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Abstract

As remarked by Berndt, no combinatorial perspective seems to be alluded in the origi-

nal definition of the Ramanujan polynomials. On a different scene, a recursive algorithm to

generate rooted trees has been devised independently by Shor and Dumont-Ramamonjisoa.

Zeng discovered the connection between the Ramanujan polynomials and the enumeration

of rooted trees by number of improper edges. We present a proper labeling scheme for

rooted trees by employing an extra label. Harnessed by this grammar, we develop a calcu-

lus heavily depending on the constant properties for the Ramanujan polynomials. From the

grammatical formulation, we recover the defining equation of Ramanujan on an implicit

function. So the two themes of Ramanujan converge to one combinatorial structure. More-

over, we provide a grammatical treatment of a bijection behind the recursion independently

due to Shor and Berndt-Evans-Wilson.
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1 Introduction

This paper is concerned with a grammatical treatment of the Ramanujan polynomials. For

integers 1 ≤ k ≤ r+ 1, the Ramanujan polynomials ψk(r,x) are defined by the following

relation [1]:
∞

∑
k=0

(x+ k)r+ke−u(x+k)uk

k!
=

r+1

∑
k=1

ψk(r,x)
(1−u)r+k , (1.1)

from which it follows the recurrence relation:

ψk(r+1,x) = (x−1)ψk(r,x−1)+ψk−1(r+1,x)−ψk−1(r+1,x−1), (1.2)

where ψ1(0,x) = 1, ψ0(r,x) = 0 and ψk(r,x) = 0 for k > r+1. Ramanujan showed that

r+1

∑
k=1

ψk(r,x) = xr. (1.3)

Berndt, Evans and Wilson [1, 2] obtained another recurrence relation

ψk(r,x) = (x− r− k+1)ψk(r−1,x)+(r+ k−2)ψk−1(r−1,x). (1.4)

As observed by Zeng [16], the polynomials ψk(r,x) are linked to the insertion algorithm

of Shor [14] and Dumont-Ramamonjisoa [10] based on the notion of improper edges of a

rooted tree. Throughout this paper, for n≥ 1, write [n] for {1,2, . . . ,n}. Given a rooted tree

T on [n], an edge of T is represented by a pair (i, j) of vertices with j being a child of i. We

say that (i, j) is improper if there exists a descendant of j that is smaller than i, bearing in

mind that any vertex of T is considered as a descendant of itself; otherwise, (i, j) is called

a proper edge.

As for the underlying combinatorial structures for the Ramanujan polynomials, we use

Rn,k to denote the set of rooted trees on [n] with k improper edges, and let R(n,k) denote

the number of rooted trees in Rn,k. Meanwhile, we use Tn+1,k to denote the set of rooted

trees on [n+1] with root 1 with k improper edges, and T (n,k) to denote the cardinality of

Tn+1,k.

It is somewhat intriguing that Dumont-Ramamonjisoa did not start with the polyno-

mials ψk(r,x). Instead, they developed a combinatorial approach to the expansions of an
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implicit function also defined by Ramanujan. Without being precise, the polynomials in-

volving the number of improper edges have been referred to as the Ramanujan polynomials.

The Ramanujan polynomials Rn(u) and Tn(u) are defined by

Rn(u) =
n−1

∑
k=0

R(n,k)uk,

Tn(u) =
n−1

∑
k=0

T (n,k)uk.

The generating functions of Rn(u) and Tn(u) are defined by

R(u, t) = ∑
n≥1

Rn(u)
tn

n!
,

T (u, t) = 1+ ∑
n≥1

Tn(u)
tn

n!
.

The numbers R(n,k) and T (n,k) are listed as sequences A054589 and A217922 in

OEIS. For example, we have the first few values:

R1(u) = 1,

R2(u) = 1+u,

R3(u) = 2+4u+3u2,

R4(u) = 6+18u+25u2 +15u3,

R5(u) = 24+96u+190u2 +210u3 +105u4,

R6(u) = 120+600u+1526u2 +2380u3 +2205u4 +945u5.

