
Ann. Combin.,

27(3) (2023) 707-735.

The Dumont Ansatz for the Eulerian Polynomials,

Peak Polynomials and Derivative Polynomials

William Y.C. Chen1 and Amy M. Fu2

1Center for Applied Mathematics
Tianjin University

Tianjin 300072, P.R. China

2School of Mathematics
Shanghai University of Finance and Economics

Shanghai 200433, P.R. China

Emails: 1chenyc@tju.edu.cn, 2fu.mei@mail.shufe.edu.cn

Abstract

We observe that three context-free grammars of Dumont can be brought to a common
ground, via the idea of transformations of grammars, proposed by Ma-Ma-Yeh. Then we de-
velop a unified perspective to investigate several combinatorial objects in connection with the
bivariate Eulerian polynomials. We call this approach the Dumont ansatz. As applications,
we provide grammatical treatments, in the spirit of the symbolic method, of relations on the
Springer numbers, the Euler numbers, the three kinds of peak polynomials, an identity of
Petersen, and the two kinds of derivative polynomials, introduced by Knuth-Buckholtz and
Carlitz-Scoville, and later by Hoffman in a broader context. We obtain a convolution formula
on the left peak polynomials, leading to the Gessel formula. In this framework, we come to
the combinatorial interpretations of the derivative polynomials due to Josuat-Vergès.
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1 Introduction

The theme of this work is to present a unified approach to several enumeration problems in
connection with the classical Eulerian polynomials via a formal calculus based on context-
free grammars. We call this approach the Dumont ansatz because it is largely built on the
three grammars of Dumont related to the Eulerian polynomials. In some sense, we may say
that the Dumont ansatz is a handful of the grammars of Dumont, reinforced by the idea of
Ma-Ma-Yeh [23] concerning transformations of grammars.
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The grammar of Dumont for the Eulerian polynomials reads

G = {x → xy, y → xy}. (1.1)

Let D be the formal derivative with respect to the above grammar G. For n ≥ 0, the bivariate
Eulerian polynomial An(x,y) is defined by

An(x,y) = Dn(y).

Recall that a grammar G on a set V = {x1,x2, . . .} of variables is defined to be a set of
substitution rules mapping each variable xi to a Laurent polynomial Fi(x1,x2, . . .) on V , and
the formal derivative D with respect to G can be expressed as a differential operator

D = ∑
i

Fi(x1,x2, . . .)
∂

∂xi
.

The generating function of a Laurent polynomial f on V is defined by

Gen( f , t) =
∞

∑
n=0

Dn( f )
tn

n!
. (1.2)

If g is also a Laurent polynomial on V , then D satisfies the product rule

D( f g) = f D(g)+D( f )g. (1.3)

In general, D obeys the Leibniz rule, i.e., for n ≥ 0,

Dn( f g) =
n

∑
k=0

(
n
k

)
Dk( f )Dn−k(g), (1.4)

or equivalently, the following multiplicative property holds,

Gen( f g, t) = Gen( f , t)Gen(g, t). (1.5)

For the above grammar G in (1.1), we have

D = xy
(

∂

∂x
+

∂

∂y

)
.

Setting y = 1, the bivariate Eulerian polynomials An(x,y) reduce to the Eulerian polynomials
An(x). The generating function of An(x) is given by

∑
n≥0

An(x)
tn

n!
=

1− x
1− xe(1−x)t

. (1.6)

See, for example, [28]. The above relation is equivalent to the bivariate version

∞

∑
n=0

An(x,y)
tn

n!
=

y− x
1− xy−1e(y−x)t

. (1.7)
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A grammatical derivation of (1.7) is given in [5]. The following form of the generat-
ing function of An(x,y) for n ≥ 1 is due to Carlitz-Scoville [2], and it is equivalent to the
expression in the univariate case,

∞

∑
n=1

An(x,y)
tn

n!
= xy

ext − eyt

xeyt − yext . (1.8)

It is a well-known fact due to Foata-Schützenberger [13] that the Eulerian polynomials
An(x) have the γ-expansion with nonnegative coefficients,

An(x) =
⌊(n+1)/2⌋

∑
k=1

γn,k xk(1+ x)n+1−2k,

where γn,k are nonnegative.

Let u = xy and v = x+ y. Then the grammar for the Eulerian polynomials takes the form

G = {u → uv, v → 2u}

and An(x,y) can be expressed as Dn(u). For 1 ≤ n ≤ 6, the γ-expansions of An(x,y) are as
follows,

A1(x,y) = u,

A2(x,y) = uv,

A3(x,y) = uv2 +2u2,

A4(x,y) = uv3 +8u2v,

A5(x,y) = uv4 +22u2v2 +16u3,

A6(x,y) = uv5 +52u2v3 +136u3v.

While the above grammar serves the purpose for the computation of the γ-coefficients of
the Eulerian polynomials, for the reason that will be seen later, there is an advantage to make
the substitutions

u = xy, 2v = x+ y. (1.9)

In this way, the transformed grammar becomes

G = {u → 2uv, v → u}, (1.10)

which is exactly the grammar given by Dumont for increasing binary trees. Then we define
the bivariate Dumont polynomials, denoted Dn(u,v), in terms of the formal derivative of the
grammar (1.10), or equivalently, in terms of increasing binary trees.

Under the substitutions in (1.9), we can express x and y in terms of u and v, to wit,

x = v+
√

v2 −u, y = v−
√

v2 −u. (1.11)
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It is remarkable that Dumont also discovered an analogous grammar for 0-1-2 increasing
trees, that is,

G = {u → uv, v → u}.

Despite the striking resemblance of the aforementioned three grammars, they have been play-
ing their own roles without supporting each other. Thanks to the idea of transformations of
grammars, due to Ma-Ma-Yeh [23], we recognize that these three grammars can be brought
to a common ground in the name of the Dumont ansatz.

Applying the strategies of the Dumont ansatz to the peak polynomials and the derivative
polynomials, we illustrate how to make connections to the Eulerian polynomials. A left
peak of a permutation is also called an exterior peak or a peak. There are other two relevant
statistics, the number of interior peaks and the number of left-right peaks (or outer peaks).
We give grammatical labelings, called the M-labeling and the W -labeling, so that we can
bring the three kinds of peak polynomials to the test ground of the Dumont ansatz.

It should be stressed that once we have a grammar on file, it is often not hard to find a
combinatorial structure of a recursive nature such as increasing plane trees or increasing bi-
nary trees, as an interpretation of the corresponding polynomials. This means that a grammar
can be instrumental in search for appropriate combinatorial structures.

