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Abstract

Let p(n) denote the number of partitions of . A new infinite family of inequalities for
p(n) is presented. This generalizes a result by William Chen et al. From this infinite
family, another infinite family of inequalities for log p(n) is derived. As an application
of the latter family one, for instance obtains that for n > 120,

1
p()? > <1 n ﬁ . ﬁ>p(n —Dpn+1).
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1 Introduction

We denote by p(n) the number of partitions of n. The first 50 values of p(n) starting
from n = 0 read as follows:

1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,
385,490,627,792,1002,1255,1575,1958,2436,3010,3718,
4565, 5604,6842,8349,10143,12310,14883,17977,21637,
26015,31185,37338,44583,53174,63261,75175,89134,
105558,124754,147273,173525.

A well-known asymptotic formula for p(n) was found by Hardy and Srinivasa
Ramanujan [9] in 1918 and independently by James Victor Uspensky in 1920 [15]:

e”\/? (1.1)

p(n) ~ 3

An elementary proof of (1.1) was given by Paul Erdds [7] in 1942. At MICA 2016
(Milestones in Computer Algebra) held in Waterloo in July 2016, Zhenbing Zeng et
al. [14] reported that using numerical analysis they found a better asymptotic formula'
for p(n) by searching for constants C; ; to fit the following formula:

2 Co,— C
log p(n) = n\/tf— logn — log(4+/3) + —>—1 4 =10
3 logn = /n
Ci— Crilogn C
I 1,—1 2,110g + 2*04_... ' (12)
/nlog(n) n
By substituting for n = 219,211 22% into (1.2) they obtained,
Co—1=0, Cip=-04432..., C1-1=0, Cp1 =0, Cro=-0.0343....

The OEIS [12] for A0O00041 shows that a similarly refined asymptotic formula for
p(n) was discovered by Jon E. Schoenfield in 2014, this reads

|
(2. Cl 2, 3 4 3
eﬂ(3+60+ﬁ+n+n n+n2+"')2,

~ 1.3
p(n) 3 (1.3)

where the coefficients are approximately

co = —0.230420..., ¢ =—-0.017841..., ¢ =0.005132...,
c3 = —0.001112..., ¢4 =0.000957...,

! In the literature, the Hardy—Ramanujan—Rademacher is also called an asymptotic formula/approximation.
However, it is built by an expression of substantially more complicated type. For example, the log concavity
of p(n) follows nontrivially from it, as shown in the work of DeSalvo and Pak [6].
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Later Vaclav Kotesovec according to OEIS [12] for AO00041 got the precise value of
€, Cl, - - ., C4 as follows:

1 2 1 J6 1
€= 36 w2’ ‘= 66 273’ 2= 24’
5 3v6 1 1 93
c3 = + C4

16v/673 875 = 57672 247% | 80m6’
To the best of our knowledge, the details of the methods of Schoenfield and Kotesovec
have not yet been published.

In this article, using symbolic-numeric computation, we present our method to
derive (1.2) together with a closed form formula for the C; ; in (1.2). Namely we
show that

2n > g
lo n)~m,/— —logn —1lo 4«/§+ o
gp(m) ~ my/ 5= —logn — log ;ﬁu

where the g, are as in Definition 5.1. By ~ in the above expression we mean that for
each N > 1

N—1
2n 8u —
lo n)=mw,— —logn —lo 4\/34— 2 — O N,
g p(n) \ 3 g g .;:1 NG N )

In particular C; ; = 0, if j # 0, and C; o = g;, otherwise. This result is obtained as
a consequence of an infinite family of inequalities for log p(n), Theorem 6.6 (main
theorem). We also apply our method to conjecture an analogous formula to (1.2) for
a(n), the cubic partitions of n, with a(n) given by

oo oo

. 1
> amq" =] == (1.4)

n=0 n=1

In the OEIS, this sequence is registered as A002513. The first 50 values of a(n),
n >0, are

1,1,3,4,9,12,23,31,54,73,118,159,246,329,489,651,940,
1242,1751,2298,3177,4142,5630,7293,9776,12584,16659,
21320,27922,35532,46092,58342,75039,94503,120615,
151173,191611,239060,301086,374026,468342,579408.