The first few values of Tn(u) are given below:

T0(u) = 1,

T1(u) = 1,

T2(u) = 2+u,

T3(u) = 6+7u+3u2,

T4(u) = 24+46u+40u2 +15u3,
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T5(u) = 120+326u+430u2 +315u3 +105u4.

As revealed by Dumont-Ramamonjisoa, the Ramanujan polynomials originated from

the expansions of an implicit function defined by Ramanujan. Assume that y is a formal

power series without constant term defined by the equation

x = ye−y +
a−1

a
(e−y−1). (1.5)

Ramanujan studied the expansion of a
1−ay in x. Moreover, Dumont and Ramanonjisoa con-

sidered the expansions of y and ey in x, which turn out to be associated with the Ramanujan

numbers R(n,k) and T (n,k), namely,

y = ∑
n≥1

(
n−1

∑
k=0

R(n,k)an+k

)
xn

n!
,

ey = 1+ ∑
n≥1

(
n−1

∑
k=0

T (n,k)an+k

)
xn

n!
.

Given the above expansions, it is not hard to deduce the functional equations for R(u, t)

and T (u, t) from the equation (1.5). As will be seen, the Ramanujan polynomials ψk(r,x)

can be expressed as a combinatorial polynomial Qn,k(x) as defined below. Indeed, they can

also be traced back to the Ramanujan equation (1.5).

Zeng [16] discovered the following relation

Qn,k(x) = ψk+1(n−1,x+n), (1.6)

where Qn,k(x) arises in the enumeration of rooted trees by the number of improper edges.

Shor [14] found a combinatorial interpretation of Qn,k(x) when x is a positive integer,

whereas Dumont and Ramamonijsa [10] investigated the numbers Qn,k(−1), Qn,k(0) and

Qn,k(1).

As proved by Dumont and Ramamonjisoa [10], for n > k ≥ 0, Qn,k(0) equals the num-

ber of rooted trees on [n] with k improper edges, i.e., Qn,k(0) = R(n,k), and Qn,k(1)

equals the number of rooted trees with root 1 on [n + 1] with k improper edges, i.e.,

Qn,k(1) = T (n,k). They also gave a combinatorial interpretation for Qn,k(−1) in terms

of functions from [n−1] to [n−1], which is connected to the interpretation of the number
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of rooted trees on [n] with k improper edges with the vertex 1 being a leaf, see [16]. An-

other interpretation of Qn,k(−1) has been given by Wang and Zhou [15] in terms of refined

orbifold Euler characteristics of the moduli space of stable curves of genus 0. Zeng [16]

obtained the following interpretations of Qn,k(x):

Qn,k(x) = ∑
T∈Tn+1,k

xdegT (1)−1, (1.7)

Qn,k(x) = ∑
T∈Rn,k

(x+1)degT (1), (1.8)

where degT (i) denotes the degree of i in T . The degree of a vertex i in a rooted tree T is

defined to be the number of children of i.

We begin with an updated version of the grammar of Dumont and Ramamonijsa by

employing an extra label. This labeling scheme is proper in the sense that the labels are

in one-to-one correspondence with the operations in recursive construction of rooted trees

based on the features of the edges, that is, depending on whether an edge is proper or

improper. Then we develop a grammatical calculus in order to compute the generating

functions R(u, t) and T (u, t).

It turns out that the constant properties of a grammar play a crucial role in computation.

As will be seen, by means of the differential operator representation of a grammar, Maple

can be helpful in solving partial differential equations in order to generate constants and

higher order constants with respect to a grammar. By carrying out the grammatical calculus,

we obtain functional equations for R(u, t) and T (u, t), which reduce to the classical equation

of Pólya. They are also in accordance with the defining equation of the implicit function as

studied by Dumont-Ramamonjisoa.

Our grammatical approach is valid to deal with the generating function of Qn,k(x). A

function equation related to the generating function of Qn,k(x) has been derived by Zeng,

which can be transformed into the defining equation of Ramanujan of the above implicit

function in (1.5).