The derivative polynomials Pn(x) and Qn(x) for the tangent and the secant were intro-
duced by Knuth-Buckholtz [19] in their studies of the tangent, Euler and Bernoulli numbers.
They were studied later by Carlitz-Scoville [2] and Hoffman [15, 16] in broader contexts,
see also [20]. When evaluated at x = 1, the derivative polynomials Qn(x) turn out to be the
Springer numbers. Using the Dumont ansatz, we quickly get the combinatorial interpreta-
tions of the derivative polynomials established by Josuat-Vergès [17]. Moreover, we see how
the the derivative polynomials Pn(x) are related to the Eulerian polynomial An(x).

The Dumont ansatz not only provides a mechanism to unify many known results, but also
offers a rigorous platform to exploit the grammatical calculus, in the spirit of the symbolic
method, in the course of proving and discovering combinatorial identities. For example, we
found it possible to give a derivation of an identity of Petersen by using the grammatical
calculus. We also obtain a convolution identity on the left peak polynomials, which can be
used to derive the formula of Gessel on the generating function of the left peak polynomials
[25, Sequence A008971], see also [33].

2 The Dumont ansatz

In this section, we first give an overview of three grammars of Dumont, for the Eulerian
polynomials, increasing binary trees, and the André polynomials. We see that these three
grammars share the same nature and the corresponding generating functions can be deduced
from each other via a change of variables. We use an intermediate structure as a unified
model to deal with the relations among the generating functions in the family, and we call
this approach the Dumont ansatz. Roughly speaking, the idea behind the Dumont ansatz is
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to establish connections among combinatorial polynomials by means of transformations of
grammars.

2.1 The grammar for the Eulerian polynomials

As described in the Introduction, the bivariate Eulerian polynomials An(x,y) can be ex-
pressed as Dn(y), where D is the formal derivative with respect to the grammar

G = {x → xy, y → xy}. (2.1)

The bivariate polynomials An(x,y) can be expressed in terms of the numbers of descents and
ascents of permutations, or in terms of complete increasing binary trees, which are called the
Gessel trees in [6].

For n = 0, we define A0(x,y) = y, the first few values of An(x,y) are given below,

A1(x,y) = xy,

A2(x,y) = xy2 + x2y,

A3(x,y) = xy3 +4x2y2 + x3y,

A4(x,y) = xy4 +11x2y3 +11x3y2 + x4y,

A5(x,y) = xy5 +26x2y4 +66x3y3 +26x4y2 + x5y,

A6(x,y) = xy6 +57x2y5 +302x3y4 +302x4y3 +57x5y2 + x6y.

For more information about context-free grammars for combinatorial polynomials and Eu-
lerian polynomials, see [4, 5, 11]. The journey of the Dumont ansatz starts with the above
grammar G and the Eulerian polynomials An(x,y).

2.2 The grammar for increasing binary trees

The second grammar of Dumont we will be concerned with is

G = {u → 2uv, v → u}. (2.2)

Here we deliberately choose to use the variables u and v rather than x and y as in [11], because
it is related to the grammar (2.1) for the Eulerian polynomials via the following substitutions

u = xy, 2v = x+ y. (2.3)

Since
D(u) = D(xy) = xy(x+ y) = 2uv

and
D(v) = D(x+ y)/2 = xy = u,
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the grammar G in (2.1) is transformed into the grammar G in (2.2). This transformation
implies that the Eulerian polynomials An(x) are γ-positive, as observed by Ma-Ma-Yeh [23].

Dumont [11] showed that the grammar G in (2.2) gives a weighted counting of increasing
binary trees T on [n] if we label a leaf by u and a degree one vertex by v, where the degree of
a vertex in a binary tree is referred to the number of its children. Then we define the weight
of T as the product of the labels associated with T . The labels of the increasing binary tree
in Figure 1 are shown in parentheses. This way of labeling an increasing binary tree is called
the (u,v)-labeling.

1

4(v)

6

9(u) 7(u)

2

3(v)

5(u)

8(u)

Figure 1: An increasing binary tree with the (u,v)-labeling.

The initiative of the Dumont ansatz grew out of the realization that the underlying combi-
natorial structures of the original grammar and the transformed grammar are essentially the
same. The substitutions of variables are reflected by different labeling schemes. It should be
mentioned that the idea of using a change of variables to compute the γ-coefficients of the
Eulerian polynomials has appeared in the work of Chow [7].

Definition 2.1. For n ≥ 0, the Dumont polynomial Dn(u,v) is referred to the polynomial
Dn(v), where D is the formal derivative with respect to the grammar G in (2.2).

The following theorem is due to Dumont [11].

Theorem 2.2 (Dumont). For n ≥ 1, Dn(u,v) equals the sum of weights of all increasing
binary trees on [n] endowed with the (u,v)-labeling.

The first few values of Dn(u,v) are listed below,

D0(u,v) = v,

D1(u,v) = u,

D2(u,v) = 2uv,

D3(u,v) = 4uv2 +2u2,

D4(u,v) = 8uv3 +16u2v,

D5(u,v) = 16uv4 +88u2v2 +16u3,

D6(u,v) = 32uv5 +416u2v3 +272u3v.
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2.3 0-1-2 increasing plane trees

In the study of the γ-coefficients of the Eulerian polynomials, 0-1-2 increasing plane trees
arise as an underlying structure for the combinatorial interpretation. In accordance with the
grammar G in (2.2), we need an alternative labeling scheme.

Let n ≥ 1, and let T be a 0-1-2 increasing plane tree on [n]. A (u,2v)-labeling of T is
referred to labeling every leaf by u and labeling every degree one vertex by 2v. Given a
(u,2v)-labeling, the weight of T is defined to be the product of labels associated with T .
Figure 2 depicts a 0-1-2 increasing plane tree with the (u,2v)-labeling.

1

4(2v)

6

9(u) 7(u)

2

3(2v)

5(u)

8(u)

Figure 2: A 0-1-2 increasing plane tree with the (u,2v)-labeling.

Using the (u,2v)-labeling of 0-1-2 increasing plane trees, the theorem of Dumont con-
cerning the grammar (2.2) can be reformulated as follows.

Theorem 2.3 (Dumont). For n ≥ 1, the Dumont polynomial Dn(u,v) equals the sum of
weights of all 0-1-2 increasing plane trees on [n] with the (u,2v)-labeling.

It is evident that the (u,2v)-labeling for 0-1-2 increasing plane trees is equivalent to the
(u,v)-labeling for increasing binary trees. Thus, for n ≥ 1,

Dn(u,v) = An(x,y), (2.4)

where (u,v) and (x,y) are related by (2.3), i.e., u = xy and 2v = x+ y.