This sequence appears in a letter from Richard Guy to Morris Newman [8]. In
[4], William Chen and Bernard Lin proved that the sequence a(n) satisfies several
congruence properties. For example, a(3n 4+ 2) = 0 (mod 3), a(25n +22) = 0
(mod 5). An asymptotic formula for a(n) was obtained by Kotesovec [10] in 2015 as
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follows:

eV
8n5/4'

(1.5)

a(n) ~

In [16] the fourth author investigated the combinatorial properties of the sequence
a(n) by using MAPLE.
We summarize some of our main results:

Theorem 1.1 For the usual partition function p(n) we have

2 0.44. ..
log p(n) ~ 7, & —logn — log 4+/3 — ,n— oo. (1.6)
3 Jn

The proof of this theorem will be given in Sect. 6.

Conjecture 1.2 For the cubic partitions a(n) we have

log a(n) 51 loe 8 0.79... (1.7)
oga(n) ~ mw+/n— —logn —log8 — , n— 00. .
2 708 g Jn

Theorem 1.3 For the partition numbers p(n) we have the inequalities

m(l—ﬁ) <p(n)<%(1—%), n>1.

The proof of this is given in Sect. 3.

This paper is organized as follows. In Sect. 2 we present the methods used in the
mathematical experiments that led us Theorem 1.1 and Conjecture 1.2. In Sect. 3
we prove Theorem 1.3 by adapting methods used by Chen et al. to fit our purpose.
In Sect. 4 we generalize an inequality by Chen et al. by extending it to an infinite
family of inequalities for p(n). In Sect. 5 we introduce preparatory results required
to prove Theorem 6.6. In Sect. 6 we prove our main result, Theorem 6.6, by using the
main result from Sect. 4, Theorem 4.4. This gives an infinite family of inequalities for
log p(n).Finally in Sect. 7 we give an application of the results in Sect. 5 which extends
DeSalvo’s and Pak’s log concavity theorem for p(n). In Sect. 1 (the Appendix) we
give additional information on the method used to discover the asymptotic formulas.
We remark explicitly that to finalize the proof of Theorem 6.6, we use the Cylindrical
Algebraic Decomposition in Mathematica; the details of this are also put to Sect. 1.

2 Mathematical experiments for better asymptotics for a(n) and p(n)
Before proving our theorems, in this section we briefly describe the experimental
mathematics which led us to their discovery. Our strategy is as follows. If we have

sufficiently many instances of a given sequence, how can we find an asymptotic formula
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for this sequence? Take the cubic partitions a(n) and the partition numbers p(n) as
examples.
We have

p(10) = 42, ..., p(100) = 190569292, . ..,
p(1000) = 24061467864032622473692149727991,
a(10) = 118, ..., a(100) = 16088094127, ...,
a(1000) = 302978131076521633719614157876165279276.

A plot of the two curves through the points (n, a(n)), resp. (n, p(n)), for n €
{1,..., 1000} is shown in the Fig. 1a and b. According to the Hardy—Ramanujan
Theorem 1.1 and the asymptotic formula of Kotesovec (1.5), the curves are increas-
ing with “sub-exponential” speeds. Thus, we may plot two curves using data points
(n,loga(n)) and (n, log p(n)) as shown in Fig. 1c. One observes that the new curves
look like parabolas y = /x. This is also very natural in view of

2
log p(n) ~ \/;JT -/ —logn — log4+/3,

5
loga(n) ~ m - n—Z~10gn—log8. 2.1

So if we modify further with (/n, log a(n)) and (y/n, log p(n)) to plot the curves, we
get two almost-straight lines as shown in the Fig. 1d.

This provides the starting point for finding the improved asymptotic formulas (1.6)
for p(n) and (1.7) for a(n) from their data sets. We restrict our description to the latter
case. Motivated by (2.1), we compute the differences of log a(n) with the estimation

eT[ )‘l.

values a,(n) := S

5
A(n) :=loga.(n) —loga(n) = m+/n — 1 logn —log8 —loga(n).

Then we can plot curves from the data points (rn, A(r)) in Fig. 2aandb, and (n, n-A(n))
and (n, \/n - A(n)) in Fig. 2c and d, in order to confirm the next dominant term
approximately. We can see in Fig. 2d that after multiplying A(n) by /n the curve
is almost constant, confirming that the next term is % Also multiplying A(n) by

n, in Fig. 2c we see that the behavior is like /7 as expected. By using least square
regression on the original data set (n, a(n)) for 1 < n < 10000, we aimed at finding
the best constant C that minimizes>