The last section deals with a recurrence relation for Qn,k(x), independently due to Shor

and Berndt-Evans-Wilson. Shor asked for a combinatorial proof. A rather involved bijec-

tion was given in [7], and a simpler proof was obtained by [11]. A grammatical approach

by computing generating functions has been given in [8]. We shall turn the bijection in
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[7] into a grammatical identity, and then shall provide an inductive treatment. In theory,

one may convert each step of the inductive procedure into a combinatorial argument so that

one may arrive at a justification which may be considered semi-combinatorial. Overall, a

simple bijection is still in demand.

2 A proper labeling scheme for rooted trees

We give a labeling scheme for rooted trees (or planted rooted trees) in connection with the

recursive construction independently due to Shor [14] and Dumont-Ramamonjisoa [10],

see also [13].

From this labeling scheme, it can be seen that the labels should be understood as indi-

cators to reflect the cases of the recursive construction of the combinatorial structure. Of

course, the labels can be associated with components of a combinatorial structure, such as

edges and vertices of a tree, or blocks of a partition. Nevertheless, a label can be considered

as a symbol for a specific mathematical meaning. In general, such an understanding of a

labeling scheme may be instrumental in converting a recursive construction into a grammar.

Assume that n≥ 2 and that we are given a rooted tree on [n−1]. A rooted tree on [n] can

be regarded as a planted tree on {0,1, . . . ,n} for which 0 is the root, and the root has only

one child. There are three cases in the construction of Shor and Dumont-Ramamonjisoa.

1. For any vertex i, n may be added as a child of i. A new edge is formed, and a new

vertex is formed. If we use z to label a vertex, and v a new edge. Then we get a rule:

z→ z(vz).

The labels v and z in parentheses are meant to be the labels for the new vertex and

the new edge (which is proper). The operation in this case is called a z-insertion.

2. For any edge (either proper or improper), when n is added, a new edge is created,

which is improper. So we should consider v as a label for every edge. Moreover, if

an edge is improper, we should use an additional label u to mark an improper edge,

6



i(z)
−−−−→ i(z)

n(z)
v

z→ vz2

Figure 1: A z-insertion.

because in Case 3 only improper edges are selected for the operation of inserting n.

Notice that a new vertex is created. This case is captured by the rule:

v→ v(uvz).

The operation in this case is called a v-insertion. This operation does not change the

degree of the existing nodes.

i

j
v −−−−→

i

n(z)

j

v

vu

v→ uv2z

Figure 2: A v-insertion.

3. Each improper edge can be used to add n. In this case, an improper edge is created.

Since a new vertex is created, we should use the rule:

u→ u(uvz).

The operation in this case is called a u-insertion. This operation does not change the

degree of the existing nodes except the node i.

It can be readily seen that the insertion algorithm is reversible. In accordance with the

above procedure, it is natural to introduce the following labeling scheme for a planted root

tree T on [n] for any n≥ 1:
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i

j1 jd jd+1 jl
. . . . . .

u

β ( j1)< β ( j2)< · · ·< β ( jl)

−−−−→

n(z)

j1 jd
i

jd+1 jl

. . .

. . .

u vu

u→ u2vz

Figure 3: A u-insertion.

• Each vertex i other than 0 is labeled by z.

• Each edge is labeled by v.

• Moreover, each improper edge is labeled with an additional label u. In other words,

a proper edge is labeled by v, whereas an improper edge is by uv.

With the above labeling, the weight of a planted rooted tree is defined to be product of

all its labels. Let us use Rn(u) to denote the generating function of planted rooted trees on

[n] with respect to the number of improper edges.

In the above labeling scheme, the labels are in one-to-one correspondence with the

insertions of the recursive construction. Taking account of the insertion algorithm, every

edge has the basic feature of being any edge and the feature of being an improper edge.

In our setting, an extra label is at our disposal. This updated labeling scheme seems to

offer more flexibility in further exploring the Ramanujan polynomials subject to certain

constraints.