2.4 The André polynomials

Dumont [11] showed that the following grammar

G = {u → uv, v → u}

can be used to generate the bivariate André polynomials En(x,y), which are defined in terms
of 0-1-2 increasing trees as follows,

En(u,v) = ∑
T

u f0(T )v f1(T ),
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where the sum ranges over all 0-1-2 increasing trees T on [n], and fi(T ) denotes the numbers
of degree i vertices of T for i = 0,1,2. For n ≥ 1 and x = y = 1, En(x,y) reduces to the Euler
number En, that is, the number of alternating permutations on [n].

Define E0(u,v) = 1. The first few values of En(u,v) are given below,

E1(u,v) = u,

E2(u,v) = uv,

E3(u,v) = uv2 +u2,

E4(u,v) = uv3 +4u2v,

E5(u,v) = uv4 +11u2v2 +4u3,

E6(u,v) = uv5 +26u2v3 +34u3v.

Notice that the bivariate version of the André polynomials can be recovered from the one
variable version. Let En(u) = En(u,1). Then for n ≥ 1,

En(u,v) = vn+1En

( u
v2

)
. (2.5)

The generating function of the André polynomials En(x) was obtained by Foata-Schützenberger
[14]. An alternative proof can be found in Foata-Han [12]. A derivation utilizing the gram-
mar of Dumont was given in [4]. The following is manifest since both are generated by
essentially the same grammar.

Theorem 2.4. For n ≥ 0, we have

Dn(2u,v) = 2nEn(u,v). (2.6)

Proof. Clearly, ordering the two children of a degree two vertex in a 0-1-2 increasing tree is
equivalent to assigning the number two to this vertex as a label, so that

Dn(u,v) = ∑
L

2 f2(T )u f0(T )(2v) f1(T ), (2.7)

where the sum ranges over 0-1-2 increasing trees on [n]. It follows that

Dn(2u,v) = ∑
T

2 f0(T )+ f1(T )+ f2(T )u f0(T )v f1(T ) = 2n
∑
T

u f0(T )v f1(T ),

where T has the same range as in (2.7), whereupon the theorem is proved.

Now we see that the André polynomials can be expressed in terms of the Eulerian poly-
nomials, see [25, A094503]. For n ≥ 0, we have

2nEn(u,v) = An(x,y), (2.8)

where x and y are determined by xy = 2u and x+ y = 2v.

For u = 1 and v = 1, (2.8) becomes the known identity on the Euler numbers,

En =
An(i)

(1+ i)n−1 , (2.9)

where n ≥ 1 and i =
√
−1, see [25, Sequence A000111].
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3 The peak polynomials

The objective of this section is to demonstrate that the peak polynomials, all of the three
kinds, fall into the framework of the Dumont ansatz. First of all, let us now get the notation
straight. Our proposal is to employ symbols that are meaningful and yet easy to remember.
It turns out that the LMW -notation seems to be a sensible choice. As for left peaks (exterior
peaks), the letter L looks like having a peak on the left, and so we use L(n,k) to denote the
number of permutations of [n] with k left peaks. Accordingly, we use Ln(x) and Ln(x,y) to
denote the one variable and bivariate left peak polynomials, respectively, that is,

Ln(x) =
⌊n/2⌋

∑
k=0

L(n,k)xk, (3.1)

and

Ln(x,y) =
⌊n/2⌋

∑
k=0

L(n,k)x2k+1yn−2k. (3.2)

The first few values of Ln(x,y) are given below,

L0(x,y) = x,

L1(x,y) = xy,

L2(x,y) = xy2 + x3,

L3(x,y) = xy3 +5x3y,

L4(x,y) = xy4 +18x3y2 +5x5,

L5(x,y) = xy5 +58x3y3 +61x5y,

L6(x,y) = xy6 +179x3y4 +479x5y2 +61x7.

To be more specific, let n ≥ 1 and let σ = σ1σ2 · · ·σn be a permutation of [n]. We assume
that σ0 = σn+1 = 0. Then an index i is said to be a left peak if 1≤ i< n and σi−1 < σi > σi+1,
or an interior peak if 1 < i < n and σi−1 < σi > σi+1, or a left-right peak if 1 ≤ i ≤ n and
σi−1 < σi > σi+1,

Next, we choose the letter M for the case of interior peaks, because the two peaks in M
bear a striking resemblance to interior peaks. Therefore, we shall use M(n,k) to denote the
number of permutations of [n] with k interior peaks. For n ≥ 1, the interior peak polynomials
are defined by

Mn(x) =
⌊(n−1)/2⌋

∑
k=0

M(n,k)xk. (3.3)

In the case of left-right peaks or outer peaks, the letter W signifies three left-right peaks
including the two at both ends, and so we use W (n,k) to denote the number of permutations
of [n] with k left-right peaks. We move on to define

Wn(x) =
⌊(n+1)/2⌋

∑
k=1

W (n,k)xk. (3.4)
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Note that various notations for the peak polynomials and their coefficients have appeared
in the literature, see, for example, [1, 8, 18, 20, 22, 27], while they do not necessarily mean
the same as in here. The bivariate versions of Mn(x) and Wn(x) are crucial as far as the
grammars are concerned, which are defined by

Mn(x,y) =
⌊(n−1)/2⌋

∑
k=0

M(n,k)x2k+2yn−2k−1, (3.5)

Wn(x,y) =
⌊(n+1)/2⌋

∑
k=1

W (n,k)x2kyn−2k+1. (3.6)

In fact, there is a reason to express Wn(x,y) as

Wn(x,y) =
⌊(n−1)/2⌋

∑
k=0

W (n,k+1)x2k+2yn−2k−1. (3.7)

The first few values of Wn(x) are given below,

W0(x,y) = y,

W1(x,y) = x2,

W2(x,y) = 2x2y,

W3(x,y) = 4x2y2 +2x4,

W4(x,y) = 8x2y3 +16x4y,

W5(x,y) = 16x2y4 +88x4y2 +16x6,

W6(x,y) = 32x2y5 +416x4y3 +272x6y.

It can be seen from the above table that the polynomials Wn(x) have the same coefficients
as the Dumont polynomials Dn(u,v).

3.1 Connection to the Gessel formula

Adopting the Dumont ansatz, we obtain a convolution formula connecting the left peak poly-
nomials with the Dumont polynomials, which yields the Gessel formula on the generating
function of Ln(x), i.e.,

L(x, t) =
∞

∑
n=0

Ln(x)
tn

n!
.

Similarly, let

M(x, t) =
∞

∑
n=0

Mn(x)
tn

n!
.

Note that by way of recurrence relations, David-Barton [9] established partial differential
equations on L(x, t) and M(x, t) and found solutions in differential forms.
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Theorem 3.1 (David-Barton). We have

2x(1− x)
∂L(x, t)

∂x
+(xt −1)

∂L(x, t)
∂ t

+L(x, t)+1 = 0, (3.8)

2x(1− x)
∂M(x, t)

∂x
+(xt −1)

∂M(x, t)
∂ t

+M(x, t)+
√

x = 0. (3.9)

Put

z = t
√

1− x+ log
( √

x
1+

√
1− x

)
.