C
—loga(n) +a-/n—p -logn —logy + —,
Jn

2 The fourth author of this paper told the result to V. Kotesovec in May 2016 and got a reply in January
2017 that the precise value of C could be P1/16+15/ (8*P1i)=0.7931. ..
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Fig.1 In(a) p(n) isplotted and in (b) a(n) is plotted. In (¢) the upper curve is {(n, log a(n))|1 < n < 1000},
and the lower curve is {(n, log p(n))|1 < n < 1000}. The two curves are like the parabola y = 4/x. In (d)
the two lines are for {(4/n, loga(n))|1 < n < 1000} (upper) and {(/7, log p(n))|1 < n < 1000} (lower)

where we fixed « = 7, 8 = 5/4, y = 8 according to (1.5). As a result, we obtained
that C ~ 0.7925.

In the Appendix, Sect. 1, we explain that the constants «, 8, y can also be found
via regression analysis with MAPLE instead of getting them from (1.5) directly.

3 Proof of Theorem 1.3

We separate the proof into two lemmas. The first lemma is the upper bound for p(n)
and second lemma is the lower bound. In order to prove these lemmas we will state
several facts which are routine to prove.
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Fig. 2 The curve in (a) is for (n, A(n)) where 1 < n < 10,000, b is for (n, A(n)) where 1 < n < 100.
The curve in (¢) is for (n, n - A(n)), and d is for (n, /n - A(n)) where 1 < n < 10, 000

Lemma 3.1 Foralln > 1, we have

2n

pn) < %(1 — %)

Proof By [1, (2.7)—(2.8)] and with Ay (n) and R(n, N)?3 as defined there, we have,

3 Note that in [1] R(n, N) is denoted by Ry (n, N).
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where
u(n) = %\/2411 —1.

We will exploit the case N = 2 together with A(n) = 1 and A>(n) = (—1)" for any
positive integer n. For N > 1, Lehmer [11, (4.14), p. 294] gave the following error
bound:

TiN~23 [< N )SSinh u(n) n 1 _( N

2
Rl < =] (s R M(n)) ] n>1, (3.1)
and for N = 2 (cf. [1, (2.9)-(2.10)]):
V12eM® 1
pn) = S (1 — et Tl(n)>, n>1, (3.2)

where

frm = (:/_12)’1 ((1 B M(Zn))ngﬂ + (1 + u?n))eiwz&)
+ (1 + m)ﬂm %

We first estimate the absolute value of 77 (n); for convenience we denote subexpres-
sions by ay, b1, c1, and dp:

1 2 _um 1 2 _3um)
|Tl(n)|fﬁ(l—m)€ 2 +ﬁ(l+w)€ 2

=:aj =:b

LN oy, |24n—DR®,2)
+ (1 + u(n))e +‘ 12ek@)

=il =:d]

The following facts are easily verified.

(n
FactA Foralln > 1,a; < e’“z).

FactB Foralln > 1,b, < e 5"

(n)

FactC Foralln > 1,ci <e” 2 .
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Now,

36 pn)?
72./12 et
paye ™ 1232 125

- win) w(n)
w(n)e ™ 122"

1= |R(n,2)|

—12/2e7 ™ (by (3.1))

2/3
2 wu(n)
=udf =:d

FactD Foralln > 7,df < e‘#,

FactE Foralln > 35,df < e "".

By Fact D and Fact E, we have

FactF dy = d¥ +di < 2e="%" foralln > 35.
Now, by Fact A, B, C, and Fact F we conclude that for all n > 35,

)

[Ti(n)| <air+by+c1+dy <5e 2. 3.3)
By (3.3), we have for all n > 35 that
1 _ un) 1 1 )
1-— -5 7 <1l——+4+Tin)<1———+45 7. 3.4
w(n) w(n) w(n)
1 _ )
FactG Foralln > 3,1 — e 5¢e 2 > 0.
Therefore from (3.2), (3.4), and Fact G, we have for all n > 35,
V12 1
p(n) = (1-——+7m)
24n — 1 u(n)
/12 1 ,1
o e ( -~ +5e*#). (3.5)
24n — 1 u(n)
—_———
= =i

FactH f1 <1 — # for all n > 23.

