to-one correspondence with a permutation σ (2), we may carry out the
following steps by starting with i = 2. Using σ (i) and T (i+1) along with the labeling assump-
tion, one sees that σ (i+1) can be retrieved, however the detailed reasoning is omitted. So we
reach the conclusion that the procedure leads to a desired bijection.

The operation of locating the vertex in an increasing tree when an insertion into a permu-
tation takes place at a position labeled by x is called the reflection principle. For example, for
the increasing tree in Figure 6, the intermediate permutations are given in the table below,
where an underlined label indicates where the element i+1 is inserted into σ (i). Notice that
σ has six up-down runs, whereas T has six nonroot vertices of even degree.

i σ (i) with labeling Weight Substitution

2 0 y 1 a 2 x axy a→ ax

3 0 y 1 x 3 x 2 a ax2y x→ xy

4 0 y 1 x 4 x 3 y 2 a ax2y2 x→ xy

5 0 y 1 x 5 x 4 y 3 y 2 a ax2y3 y→ x2

6 0 y 1 x 5 x 4 x 6 x 3 y 2 a ax4y2 x→ xy

7 0 y 1 x 5 x 4 y 6 x 7 x 3 y 2 a ax4y3 y→ x2

8 0 y 1 x 5 x 4 y 6 x 7 x 3 x 8 x 2 a ax6y2 x→ xy

9 0 y 1 x 5 x 4 y 6 x 7 x 3 x 9 x 8 y 2 a ax6y3

It should be noted that the above bijection reduces to a correspondence between al-
ternating (down-up) permutations of [n] and even increasing trees on {0,1, . . . ,n}. Re-
call that an alternating permutation [n] is referred to a permutation σ1σ2 · · ·σn such that
σ1 > σ2 < σ3 > · · ·, see Stanley [14], whereas an increasing tree is called even if every ver-
tex possibly except the root is of even degree. Notice that by the alternating condition some
authors mean the up-down condition σ1 < σ2 > σ3 < · · · instead. Clearly, a permutation is al-
ternating if and only if it has no y labels in the up-down labeling, and down-up permutations
are in one-to-one correspondence with up-down permutations via complementation. A bijec-
tion between up-down permutations and even increasing trees has been given by Kuznetsov,
Pak and Postnikov [10].

When applied to a down-up permutation, the procedure in the above theorem produces
an even increasing tree. For example, below is a down-up permutation together with the
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up-down labeling:
0 x 3 x 2 x 9 x 6 x 7 x 1 x 8 x 4 a 5 x.

The corresponding even increasing tree is displayed in Figure 14.

0

1

3 6

7 9

2 4

5 8

Figure 14: An even increasing tree.

We remark that a variant of the construction in the above proof gives a grammar assisted
bijection linking the number of left peaks of a permutation to the number of vertices of even
degree of an increasing tree, as given in [5].

Theorem 5.2 ([5]). For n ≥ 1 and 0 ≤ m ≤ bn/2c, there is a one-to-one correspondence
between the set of permutations of [n] with m left peaks and the set of increasing trees on
{0,1, . . . ,n} with 2m+1 nonroot vertices of even degree.

The grammar assisted bijection can be described as follows. For n≥ 2, given a permuta-
tion σ of [n], let σ (2), σ (3), . . ., σ (n) = σ be the sequences of permutations such that σ (i) is
obtained from σ by removing all the elements that are greater than i. We wish to generate a
sequence of increasing trees T (2), T (3), . . ., T (n) such that σ (i) and T (i) have the same weight,
as clarified below.

Recall that the L-labeling of σ is defined to assign the label x to the two positions that
form a left peak as well as to the last position, and the rest of the positions are endowed with
the label y. For example, below is the L-labeling of a permutation of [9]:

0 y 1 x 9 x 8 y 3 x 6 x 5 y 4 y 2 y 7 x.

On the other hand, for an increasing tree T on {0,1, . . . ,n}, a vertex is labeled by x is of even
degree, otherwise it is labeled by y. We call this labeling scheme the L-labeling of T , see
Figure 15.

Suppose that σ (i+1) is obtained from σ (i) by inserting i+1 at position k, where 1≤ k ≤
i+1. Let π = σ (i). Observe that the last label of σ (i) is always x and the rest of the x labels
always appear in pairs. To produce T (i+1) from T (i), we stand by the following rules:

1. Assume that k≤ i−1. Depending upon whether the position k is labeled by x or y, we
proceed as in the case for up-down runs.
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0(y)

1(y)

4(x)

2(x)

3(x) 6(x)

5(x)

L-labeling

0(x)

1(y)

4(x)

2(x)

3(x) 6(x)

5(x)

W -labeling

Figure 15: Two labelings of an increasing tree.

2. Assume that k = i. In this case, the position k is labeled by y. If πi−1 < πi, then adjoin
i+1 to the root in T (i) to generate T (i+1); otherwise adjoin i+1 to the vertex πi.

3. Assume that k = i+1. If πi−1 < πi, then adjoin i+1 to the vertex πi of T (i) ; otherwise
adjoin i+1 to the root to generate T (i+1).

For instance, let us consider the permutation taken from the example for Theorem 5.1,

σ = 1 5 4 6 7 3 9 8 2,

it can be checked that σ corresponds to the same increasing tree as in Figure 6 with the label
a of the root replaced by x. This is no coincidence, as will be seen.

Naturally, one may wonder how to map the number of exterior peaks to a statistic of an
increasing tree. Here is a key observation about the W -labeling, that is, the x labels always
appear in pairs. This property allows us to present the above grammar-assisted bijections in
a much more concise manner.

Imagine that an increasing tree with a single vertex 0 is labeled by y. Then we comply
with the parity rules as before to produce an increasing tree by successively adding vertices.
The associated labeling is called the W -labeling of an increasing tree, see Figure 15.

Theorem 5.3. For n≥ 1, there is a bijection mapping a permutation σ of [n] with k exterior
peaks to an increasing tree T on {0,1, . . . ,n} with j vertices of even degree such that k =

b( j+1)/2c.

Note that for a permutation σ with k exterior peaks, the corresponding increasing tree has
2k vertices labeled by x. This parity property becomes transparent if we define the degree of
a vertex of an increasing tree as the number of adjacent vertices as if the tree is a graph in
the usual sense. Obviously such a concern is superficial, and we had better stick to the usual
terminology for rooted trees especially when we have a clear picture in mind.

We conclude with a remark that all the aforementioned bijections can be presented in a
unified way solely in terms of the reflection principle. That is to say, the bijection in Theorem
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5.3 does the same job as the other grammar assisted bijections. For example, the increasing
tree in Figure 15 invariably corresponds to the permutation 624315 for any of the three
labeling schemes.

We now return to the key step of the reflection operation. Let n ≥ 1, assume that σ =

σ1σ2 · · ·σn is a permutation of [n]. For 1≤ k≤ n+1, the position before σk is called position
k, whereas the last position is referred to position 0. Now, the exterior peaks gather the
corresponding positions in pairs, so that we do not have to take special care of the last two
elements concerning their relative order. Moreover, we may index the positions of σ by
0,1, . . . ,n, and this yields a bijection that is seemingly different, but is of the same nature.

Needless to say, this bijection provides a correspondence between down-up permutations
and even increasing trees, without using the language of the up-down labelings.
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