Then we have

∂L(x, t)
∂x

=
1
2

(
1

cosh(z)−1
+

1
cosh(z)+1

)
, (3.10)

∂M(x, t)
∂ t

=
1
2

(
1

cosh(z)−1
− 1

cosh(z)+1

)
. (3.11)

Gessel [25, Sequence A008971] obtained the following explicit formula for L(x, t).

Theorem 3.2 (Gessel). We have

L(x, t) =
√

1− x√
1− xcosh(t

√
1− x)− sinh t

√
1− x

. (3.12)

As brought up by Stanley [29], an explicit expression for M(x, t) can be deduced from
Equation (3.11) of David-Barton. An extension to a more general enumeration problem was
given by Carlitz-Scoville [2].

Our point of departure is the following grammar

G = {x → xy, y → x2}, (3.13)

independently found by Chen-Fu [4] and Ma [20]. Let D be the formal derivative of the
grammar G. It has been shown that the left peak polynomials Ln(x,y) can be generated by
the grammar G, i.e., for n ≥ 0,

Ln(x,y) = Dn(x). (3.14)

Setting u = x2 and v = y, the grammar in (3.13) takes the form

G = {u → 2uv, v → u}, (3.15)

which turns out to be exactly a grammar of the Dumont ansatz. This transformation enables
us to establish a convolution identity on Ln(x,y).

Let D be the formal derivative with respect to the grammars in (3.13) and (3.15). Bear in
mind that there is no ambiguity because the substitution rules act on distinct variables. Let us
consider the polynomials Dn(v). There are two ways to look at Dn(v). On one hand, Dn(u,v)
can be considered as a polynomial in u,v, which equals the Dumont polynomial Dn(u,v). On
the other hand, Dn(v) can be treated as a polynomial in x,y.
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Since
Dn+1(y) = Dn(x2),

we obtain the following convolution identity.

Theorem 3.3. For n ≥ 0,

Dn+1(x2,y) = x2
n

∑
k=0

(
n
k

)
Lk(x,y)Ln−k(x,y). (3.16)

The above formula gives rise to a relation on the generating function of Ln(x,y). Let
L(x,y, t) be the generating function of Ln(x,y).

Corollary 3.4. Let A(x̄, ȳ, t) be the generating function of the Eulerian polynomials An(x̄, ȳ),
and let A′(x̄, ȳ, t) denote the differentiation with respect to t. Then we have

A′(x̄, ȳ, t) = L2(x,y, t), (3.17)

where x̄ = y+
√

y2 − x2 and ȳ = y−
√

y2 − x2.

Let us illustrate how to compute L(x,y, t) from A(x̄, ȳ, t). Invoking (1.8), that is,

A(x̄, ȳ, t) = x̄ȳ
ex̄t − eȳt

x̄eȳt − ȳex̄t .

we find that

A′(x̄, ȳ, t) = x̄ȳe(x̄+ȳ)t (x̄− ȳ)2

(x̄eȳt − ȳex̄t)2 . (3.18)

In order to connect A′(x̄, ȳ, t) with L(x,y, t), it is necessary to express the Dumont polynomial
Dn(u,v) in terms of the Eulerian polynomial An(x,y). Substituting u = x2 and v = y into
(1.11), we find that

An(y+
√

y2 − x2,y−
√

y2 − x2) = Dn(x2,y). (3.19)

Plugging
x̄ = y+

√
y2 − x2, ȳ = y−

√
y2 − x2

into (3.18), a routine calculation shows that

A′(y+
√

y2 − x2,y−
√

y2 − x2, t) =

(
xy
√

y2 − x2√
y2 − x2 cosh(t

√
y2 − x2)− ysinh t

√
y2 − x2

)2

,

which, together with (3.17), gives

L(x,y, t) =
xy
√

y2 − x2√
y2 − x2 cosh(t

√
y2 − x)− ysinh t

√
y2 − x2

. (3.20)

Noting that
√

xLn(x) = Ln(
√

x,1), so that L(x, t) =
√

xL(
√

x,1, t). By (3.20), we obtain
(3.12).
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Petersen [26] established a relation between Ln(x) and the Eulerian polynomials, see [20],
to wit,

Ln

(
4x

(1+ x)2

)
=

1
(1+ x)n

n

∑
k=0

(
n
k

)
(1− x)n−k2kAk(x). (3.21)

To seek a grammatical understanding of the above identity, we find a rather simple trans-
formation forging a bridge between Ln(x,y) and An(x,y).

Theorem 3.5. Setting x =
√

x̄ȳ and y = (x̄+ ȳ)/2, the grammar

G = {x̄ → x̄ȳ, ȳ → x̄ȳ}

for the Eulerian polynomials is transformed into the grammar

G = {x → xy, y → x2}

for the left peak polynomials.

Proof. By definition, we have

D(x) = D(
√

x̄ȳ) =
D(x̄ȳ)
2
√

x̄ȳ
=
√

x̄ȳ
x̄+ ȳ

2
= xy

and

D(y) = D
(

x̄+ ȳ
2

)
= x̄ȳ = y2,

as requested.

It should be mentioned that while we usually consider Laurent polynomials for the action
of a formal derivative. But as noted in [3], we are not confined to Laurent polynomials.
Indeed, taking square root is not an issue at all. To help understand the formal derivative of√

x̄ȳ, we may set z =
√

x̄ȳ and then apply the product rule

D(z2) = D(x̄ȳ) = x̄ȳ(x̄+ ȳ) = 2zD(z)

to obtain D(z).

Grammatical Proof of Petersen’s Identity (3.21). Recall that

Dn(x) = Ln(x,y) =
[n/2]

∑
k=0

L(n,k)x2k+1yn−2k.

In view of the grammar transformation given in Theorem 3.5, we see that

Dn(
√

x̄ȳ) = Ln

(√
x̄ȳ,

x̄+ ȳ
2

)
.