EENE
Factl e < 4nﬁe foralln > 1.
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Therefore by Facts H, I, and (3.5), we have for all n > 35,

p(n) < ! ”@(1— 1).

e
4n/3 3/n
This completes the proof of the stated upper bound in Lemma 3.1. O
Lemma3.2 Foralln > 1,
LV (1= ) < pn) (3.6)
e ——) < p). .
43 2/ =P
Proof In the proof of [6, Prop 2.4], it is noted that for all n > 1,
p) > Tamy (1~ FLY
Tr(n)
where
V12 1 —D" uw
Tr(n) :== [(1 - )e“(") + (Vi e#]
24n — 1 w(n) V2

and R(n) is as in [6, (7)].
From the definition of 75 (n) one verifies:
Fact) Tp(n) > Oforalln > 1.
The following bound holds for |R(n)| (see [6, (13)]),

O<W—n)|<e_%\/%7,n22.

T>(n)
Hence by Fact J,
R _x [2n
Tz(n)(l _ ITz((I:z))|) > Tz(n)<1 _e 10\/?), n>2. (.7)

Plugging the definition of 7> (n) into (3.7) gives for n > 2,

V12 1 ) (D" ww _r |
p(”)>24n—1[<1_M>eﬂ v ]@

=:ap

> —lze”\/?[@ x eMm—Fv24n | _(—1)”eu(2n),%M] x dy
—_—

24n V2
=:by
=i
1 [2n
= 4\/§n V3 (apbr + ¢2)d>.
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We now bound ay, bs, ¢2, and d»:

FactK a, > 1— 2 > (O foralln > 1.

5vn
FactL by > 1 — ﬁﬁ > Oforalln > 1.
FactM ¢, > — 225[ forall n > 29.
FactN d>» > 1 — > (O for all n > 631.

25ﬁ
By Facts K, L, and M, we have,

FactO arbr + ¢ > (1 — > O foralln > 1.

2
VZ)(I z7f) 225[

From Facts O and N we have for all n > 631,

(b2 + e2)dy > [(1 - %)(1 - 372ﬁ) - 2251ﬁ](1 - 251/5)'

=:1(n)

FactP I(n) > 1— 7 >0, foralln > 1.

From all the above facts we can conclude that (3.6) holds for all n > 631. Using
Mathematica we checked that (3.6) also holds for all 1 < n < 630. This concludes
the proof of Lemma 3.2. O

Finally, combining Lemmas 3.1 and 3.2, we have Theorem 1.3.

4 A generalization of a result by Chen, Jia, and Wang

In this section, we have again that u(n) = %«/ 24n — 1; this should not be confused
with the real variable  which we will use below. Eventually, we will set the real
variable p equal to i (n). The main goal of this section is to generalize [1, Lem. 2.2]
which says that for n > 1206, we have

12eHm (1 1 1

24n — 1 w(n) — u(n)10

J12eHm (1 1 1 )

) < pn < MOROL

Our improvement is Theorem 4.4 where we replace the 10 in this formula by k and the
1206 by a parametrized bound g (k). In order to achieve this, for a fixed k one needs to

find an explicit constant v(k) € R such that %e“/ 2> uk forall u € R with u > v(k).
One can show that

v(k) := min[h € R|VH6R(M >h= éeuﬂ - Mk)}

satisfies 1e"(")/ 2 = D(k). Theorem 4.4 is crucial for proving our main result, Theorem
6.6, presented in the next section. In Lemma 4.1 we find such a constant v (k) for all
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1306 K. Banerjee et al.

k > 7.In Lemma 4.2 we find a lower bound on v (k). In this way, we see that what is
delivered by Lemma 4.1 is best possible in the sense that our v(k) from Lemma 4.1

and the minimal possible v (k) satisfies |v(k) — V(k)| < 3k ll(z)gg ],?gk forallk > 7.