The rules are summarized into the following grammar:

G = {z→ vz2, v→ uv2z, u→ u2vz}. (2.1)

Theorem 2.1. Let D denote the formal derivative with respect to the above grammar G.

Then for n≥ 1, we have

Dn−1(vz) = vnznRn(u).
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If we start with a single root 1 instead without the root 0 in the planted version, we have

the following grammatical interpretation.

Theorem 2.2. For n≥ 1, we have

Dn−1(z) = vn−1znTn−1(u).

3 The grammar of Dumont and Ramamonjisoa

While Ramanujan considered the expansion of an implicit function defined by a functional

equation, Dumont and Ramamonjisoa came up with an ingenious way to produce a gram-

mar so that the expansions can be carried out in terms of a combinatorial structure. To

justify the validness of their grammar, they visualize an improper edge as a double edge.

In regard with our labeling scheme, there is a good reason to coin the term double edges.

Let D denote the formal derivative with respect to the grammar G. Notice that D can

also be viewed as the operator

D = A3S
∂

∂A
+AS2 ∂

∂S
. (3.1)

Dumont and Ramamonjisoa [10] established a connection between the grammar G and

the enumeration of rooted trees on [n] with k improper edges. Recall that R(n,k) denotes the

number of rooted trees on [n] with k improper edges. Dumont and Ramamonjisoa obtained

the following relation.

Theorem 3.1. For n≥ 1,

Dn−1(AS) = AnSn
n−1

∑
k=0

R(n,k)Ak, (3.2)

Dn(S) = AnSn+1
n−1

∑
k=0

T (n,k)Ak. (3.3)

In regard with the computation, one sees that our grammar and the grammar of Dumont-

Ramamonjisou accomplish the same job as far as the coefficients of the polynomials are

concerned. For example, we see that

Dn−1(vz) |u=v=A,z=S = Dn−1(AS),
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where the formal derivatives D on the left and the right are understood from the concerned

variables.

4 The grammatical calculus for R(u, t) and T (u, t)

The main objective of this paper is to demonstrate how one can perform a grammatical

calculus for the Ramanujan polynomials. First, we derive a functional equation for the gen-

erating function Gen(z, t), which yields a functional equation for T (u, t). It, in turn, leads

to a functional equation for R(u, t). Provided the expansions of Dumont-Ramamonjisoa,

one recovers the defining equation of Ramanujan. This shows that by means of the gram-

matical calculus, there is a route from the underlying combinatorial structure to the series

expansions of Ramanujan.

Theorem 4.1. We have

Gen(z, t) = ze(z
−1−u−1z−1+u−1vt)Gen(z, t)+u−1−1. (4.1)

It should be noted that while (4.1) is an outcome of the grammatical calculus which

involves three variables u,v,z, in the end it can be reduced to a simpler form, namely,

T (u, t) = e(1−u−1+u−1t)T (u, t)+u−1−1. (4.2)

For a labeled tree T on [n+ 1] rooted at 1, any edge incident to the root is proper.

Therefore, such a rooted tree after relabeling can be viewed as a forest F on {1,2, . . . ,n}
such an edge of T is improper if it is improper in a component of F . It follows that

T (u, t) = eR(u, t),

which, together with (4.2), yields

eR(u, t) = e(1−u−1+u−1t)eR(u, t)+u−1−1,

and hence

R(u, t) = (1−u−1 +u−1t)eR(u, t)+u−1−1. (4.3)
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The above equation is under the umbrella of the equation (1.5) of Ramanujan. More

precisely, substituting u by a, t by ax and using y to denote R(a,ax), the equation (4.3)

coincides with (1.5).

To perform the grammatical calculus, recall that for a Laurent series f in x,y,z, the

generating function of f with respect to D is defined by

Gen( f , t) =
n

∑
n=0

Dn( f )
tn

n!
.