On the other hand, by the Leibniz rule, we have

Dn(
√

x̄ȳ) = Dn

(
y√
x̄−1ȳ

)

13



=
n

∑
k=0

(
n
k

)
Dk(x̄)Dn−k(

√
x̄ȳ−1)

=
√

x̄ȳ−1
n

∑
k=0

(
n
k

)
Ak(x̄, ȳ)

(ȳ− x̄)n−k

2n−k ,

where we have made use of the fact that for k ≥ 0,

Dk(x̄ȳ−1) = x̄ȳ−1(ȳ− x̄)k, (3.22)

as observed in [4]. It follows that

Ln

(√
x̄ȳ,

x̄+ ȳ
2

)
=
√

x̄ȳ−1
n

∑
k=0

(
n
k

)
Ak(x̄, ȳ)

(ȳ− x̄)n−k

2n−k . (3.23)

Setting ȳ = 1 and replacing x̄ by x yields

Ln

(√
x,

1+ x
2

)
=

√
x

n

∑
k=0

(
n
k

)
Ak(x)

(1− x)n−k

2n−k

=

√
x

2n

n

∑
k=0

(
n
k

)
2kAk(x)(1− x)n−k. (3.24)

On the other hand,

Ln

(√
x,

1+ x
2

)
=

⌊n/2⌋

∑
k=0

L(n,k)(
√

x)2k+1 (1+ x)n−2k

2n−2k

=

√
x(1+ x)n

2n

⌊n/2⌋

∑
k=0

L(n,k)
(4x)k

(1+ x)2k . (3.25)

Comparing (3.24) and (3.25), we arrive at (3.21).

3.2 The grammatical labelings

A grammatical labeling of permutations was given in [4] to produce the left peak polynomi-
als. Similar tactics can be applied to the other two kinds of peak polynomials.

The labeling for Ln(x,y), called the L-labeling, can be described as follows. Let σ be
a permutation of [n]. We patch a zero to σ at both ends so that there are n+ 1 positions
between two adjacent elements, and these are the possible positions to insert n+ 1 in σ to
generate a permutation of [n+1]. The L-labeling of σ is meant to label the last position by
x, label the two positions next to any left peak by x, and label the remaining positions by y.
Notice that the L-labeling is an equivalent representation of the labeling given in [4]. Below
is an example,

3 1 4 5 6 2 L−→ 0 x 3 x 1 y 4 y 5 x 6 x 2 x 0.

The procedure of generating the above permutation, along with the L-labelings and the
corresponding substitution rules, is displayed in the table below,
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n The L-labeling Weight Rule
1 0 y 1 x 0 xy x → xy
2 0 y 1 y 2 x 0 xy2 x → xy
3 0 x 3 x 1 y 2 x 0 x3y y → x2

4 0 x 3 x 1 x 4 x 2 x 0 x5 y → x2

5 0 x 3 x 1 y 4 x 5 x 2 x 0 x5y x → xy
6 0 x 3 x 1 y 4 y 5 x 6 x 2 x 0 x5y2 x → xy

The M-labeling of σ is supposed to label the two positions at both ends by x, label the
two positions next to any interior peak by x, and label the remaining positions by y. Below
is an example,

3 1 4 5 6 2 M−→ 0 x 3 y 1 y 4 y 5 x 6 x 2 x 0.

The procedure of generating the above permutation along with the M-labelings is displayed
in the table below,

n The M-labeling Weight Rule
1 0 x 1 x 0 x2 y → x2

2 0 x 1 y 2 x 0 x2y x → xy
3 0 x 3 y 1 y 2 x 0 x2y2 x → xy
4 0 x 3 y 1 x 4 x 2 x 0 x4y y → x2

5 0 x 3 y 1 y 4 x 5 x 2 x 0 x4y2 x → xy
6 0 x 3 y 1 y 4 y 5 x 6 x 2 x 0 x4y3 x → xy

The following relation was derived by Ma [20] via recurrence relations.

Theorem 3.6. For n ≥ 1, we have

Dn(y) = Mn(x,y). (3.26)

Indeed, it is only a matter of formality to check that the M-labeling justifies the above
conclusion. Let us now turn to the W -labeling. For a permutation σ of [n], a zero is patched at
both ends. Consider the positions between two adjacent elements of σ , where σ0 =σn+1 = 0.
For any element 1 ≤ i ≤ n, if σi is a left-right peak, then label the positions next to i by x,
and label the rest of the positions by y.

For example, the W -labeling of the permutation 1 is 0 x 1 x 0, and below is a permutation
accompanied by its W -labeling,

3 1 4 5 6 2 W−→ 0 x 3 x 1 y 4 y 5 x 6 x 2 y 0.

By examining the change of labels when inserting the element n+1 to a permutation on
[n], we are led to the following interpretation of the grammatical expansion of Dn(y). The
same reasoning as for the grammatical generation of the polynomials Ln(x,y) given in [4]
applies to Wn(x,y). Thus the justification with full rigor will not be repeated here. Instead,
we shall give an example. The process of generating the preceding permutation is described
in the following table,
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n The W -labeling Weight Rule
1 0 x 1 x 0 x2 y → x2

2 0 y 1 x 2 x 0 x2y x → xy
3 0 x 3 x 1 x 2 x 0 x4 y → x2

4 0 x 3 x 1 x 4 x 2 y 0 x4y x → xy
5 0 x 3 x 1 y 4 x 5 x 2 y 0 x4y2 x → xy
6 0 x 3 x 1 y 4 y 5 x 6 x 2 y 0 x4y3 x → xy

Theorem 3.7. For n ≥ 1, we have

Dn(y) =Wn(x,y). (3.27)

Now that Wn(x) = xMn(x), by comparing (3.5) with (3.7), we retrieve the following com-
binatorial property, see Zhuang [33].

Theorem 3.8. For n ≥ 1 and 0 ≤ k ≤ ⌊(n− 1)/2⌋, the number of permutations of [n] with
k+1 left-right peaks equals the number of permutations of [n] with k interior peaks, that is,

W (n,k+1) = M(n,k). (3.28)

Applying the Dumont ansatz, we get the following relation, where Dn(u,v) are the Du-
mont polynomials.

Theorem 3.9. For n ≥ 0,
Dn(u,v) = Mn(x,y), (3.29)

where u = x2 and v = y.

Using the theory of enriched P-partitions, Stembridge [30] showed that for n ≥ 1,

xMn

(
4x

(1+ x)2

)
=

2n−1

(1+ x)n−1 An(x), (3.30)

see also, [20, 28]. In fact, Theorem 3.9 spells out how the these polynomials (in the bivariate
forms) are related via a change of variables.

3.3 Convolution formulas

From the point of view of grammars, one can convert the Leibniz formulas into convolution
formulas for combinatorial polynomials, and we shall exemplify how this is the case for peak
polynomials.

Returning to Mn(x) and Wn(x), we see that for n ≥ 1,

xMn(x) =Wn(x), (3.31)

since x2Mn(x2) = Mn(x,1) and Wn(x2) =Wn(x,1).
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In consideration of the initial values, we have no choice but to impose that

M0(x) = x−1 and W0(x) = 1. (3.32)

Since D(x) = xy, we have for n ≥ 0,

Dn+1(x) = Dn(xy).

and so the following convolution formula is immediate.