Lemma4.1 Fork > 7 let

v(k) :=2log6 + (2log2)k + 2k logk + 2k loglog k + %,
then
é B2 S vk k> 4.1)
Moreover, if u > v(k) for some k > 7, then
é et sk k> 4.2)

Proof Let f(u) := —log6+ /2 —klogu.By f/(n) = 1/2 —k/u, f is increasing
for © > 2k. Hence the fact v(k) > 2k gives f(u) > f(v(k)), and (4.2) follows
from (4.1) which is equivalent to f(v(k)) > 0, k > 7. We set

v(k log 6 log2 loglogk Sloglogk
(k)  log g+gg+ g log

v(k):=—1 = .
V() + 2klogk  klogk logk log k 2(log k)?

The positivity of f(v(k)) is shown as follows:

f(k)) = —logb+ v(k)/2 — klog(2k logk) — klog(1l + v(k))

Skloglogk _
— 20208 log(l + Tk

Jlogk og(1 +v(k))

Sloglogk

(ﬂ — U(k)) (by log(1 + x) < x for 0 < x)

2logk

k 210g6 5log log k

2logk k logk

k 17 k 18
% (3loglogh — = — - — 2) = 5 (3loglogh — —).
>2logk( eglel s 75 ) 210gk( osloe 5)

The last inequality holds for all k£ > 18, because for such k

2log6 1 Sloglogk
< —_—
k 5" logk

7
<2, and 2log?2 < 3

It is also straight-forward to prove loglogk > 6/5 for all k > 28. For the remaining
cases 7 < k < 27 the inequality (4.1) is verified by numerical computation, which
completes the proof of Lemma 4.1. O
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Lemma4.2 Fork > 7 let

2k loglogk

k (k) :=2log6 + (2log2)k + 2k logk + 2k loglogk + logk

Then we have
%ek(k)/z < k(k)k.

Proof Let f defined as in Lemma 4.1, then the statement is equivalent to proving that

fc(k)) = —log6 + @ — klogk (k) < 0.

Setting

k(k)  log(6)  log2 loglogk loglogk
2klogk  klogk = logk logk (log k)?

Rk = —1+

we observe that

fk(k)) = —logb+k(k)/2 — klog(2klogk) — klog(1 + k (k))

2kloglogk -
= —— —klog(l k
Togk og(1 + & (k)
kloglog k
< TOEOER h®(k) — R(0)P/2).

logk

because of log(1 + x) > x — x2/2 for x € Ray.
In order to show f (k(k)) < 0, it would be enough therefore to show that 2(/? k) —

lolgo g’fk) > i below. We have
2log 6logk + (log2)klogk + kloglogk
k(logk)?
(log 6logk + (log2)klogk + k(loglogk) logk + k loglog k )2
> )
k(log k)?

which is equivalent to the inequality

log 6 loglogk
210gk<£+10g2+%>
k logk
log 6 log?2 1 \2
>(10glogk)2( o8 °8 1 —)
kloglogk  loglogk logk
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1308 K. Banerjee et al.

Since

loglogk
logk

log 6 5
2logk(T +log2 + ) > (2log2)logk >  logk. k = 3.

it suffices to show

5 log 6 log2 1 \2
—logk > (loglog k)2< o¢ o8 + 1+ ) ,
4 kloglogk loglogk logk

which after division by (log log k)? gives the equivalent inequality

5 logk ( log6 log2 ! 1 )2
— > — ) .
4 (loglog k)2 kloglogk = loglogk log k

logk
(loglog k)2

decreasing for k > [e¢’1 = 1619. Evaluating both sides at k = e gives %% > % for

Now note that is increasing and the right-hand side of the above inequality is

2
the left, and (1 + e% + % + l;éi(?) < % for the right side. This proves the inequality
for k > 1619. For 7 < k < 1618 the result follows by numerical evaluation. O

Definition 4.3 For k > 2 define

3 a2
gk) =77 (k)" + 1),

where v (k) is as in Lemma 4.1.