Assume that g is also a Laurent series in x,y,z. The Leibniz formula for D, that is, for n≥ 0,

Dn( f g) =
n

∑
k=0

(
n
k

)
Dk( f )Dn−k(g),

implies the multiplicative property of the generating functions, that is,

Gen( f g, t) = Gen( f , t)Gen(g, t).

One can refer to [3] for more information.

To prove the above theorem, we need the following constant properties. In fact, they

were found by solving a partial differential equation with the aid of Maple. A function f

is called a constant with respect to D if D( f ) = 0, and it is called a second order constant

with respect to D if D2( f ) = 0. It should not be neglected that 1 is a constant. If C is a

second order constant, then Ck is a (k+1)-st order constant. In general, for a higher order

constant f , one can reduce the computation of the generating function Gen( f , t) to only a

few terms, see Dong-Du-Ji-Zhang [9]. It is worth mentioning that for an eigenfunction f ,

that is, D( f ) = c f , where c is a constant, it is easy to compute Gen( f , t). Eigenfunctions

with respect to a given constant c can be sought with resort to Maple. Such a strategy has

been explored in [4, 5, 6].

Proposition 4.2. We have the following constant properties:

D(u−1v) = 0, (4.4)

D(zeu−1
) = 0, (4.5)

D((u−1)v−1z−1) = 1, (4.6)

D(z−1−u−1z−1) = u−1v, (4.7)

D(eu−1
(uv−1− y−1)) = zeu−1

. (4.8)
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As a matter of fact, since D can be viewed as a differential operator

D = u2vz
∂

∂u
+uv2z

∂

∂v
+ vz2 ∂

∂ z
,

the constants u−1v and zeu−1
can be found by solving the partial differential equation

D( f ) = 0 using Maple.

Proof of Theorem 4.1. By (4.5),

Gen(zeu−1
, t) = Gen(z, t)eGen(u−1, t) = zeu−1

, (4.9)

here we have used the fact that

Gen(e f , t) = eGen( f , t).

By (4.4) and (4.7), we find that

Gen(z−1−u−1z−1, t)

= Gen(z−1, t)−Gen(u−1, t)Gen(z−1, t)

= z−1−u−1z−1 +u−1vt.

(4.10)

Using (4.9), we deduce that

eGen(u−1, t) = zeu−1
Gen(z−1, t). (4.11)

Combining (4.10) and (4.11), we get

eGen(z−1, t) = ez−1−u−1z−1+u−1vt(zeu−1
Gen(z−1, t))Gen(z−1, t). (4.12)

Since Gen(z−1, t) = Gen(z, t)−1, we obtain (4.1). This completes the proof.

We can also calculate Gen(u, t) and Gen(v, t). By similar arguments, or by (4.11) and

(4.1), we obtain that

(1−Gen(u−1, t))eGen(u−1, t) = eu−1
(1−u−1 +u−1vzt). (4.13)

From (4.4), we have

Gen(u−1v, t) = Gen(u−1, t)Gen(v, t) = u−1v.
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Thus

Gen(u−1, t) = u−1vGen(v−1, t).

Substituting this into (4.13), we obtain that(
1−u−1vGen(v−1, t)

)
eu−1vGen(v−1, t) = eu−1

(1−u−1 +u−1vzt). (4.14)

Putting v = 1 and z = 1, the functional equation (4.1) takes the form (4.2), that is, for

n≥ 0,

Dn(z) |v=z=1= Tn(u).

5 The grammatical calculus for Qn,k(x)

Built on the grammar of Dumont-Ramamonjisoa, a grammar for the polynomials Qn,k(x)

has been given in [8]. With the proper grammar G in hand, it is easy to endow the vertices

with specifics of a rooted tree according to their roles in the combinatorial interpretation of

Qn,k(x) as given in (1.7).

To this end, looking at the set of rooted trees on [n] with root 1, we classify the vertices

of T into three types: The root is labeled by a, the children of the root labeled by x, and the

rest of the vertices are labeled by z.

Starting with the root 1 with label a, D(a) gives a labeled tree on [2] with 2 being a

child of the root. Let us use the label x to mark a child of the root. This gives the rule:

a→ axv,

where v is the label of the new edge which is proper. If a new vertex is inserted that is not

a child of the root, we label it with z.