Theorem 3.10. For n ≥ 0, we have

Ln+1(x,y) =
n

∑
k=0

(
n
k

)
Lk(x,y)Mn−k(x,y), (3.33)

or equivalently,

Ln+1(x) = x
n

∑
k=0

(
n
k

)
Lk(x)Mn−k(x). (3.34)

Since D(x2) = D(y2) = 2x2y, we deduce that for n ≥ 1,

Dn(x2) = Dn(y2),

which can be translated into the following convolution identity.

Theorem 3.11. For n ≥ 1, we have

n

∑
k=0

(
n
k

)
Lk(x,y)Ln−k(x,y) =

n

∑
k=0

(
n
k

)
Mk(x,y)Mn−k(x,y). (3.35)

Given that D(x2) = D(y2), we find that for n ≥ 1,

Dn+1(y) = Dn(x2) = Dn(y2).

Therefore, we reach a convolution formula for Mn(x,y), which is reminiscent of that for the
derivative polynomials Pn(x). This is no surprise because the polynomials Mn(x,y) and Pn(x)
admit the same grammatical structure.

Theorem 3.12. For n ≥ 1, we have

Mn+1(x,y) =
n

∑
k=0

(
n
k

)
Mk(x,y)Mn−k(x,y). (3.36)

With the understanding that M0(x)= x−1 and M1(x)= 1, for n≥ 1, (3.36) may be replaced
by

Mn+1(x) = x
n

∑
k=0

(
n
k

)
Mk(x)Mn−k(x). (3.37)
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In the same vein, for n ≥ 1, the convolution formula (3.35) can be recast as

n

∑
k=0

(
n
k

)
Lk(x)Ln−k(x) =

n

∑
k=0

(
n
k

)
Mk(x)Mn−k(x). (3.38)

Ma [20] considered the polynomials Rn(x,y) = Dn(x+ y), where n ≥ 0. Since

Dn+1(x+ y) = Dn(x(x+ y)),

we get the following convolution formula at once.

Theorem 3.13. For n ≥ 0, we have

Rn+1(x,y) =
n

∑
k=0

(
n
k

)
Lk(x,y)Rn−k(x,y). (3.39)

The convolution of Ln(x) appeared in Ma-Yeh [24]. However, the above convolution
identity for Ln(x) went unnoticed, even though there is no barrier to deduce it in the context.

4 The derivative polynomials

The derivative polynomials Pn(x) and Qn(x) for the tangent and the secant were introduced
by Knuth-Buckholtz [19] for the computation of tangent, Euler and Bernoulli numbers. They
were later studied by Carlitz-Scoville [2]. Hoffman [15] defined the derivative polynomials
in a more general context. Recall that

(tan(x))′ = tan2(x)+1.

Define Pn(x) by
dn

dxn tan(x) = Pn(tan(x)). (4.1)

The derivative polynomials Pn(x) are listed as the Sequence A008293 in OEIS, and Pn(0)
are the tangent numbers. As pointed out by Dumont [10], the numbers Pn(1) go back to
Euler, and they are listed as Sequence A000831 in OEIS [25] with initial values

1,2,4,16,80,512,3904,34816,354560,4063232, . . . .

In the same vein, the derivative polynomials Qn(x) for the secant are defined by

dn

dxn sec(x) = Qn(tan(x))sec(x). (4.2)

For x = 0, Qn(x) are the secent numbers, that is, Qn(0) = 0 for n odd, and Qn(0) = En

for n even. The numbers Qn(1) are called the Springer numbers or the generalized Euler
numbers, denoted by Sn.
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The derivative polynomials satisfy the recurrence relations for n ≥ 0,

Pn+1(x) = (1+ x2)
d
dx

Pn(x), (4.3)

Qn+1(x) = (1+ x2)
d
dx

Qn(x)+ xQn(x). (4.4)

Note that the generating functions of Pn(x) and Qn(x) were given by Hoffman [15].

Theorem 4.1 (Hoffman). We have

∞

∑
n=0

Pn(x)
tn

n!
=

x+ tan(t)
1− x tan(t)

, (4.5)

∞

∑
n=0

Qn(x)
tn

n!
=

1
cos(t)− xsin(t)

. (4.6)

Notice that the generating function of Qn(x) tells that Qn(1) coincides with the Springer
number Sn for any n.

4.1 The grammar

Whereas the following theorem is merely a paraphrase of the recursive formulas for Pn(x)
and Qn(x), it lends a different perspective to look at the derivative polynomials, as well as a
channel to the Dumont ansatz.

Theorem 4.2. Let
G = {a → ax, x → 1+ x2}, (4.7)

and let D be the formal derivative with respect to G. Then for n ≥ 0,

Dn(x) = Pn(x), (4.8)

Dn(a) = aQn(x). (4.9)

For n = 0, we have P0(x) = x and Q0(x) = 1. The first few values of Pn(x) and Qn(x) are
given below,

P1(x) = 1+ x2,

P2(x) = 2x+2x3,

P3(x) = 2+8x2 +6x4,

P4(x) = 16x+40x3 +24x5,

P5(x) = 16+136x2 +240x4 +120x6,

P6(x) = 272x+1232x3 +1680x5 +720x7,
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and

Q1(x) = x,

Q2(x) = 1+ x2,

Q3(x) = 5x+6x3,

Q4(x) = 5+28x2 +24x4,

Q5(x) = 61x+180x3 +120x5,

Q6(x) = 61+662x2 +1320x4 +720x6.

4.2 The generating functions

We present a proof of the generating functions of Pn(x) and Qn(x) to demonstrate the rigor
and the efficiency of the grammatical calculus. In the formal setting, the generating functions
of Pn(x) and Qn(x) can be expressed as follows.

Theorem 4.3. We have

Gen(a, t) =
a

cos(t)− xsin(t)
, (4.10)

Gen(x, t) =
xcos(t)+ sin(t)
cos(t)− xsin(t)

. (4.11)

Grammatical Proof. Since

Gen(a, t) =
1

Gen(a−1, t)
(4.12)

and

Gen(x, t) =
Gen(a−1x, t)
Gen(a−1, t)

, (4.13)

we proceed to compute Dn(a−1) and Dn(a−1x). Clearly,

D(a−1) =−a−2D(a) =−a−2(ax) =−a−1x,

so we get
D2(a−1) = D(−a−1x) = a−1x2 −a−1(1+ x2) =−a−1,

and hence
D3(a−1) = a−1x.

It follows that for n ≥ 0,

D2n(a−1) = (−1)na−1, (4.14)

D2n+1(a−1) = (−1)n+1a−1x. (4.15)
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Consequently,

Gen(a−1, t) =
∞

∑
n=0

Dn(a−1)
tn

n!