Theorem 4.4 Forallk > 2 and n > g(k) such that (n, k) # (6, 2) we have

«/ﬁe“(") 1 1
24n — 1 (1 Coum) M(n)k)
V121 (l 1 1 )

< p(n)

_ 4.3
=21 U we e @9
Proof From [1, p. 8, (2.9)] we find that
V12eH™ 1
= 1-— T fi >1,
p(n) Y P— ( ) + (n)) orn >
where T (n) is defined in [1, (2.10)]. In [1, (2.22)] it is proven that
T (n)| < 6e_@ for n > 350. 4.4)
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i
1,

By Lemma 4.1 we have that /L(I’l)k < ge : for k > 7 and u(n) > v(k), which is
equivalent to

< M(i)k for (n) > v(k). “4.5)

Since pu(n) = %«/24n — 1, it follows that u(n) > v(k) if and only if n > g(k).
Furthermore for k > 7, we have g(k) > 350, this means that (4.4) is satisfied for

n > g(k).
By (4.4) and (4.5) we obtain that |T (n)| < ﬁ for n > g(k) which proves that
statement for k > 7. To prove the statement for k € {2, ..., 6} we use the statement

for k = 7 which says that for all n > [g(7)] = 581 we have

V12em ™ (1 1 1 ) < p@) V12e#™ (1 1 1 )

24n—1\" " pn) @) <21 T wm Ty
However,
12eHm 1 1 12eH ™) 1 1
P < S (1- ) M(n)7> <1 (- wm u(n)") *+6)

fork € {2,...,6} and n > 581. To prove (4.6) for g(k) < n < 581 itis enough to do
a numerical evaluation of (4.6) for these values of n with the exception n = 6 when
k = 2. We did this using computer algebra. Analogously, we see thatfork € {2, ..., 6}
and n > 581 we have

V12er™ 1 1 V12eHm 1 1
(1 - - ) < (1 - - ) < p(n).
24n — 1 pn) )k 24n — 1 u(n) ()’
4.7
In the same way we prove (4.7) for g(k) < n < 581. ]

5 Preparing for the proof of Theorem 6.6

In this section we prepare for the proof of our main theorem, Theorem 6.6, which is
presented in Sect. 6. To this end, we need to introduce a variety of lemmas.

Definition 5.1 For y € R, 0 < y? < 24, we define

G(y) log<1 y2>+ = Va1 2 +log(l Y )
y) = — - el _2 SR —
24 6y 24 %/24_),2
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1310 K. Banerjee et al.

and its sequence of Taylor coefficients by
o
Y&y =G
u=1

Definition 5.2 For 0 < y> <24 and i € {—1, 1}, define

I
(=)
T /2442
Gix(y)==G(y) +log |1+ 1_6—yy
IV24—?

Lemma 5.3 Let g(k) be as in Definition 4.3. Then for all k > 2 and n > g(k) with
(k,n) # (2, 6) we have

2
—log4v/3 —logn + n,/?" + Gy x(1/v/n) < log p(n)
2n
< —log4+/3 —logn + 7,/ 5 + Gk (1//n).
Proof Taking log of both sides of (4.3) gives

log E_1 x(n) < log p(n) < log Eq x(n)

where
1 i
E; x(n) :=logv12 —log(24n — 1) + pn(n) + 10g<1 — + —k)
wu(n) — p(n)
Now
V12 1 12
E; x(n) =log Sy logn — log <1 - E) + 7 ?n + wu(n)
b4 1 i
— —+/24n + log <1— +—)
6 p(n) )k
2n
= —log4v3 —logn + 7 3 + Rik(n),
where
Rix() = —log (1= —— ) + u(x) — Zv/2ax +1og (1 — —— + —
ix(x):=—1o - — xX) — — x + 1o -t —.
ok U T )T T U7 0 T eor
Finally one verifies that R; x(x) = G; x(1/4/). O
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The quantity

7.[2

o=
36 + 72
will play an important role in this and the next section.

Lemma5.4 Let G(y) = > oo, guy" be the Taylor series expansion of G(y) as in
Definition 5.1. Then

1 1 1
g2n = 3n23nn - 23n+13nn <_1 + a_n) , n 2 1’ (5'1)

and forn > 0,

1/2 7
— +1
gons1 =6 |:(—1)n (n + I>W

1 " L4
— (72
23n+13ngn (1 4 2n) 1w jgoa < J > ' (52)

Proof By using

y = y V)
log(1-— —) = -y lxkekoah (1 - <—) ) ,
( 1./24 —y? = V24

together with

1 ! 1 u—n
8 = n73n, Z 2u—nHyn+2u 2n—2u _ (_1)” ,n= L
RUVAL] 3 2 T (2n — 2u) u

2\ k2 n
_ BN RAYERS
)) -z () ()

e
~

we obtain

u=0
Forn > 0,
1/2 T
— +1
gani1 =V6 (1" (n " 1>W
- 1 (=12
o Z 32u7n2n+1+2u7-[2n+172u(2n +1-— 2M) (_ ) u ]

u=0

Inputting this into the package Sigma developed by Carsten Schneider [13], we obtain
(5.1) and (5.2). O
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1312 K. Banerjee et al.