When an action is taken on an edge incident to the root, a new vertex is created and a

new label z is introduced. Moreover, an improper edge is created. So we have the rule

v→ uv2z.
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Observe that this rule also applies to other v-labeled edges. Hence it holds for every edge

labeled by v.

For any improper edge, we see that the created vertex label is always z, and an improper

edge is created. Hence the rule

u→ u2vz

remains valid.

As for operations associated with the vertices labeled by x and z, we have

x→ xvz, z→ vz2.

All the above rules constitute the following grammar:

G = {a→ axv, x→ xvz, z→ vz2, v→ uv2z, u→ u2vz}. (5.1)

This refined grammar leads to the following theorem. If no special attention is needed,

we use D to represent the formal derivative with respect to the above grammar G. But when

clarity is required, we use DG.

Theorem 5.1. For n≥ 1, we have

Dn(a) = avn
n−1

∑
k=0

∑
T∈Tn+1,k

xdegT (1)zn−degT (1)uk, (5.2)

or equivalently,

Dn(a) = axvnzn−1
n−1

∑
k=0

∑
T∈Tn+1,k

(xz−1)degT (1)−1uk (5.3)

= axvnzn−1
n−1

∑
k=0

Qn,k(xz−1)uk. (5.4)

We now turn to the computation of Gen(a, t). Let b = xv and c = vz. Then we have

DG(xv) = xv2z(1+u) = bc(1+u), (5.5)

DG(vz) = v2z2(1+u) = c2(1+u). (5.6)
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Thus the grammar G is transformed into a new grammar

H = {a→ ab, b→ bc(1+u), c→ c2(1+u), u→ cu2}. (5.7)

Let DH denote the formal derivative with respect to H. Evidently,

DH(a) |b=xv,c=vz= DG(a).

Associated with the transformed grammar H, we have the following constant properties.

Proposition 5.2. We have

DH(uc−1e−u−1
, t) = 0, (5.8)

DH(bc−1, t) = 0, (5.9)

DH(aebc−1u−1
, t) = 0, (5.10)

DH((u−1)c−1, t) = 1. (5.11)

The following formula for Gen(a, t) with respect to G turns out to be a grammatical

formulation of the formula of Zeng [16, Proposition 9].

Theorem 5.3. Let y ∈ C[[t]] be the solution of the equation

(1−u−1 + y)ue−y = u−1+ vzt. (5.12)

Then

exz−1y = a−1Gen(a, t) (5.13)

= 1+ xz−1
∑
n≥1

n−1

∑
k=0

Qn,k(xz−1)uk (vzt)n

n!
. (5.14)

Proof. We proceed to compute GenH(a, t) by appealing to the above constant properties,

where GenH denotes the generating function with respect to the formal derivative DH . From

(5.9) and (5.10), we obtain

GenH(b, t)GenH(c−1, t) = bc−1, (5.15)

GenH(a, t)eGenH(bc−1, t)GenH(u−1, t) = aebc−1u−1
. (5.16)
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Substitute (5.15) into (5.16), we get

GenH(a, t) = aebc−1(u−1−GenH(u−1, t)). (5.17)

Next, we come to compute GenH(u−1, t). From (5.8) and (5.11), we have

GenH(u, t)GenH(c−1, t)eGenH(−u−1, t) = uc−1e−u−1
, (5.18)

GenH(u−1, t)GenH(c−1, t) = (u−1)c−1 + t. (5.19)

It follows that

ue−u−1
eGenH(u−1, t)(1−GenH(u−1, t)) = u−1+ ct. (5.20)

Writing y = u−1−GenH(u−1, t), we find that

ue−u−1
eu−1−y(1−u−1 + y) = u−1+ ct, (5.21)

and so

(1−u−1 + y)ue−y = u−1+ ct. (5.22)

Hence

GenH(a, t) = aebc−1y, (5.23)

where y is the solution of the equation (5.22). Since

DH(a) |b=xv,c=vz= DG(a),

we deduce that under the grammar G,

Gen(a, t) = aexz−1y, (5.24)

where y ∈ C[[t]] is the solution of the equation

(1−u−1 + y)ue−y = u−1+ vzt. (5.25)

Note that from (5.4), we conclude that

Gen(a, t) = a+axz−1
∑
n≥1

n−1

∑
k=0

Qn,k(xz−1)uk (vzt)n

n!
. (5.26)
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This completes the proof.