=
∞

∑
n=0

(−1)na−1 t2n

(2n)!
+

∞

∑
n=0

(−1)n+1a−1x
t2n+1

(2n+1)!

= a−1 cos(t)−a−1xsin(t).

This proves (4.10).

In order to compute Gen(a−1x, t), observe that (4.14) and (4.15) can be alternatively
expressed as

D2n(a−1x) = (−1)na−1x, (4.16)

D2n+1(a−1x) = (−1)na−1, (4.17)

from which we infer that

Gen(a−1x, t) = a−1xcos(t)+a−1 sin(t). (4.18)

According to (4.13), we reach (4.11). This completes the proof.

4.3 Convolution formulas

To show how the grammatical calculus can be performed, we consider the following convo-
lution identities of Hoffman [15]. For n ≥ 1,

Pn+1(x) =
n

∑
k=0

(
n
k

)
Pk(x)Pn−k(x), (4.19)

Qn+1(x) =
n

∑
k=0

(
n
k

)
Pk(x)Qn−k(x). (4.20)

Since Dn+1(x) = Dn(1+x2) = Dn(x2), (4.19) immediately follows from the Leibniz rule.
To verify (4.20), we only need the condition n ≥ 0. Note that Dn+1(a) = Dn(ax). Thus (4.20)
is a consequence of the Leibniz rule.

The following convolution formula found by Ma-Fang-Mansour-Yeh [22] also follows
from the same line of reasoning. For n ≥ 0,

Pn+2(x) = 2
n

∑
k=0

(
n
k

)
Pk(x)Pn+1−k(x). (4.21)

Noting that
D2(x) = D(1+ x2) = D(x2) = 2xD(x),
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we have
Dn+2(x) = 2Dn(xD(x)).

Applying the Leibniz rule yields (4.21).

The following convolution identity is due to Hoffman [15], which can be used to evaluate
Qn(1).

Theorem 4.4 (Hoffman). For n ≥ 0,

Pn+1(x) = (1+ x2)
n

∑
k=0

(
n
k

)
Qk(x)Qn−k(x). (4.22)

There is a grammatical derivation of (4.22). We need the following property.

Proposition 4.5. We have

D
(

1+ x2

a2

)
= 0. (4.23)

Proof. Since
D(a−2) =−2a−3D(a) =−2a−2x

and
D(1+ x2) = 2xD(x) = 2x(1+ x2),

we see that

D
(

1+ x2

a2

)
=

−2x(1+ x2)

a2 +
2x(1+ x2)

a2 = 0,

as claimed.

Grammatical Proof of (4.22). It suffices to show that

a2Dn+1(x) = (1+ x2)
n

∑
k=0

(
n
k

)
Dk(a)Dn−k(a). (4.24)

In view of the Leibniz rule, the above relation takes the form

a2Dn+1(x) = (1+ x2)Dn(a2). (4.25)

But (4.23) says that 1+x2

a2 is a constant with respect to D, this implies that

1+ x2

a2 Dn(a2) = Dn(1+ x2) = Dn+1(x),

as required.
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4.4 The Josuat-Vergès trees

As will be seen, the grammar G is a reflection of the recursive construction of a structure
introduced by Josuat-Vergès which serves as the basis for combinatorial interpretations of
the derivative polynomials.

Let us recall the definition. Let n ≥ 1. A Josuat-Vergès tree is a complete increasing
binary tree possibly with unlabeled leaves, called empty leaves. More precisely, the vertices
from the root to any leaf are in the increasing order regardless of the empty leaf, if any. For
n = 0, the only Josuat-Vergès tree is the empty leaf. The labeling stipulation of a Josuat-
Vergès tree is simple: each empty leaf is labeled by x. For n = 2, the four Josuat-Vergès trees
are listed in Figure 3, with the total weight amounting to P2(x) = 2x+2x3.

1

2

1

2

1

2

1

2

Figure 3: The four Josuat-Vergès trees on {1,2}.

Now, it can be seen that the substitution rule x→ 1+x2 corresponds to adding the element
n+1 to a Josuat-Vergès tree on [n] by turning an empty leaf into a new vertex with no children
or an internal vertex with two empty children. This operation would result in a Josuat-Vergès
tree on [n+1], and it offers a recipe to understand the following statement.

Theorem 4.6. For n ≥ 1, Pn(x) equals the sum of weights of all Josuat-Vergès trees on [n].

4.5 Exponentiation of the Dumont grammar

Examining the partition argument for the Faà de Bruno formula in regard with higher order
derivatives of the composition of two functions, or equivalently, the combinatorial interpre-
tation for successive applications of the formal derivative of the grammar

G = { fi → fi+1g1, g j → g j+1 | i = 0,1,2, . . . , j = 1,2, . . .},

see [3], we are led to a combinatorial interpretation of Qn(x) based on that of Pn(x). The
proof is solely a repetition of the aforementioned testimony, and hence is omitted.

To be more specific, we consider the grammar

G = {a → av, v → u, u → 2uv}. (4.26)

Let D denote the formal derivative with respect to G. The partition argument shows that
Dn(a) corresponds to the exponential structure built on the structure of the original gram-
mar of Dumont. This makes it possible to lift the Dumont ansatz to the exponential level,
involving forests of planted increasing binary trees.
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Let us take up Theorem 2.2 as an example. It is obvious that for n ≥ 1, Dn(v) equals
the sum of weights of planted increasing binary trees on [n]. A forest of planted increasing
binary trees on [n] can be naturally defined as a forest on [n] in the usual sense, with each
component being a planted increasing binary tree. The labeling schemes for planted binary
trees can be carried over to forests. However, we should pay special attention to a tree with
a single vertex. If a leaf differs from the root, we label it with u. If a degree one vertex is
not the root, we label it with v. If the root is the only vertex in the tree, then we label it with
v as it is the starting label, otherwise the root is not labeled, bearing in mind that there is at
most one child of the root. For example, Figure 4 depicts a planted increasing binary tree
with labels in parentheses.

2

3

7(u) 5

6(v)

9(u)

8(u)

Figure 4: A planted increasing binary tree.

The exponential counterpart of Theorem 2.2 can be described as follows.

Theorem 4.7. For n ≥ 1, Dn(a) equals the sum of weights of all forests of planted increasing
binary trees on [n] with the (u,v)-labeling.

In the framework of the Dumont ansatz, we are ready to make a connection to the Josuat-
Vergès forests on [n], which are referred to as plane rooted forests in [17]. First, a planted
Josuat-Vergès tree on a nonempty subset S of [n] is defined as an increasing rooted tree
possibly with empty leaves such that the root has only one child, which is allowed to be an
empty leaf, and the subtree of the root, if not empty, is a Josuat-Vergès tree on the rest of the
elements in S. For the special case when S contains only one element, it is necessary to note
that the unique planted Josuat-Vergès tree on S consists of the root along with an empty leaf.

Then a Josuat-Vergès forest is defined as a forest on [n] consisting of planted Josuat-
Vergès trees. The weight of a Josuat-Vergès forest is defined to be the product of the weights
of all trees in the forest. For example, Figure 5 demonstrates a Josuat-Vergès forest on [9].

Theorem 4.8. [Josuat-Vergès] For n ≥ 1, Qn(x) equals the sum of weights of all Josuat-
Vergès forests on [n].

By the resemblance between the above combinatorial interpretation of Qn(x) and the
exponentiation of the Dumont grammar, one sees that the Josuat-Vergès forests can be re-
garded exactly as an expanded version of the forests for the Dumont grammar. In our labeling
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1

2

4

7

3

5

9 8

6

Figure 5: A Josuat-Vergès forest.

scheme, a leaf is labeled with u = 1+ x2. This means that the leaf can be an endpoint (a real
leaf) or a vertex having two empty leaves as its children, and this explains why we should
label an empty leaf by x.

We remark that the exponentiation property concerning the grammars implies the follow-
ing relation on the generating functions of Pn(x) and Qn(x), as derived combinatorially with
the aid of cycle alternating permutations by Josuat-Vergès [17],

∑
n=0

Pn(x)
tn+1

(n+1)!
= log

(
∞

∑
n=0

Qn(x)
tn

n!

)
= log

(
1

cos(t)− xsin(t)

)
, (4.27)

which yields the generating function of Pn(x) after differentiation. For more details about the
composition of two grammars, see [3].

4.6 The β -expansions

Ma-Ma-Yeh [23] came up with a beautiful idea to deduce the γ-positivity of a polynomial
by making use of a transformation of grammars. We will demonstrate that this idea can be
adapted to the derivative polynomials.

Ma [20] obtained expansions of Pn(x) and Qn(x) based on the grammar definitions and a
trigonometric identity, which we call the β -expansions. The coefficients in the expansions
turn out to be the coefficients of the peak polynomials. It has been shown that

Pn(x) =
⌊(n−1)/2⌋

∑
k=0

M(n,k)xn−2k−1(1+ x2)k+1, (4.28)

Qn(x) =
⌊n/2⌋

∑
k=0

L(n,k)xn−2k(1+ x2)k. (4.29)

As noted by Zhu-Yeh-Lu [32], the Springer number Sn equals Ln(2). Similarly, we have
Pn(1) = Mn(2). Appealing to the Dumont ansatz for 0-1-2 increasing plane trees, we see
that the β -expansion of Pn(x) can be viewed as the γ-expansion of the Eulerian polynomials
An(x,y).
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Theorem 4.9. For n ≥ 1, we have

Pn(x) =
⌊(n+1)/2⌋

∑
k=1

βn,k(2x)n+1−2k(1+ x2)k, (4.30)

where βn,k equals the number of 0-1-2 increasing plane trees on [n] with k leaves.

Given u = 1+ x2 and v = x, the parameters (x,y) in (2.4) for the Eulerian polynomials
An(x,y) are substituted by

(x+ i,x− i), (4.31)

where i =
√
−1. Hence the following relation is valid.

Theorem 4.10. For n ≥ 0, we have

Pn(x) = (x− i)n+1An

(
x+ i
x− i

)
. (4.32)

Again, resorting to the Dumont ansatz, we may associate Pn(x) with the André polyno-
mials. For n ≥ 1, we have

Pn(x) = 2nEn

(
1+ x2

2
,x
)
. (4.33)

By virtue of the relation (2.5), we may rewrite (4.33) as

Pn(x) = 2nxn+1En

(
1+ x2

2x2

)
. (4.34)

For x = 1, (4.34) reduces to
Pn(1) = 2nEn, (4.35)

which is due to Knuth-Buckholtz [19]. Notice that the identity (4.35) also follows from (2.9)
and (4.32). The proof of (4.33) can be regarded as a combinatorial argument. It is worth
mentioning that, as conjectured by Sun [31] and resolved by Zhu-Yeh-Lu [32], the sequence
of Springer numbers is log-convex.

The following relation is due to Ma [21], which specializes to (4.35) when x = 0. Let
E(x) be the generating function of the Euler numbers,

E(x) = tan(x)+ sec(x).

Then
2n dn

dxn E(x) = Pn(E(x)). (4.36)

As for the β -expansion (4.29) of Qn(x), in light of Theorem 4.7 and Theorem 4.8, one
sees that the coefficient L(n,k) can also be interpreted as the number of forests of planted
increasing binary trees on [n] with k leaves.
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Next, we give a grammatical proof of (4.29). Recall the grammar for Qn(x) as given in
(4.7), i.e.,

G = {a → ax, x → 1+ x2}. (4.37)

Under the substitutions v = x and u = 1+ x2, we get the grammar

G = {a → av, v → u, u → 2uv}. (4.38)

Let D be the formal derivative of the above grammar G. Then we have, for n ≥ 0,

Dn(a) = aQn(x).

The first few values of Dn(a) are given below,

D(a) = av,

D2(a) = a(v2 + vu),

D3(a) = a(v3 +5vu),

D4(a) = a(v4 +18v2u+5u2),

D5(a) = a(v5 +58v3u+61vu2),

D6(a) = a(v6 +179v4u+479v2u2 +61u3).

Grammatical Proof of (4.29). Setting z = x2, the grammar

G = {x → xy, y → x2} (4.39)

is transformed into
G = {x → xy, y → z, z → 2yz}. (4.40)

Now, we may take a comparative look at (4.38) and (4.40) to understand what is going on.
Recall that for the grammar G in (4.39),

Dn(x) = x
⌊n/2⌋

∑
k=0

L(n,k)x2kyn−2k. (4.41)

Observe that the above coefficient L(n,k) of x2k+1yn−2k in Dn(x) equals the coefficient of
xyn−2kzk in Dn(x) linked with the grammar in (4.40), as claimed.

For example, for the grammar G in (4.40), we have

D5(x) = x(y5 +58y3z+61yz2).

Renaming x by a, y by x and z by 1+ x2, the above expression is in accordance with the
β -expansion of Q5(x):

Q5(x) = 61x+180x3 +120x5 = x5 +58x3(1+ x2)+61x(1+ x2)2.
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To conclude, we remark that the relation (4.29) opens a new avenue for the Gessel for-
mula for the generating function of Ln(x,y). Yet another possibility would be to explore the
connection between Ln(x,y) and Pn(x) along the line of the exponential formula based on
(4.27).
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