In [16], Zeng define the generating function

Y (u, t) = ∑
n≥1

n−1

∑
k=0

Qn,k(x)
(1−u)k

tn

n!
. (5.27)

Theorem 5.4 (Zeng). We have

Y (u, t) =
exy−1

x
, (5.28)

where y ∈ C[[t]] be the solution of the equation

(1−u)t = ye−y +u(e−y−1). (5.29)

Proof. In Theorem 5.3, let v = z = 1 and substitute u by 1
1−u , we then get the desired

formula by noticing that in these conditions, the equation

(1−u−1 + y)ue−y = u−1+ vzt (5.30)

becomes

(1−u)t = ye−y +u(e−y−1). (5.31)

In addition, from (5.14), we have

1+ xY (u, t) = exy. (5.32)

This completes the proof.

Notice that the grammatical formulation in Theorem 5.3 can be recovered from Theo-

rem 5.4 by replacing x with xz−1, replacing t with vzt, and and setting 1
1−u to u.

Replacing 1
1−u by a and (1−u)t by t, then the equation

(1−u)t = ye−y +u(e−y−1) (5.33)

takes the form of Ramanujan’s equation with x replaced by t,

t = ye−y +
a−1

a
(e−y−1), (5.34)

and so the identity (5.28) of Zeng can be reformulated as follows.
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Theorem 5.5. Assume that y is the defined by the Ramanujan equation (5.34). Then we

have the following expansion

exy = 1+ ∑
n≥1

(
n−1

∑
k=0

xQn,k(x)an+k

)
tn

n!
. (5.35)

6 The grammatical calculus behind a bijection

In this section, we give a grammatical formulation of a bijection for the recurrence rela-

tion for Qn,k(x) of Shor and Berndt-Evans-Wilson. The construction given in [7] is rather

involved. A simpler proof has been presented by Guo [11]. A grammatical approach by

computing the generating functions has been given in [8]. In theory, a inductive proof of

the grammatical formula may serve as a blueprint of a recursive construction, as has been

called a grammar assisted bijection. The statement in [7] is as follows.

Theorem 6.1. For n≥ 1, there is a bijection

Tn+1,k[deg(2)> 0] ←→ Tn+1,k+1[deg(n+1)> 0],

where the condition in the brackets is meant to be a constraint on the proceeding set.

Recall the grammar G given in (2.1), that is,

G = {z→ vz2, v→ uv2z, u→ u2vz}.

Then Theorem 6.1 can be recast into the following grammatical statement, where D denotes

the formal derivative of G.

Theorem 6.2. For n≥ 2, we have

u
n−2

∑
k=0

Dn−2−k(vz2Dk(vz)) = znD(z−nDn−1(z)). (6.1)

Assume that n ≥ 1, consider the process of generating rooted trees on [n + 1] with

root 1 using the inserting operations. Assume that T is obtained from T ′ by an insertion.

Since 1 remains the root, we are led to apply the formal derivative D to z, since the initial

18



structure is labeled by z. The condition deg(n+1)> 0 indicates that the last step cannot be

a z-insertion, otherwise n+1 would be a leaf.

On the other hand, starting an edge (1,2), in the insertion process once the vertex 2

becomes an internal vertex, it remains an internal vertex, because 1 can never be a child of

2, and any edge starting with 2 is proper. Therefore, at some point, the vertex 2 is turned

into an internal vertex. Suppose that at step k + 3, where k ≥ 0, 2 becomes an internal

vertex. This is caused by a z-insertion. The grammar rule is z→ vz2. However, before this

step, 2 is never involved in an z-insertion. In other words, up to this step, the trees generated

correspond to Dk(vz). Hence we have the above grammatical reformulation (6.1).

The following lemma will be needed in the proof of Theorem 6.2.

Lemma 6.3. We have

Dn(vz) =
u−1

uz
Dn+1(z)+(n+1)

v
u

Dn(z), n≥ 0. (6.2)

Proof. We shall proceed by induction. When n = 0, the right-hand side of (6.2) equals

u−1
uz

D(z)+
v
u

z =
u−1

uz
vz2 +

v
u

z = vz,

which coincides with the left-hand side of (6.2), i.e. vz = D0(vz).

Assume that (6.2) holds for n = m, namely,

Dm(vz) =
u−1

uz
Dm+1(z)+(m+1)

v
u

Dm(z).

In light of the constant properties (4.4) and (4.7), that is,

D
(

u−1
uz

)
=

v
u

and D
(v

u

)
= 0,

it follows that

Dm+1(vz) = D
(

u−1
uz

Dm+1(z)+(m+1)
v
u

Dm(z)
)

=
u−1

uz
Dm+2(z)+

v
u

Dm+1(z)+(m+1)
v
u

Dm+1(z)

=
u−1

uz
Dm+2(z)+(m+2)

v
u

Dm+1(z),
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as required.

Proof of Theorem 6.2. We proceed by induction on n. For n = 2, the right-hand side of

(6.1) equals

z2D(z−2D(z)) = z2D(z−2 · vz2) = z2D(v) = uv2z3,

which is in agreement with the left-hand side of (6.1), that is, uD0(vz2D0(vz)) = uv2z3.

Assume that (6.1) holds for n = m:

u
m−2

∑
k=0

Dm−2−k(vz2Dk(vz)) = zmD(z−mDm−1(z)), m≥ 2. (6.3)

By the product rule, one has

D(z−mDm−1(z)) = z−mDm(z)−mvz1−mDm−1(z), (6.4)

which leads to

z−m−1Dm(z) = z−1D(z−mDm−1(z))+mvz−mDm−1(z). (6.5)

Applying D on both sides of (6.5), we find that

D(z−m−1Dm(z)) = D(z−1D(z−mDm−1(z)))+mD(z−mvDm−1(z)). (6.6)

By the assumption (6.3), we have

D(z−1D(z−mDm−1(z)))

= D(z−1)D(z−mDm−1(z))+ z−1D2(z−mDm−1(z))

=−vD(z−mDm−1(z))+ z−1D

[
uz−m

m−2

∑
k=0

Dm−2−k(vz2Dk(vz))

]

= (uv− (1+m)v)D(z−mDm−1(z))+uz−m−1
m−2

∑
k=0

Dm−1−k(vz2Dk(vz)). (6.7)

To prove (6.1) holds for n = m+1, that is,

u
m−1

∑
k=0

Dm−1−k(vz2Dk(vz)) = zm+1D(z−m−1Dm(z)),

combining (6.6) with (6.7), it suffices to show that

uvz1−mDm−1(vz) = (uv− (1+m)v)D(z−mDm−1(z))+mD(z−mvDm−1(z)). (6.8)
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But

mD(z−mvDm−1(vz)) = mD(v)z−mDm−1(z)+mvD(z−mDm−1(z))

= muv2z1−mDm−1(z)+mvD(z−mDm−1(z)).

Therefore, (6.8) is valid provided that

uz1−mDm−1(vz) = (uv− v)D(z−mDm−1(z))+mvz1−mDm+1(z). (6.9)

In view of (6.4), (6.9) becomes

uzDm−1(vz) = (u−1)Dm(z)−mvzDm−1(z),

or equivalently,

Dm−1(vz) =
(u−1)

uz
Dm(z)+m

v
u

Dm−1(z). (6.10)

Applying Lemma 6.3, we arrive at (6.9). So we conclude that (6.1) holds for n = m+1.
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