We need various additional facts about the Taylor coefficients g, of G(y).

Lemmab5.5 For0 <a < 1,

o (j—1)2 a
() s

j=1 /

NSRS

1

Proof First we note that (j _jl/ 2) = (—=1)/ (7) > 0. Hence

n

S ) B () ()-

i=1 /
> -—% 1 a
<> (~a) = 1<

This proves the upper bound. To prove the lower bound note that the first term of the
sum is 5 and the other terms are all positive. O

Lemma5.6 Lets, := (—1)" (nlfl) Forn > 0 we have s,, > 0 and s, is a decreasing

sequence, that is s, > Sy+1 for alln > 0.

Lemma 5.7 Forn > 0 we have

«/5 o

s (49
2w2°n3nq" (1 + 2n) 2

V6 <7l’2

- Z 41
g +am \72 T T

> 8n+1 =

o
2(1—a)>'

Proof From Lemmas 5.4, 5.5, and 5.6, we obtain

V6
27230311 (1 + 2n)

o
(1 + 5) = 82n+1-
Again by Lemmas 5.4, 5.5, and 5.6, we have

V6 (Z _1)0+1<1/2>+ I+ s )

8m+1 = — Snzn 72(

0+1 2o (1 + 2n)
NG 72a"(1 +2n o

— - ( A+20 4y )

2w 23n3ngn (1 + 2n) 72 2(1 — @)

6 291420

. V6 (ﬂ oO1+2-00 )

2w 23n3ngn (1 + 2n) 72 2(1 — @)

The last line is because «” (1 4 2n) is a decreasing sequence of n for n > 0. O
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Lemma 5.8 Forn > 1 we have

1 - - 1 3a 1
T3t pgn = 82 = 3npdnpgn (7 B 5)

Proof By Lemma 5.4 the statement follows from

1 1 1 1 3an 1
820 =3003ny, T 23ty (_1 + a_"> = 3n3ngmn (T 2>'

O
Lemma 5.9 Define
V6 (72 o V6 o
ST Y = R(149),
at 271(7zJr T M =g
Then form > 0and 0 <y < € < 2+/6q,
_ M2 yml
23m3mom (1 4 2m)
o0
> > gyt
n=m
> _ M1 1 y2m+l
= 23m3mgm(] 2 e :
a™ (1 +2m) | T
Proof By Lemma 5.7 we have
o0 o 1
2n+1 o 2n+1
Z g1y = - Z AT e,
n=m n=m
_M1y2m+] - 1 2n
- 1+2m 23(n+m)3n+man+m y
=0
L 'u]y2m+1 1
o 23m3mgm(1 4 2m) | _ _¥?
3023
- _ M1 1 2m+1
-  23m3mgm(] 2 e ’
a(l+2m) 1 — =
and again by Lemma 5.7 we have
o - 0 y2n+l y2m+l
nrl < - < - .
Zgz’”‘]y =K Z 23n3nan(] +2n) ~ M223m3mam(1 +2m)
n=m n=m
O
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1314 K. Banerjee et al.

Lemma5.10 Form > 1and 0 <y <€ < 2+/6q,

3a—1 2m - 2n 2m 1 1
3m23m+lmamy = Z 82ny z -y 3m23m+1mam 1 €2
n=m T 323
Proof By Lemma 5.8,
> 1 & 1 l & 1
2n 2n 2m 2n—2m
Z 82ny" Z = 2 Z 3n23nnany z =y P Z 3n23nmany
n=m n=m n=m
1 1 1 1
=-y" 3m3mtlpmam | _y? ==y 3mImFIpgm | _ e
T 3%« 323
Again by Lemma 5.8,
o0 o0
3 — 1 1 3 — 1 1
2n 2n 2m
Z 820y = 2 Z 3n23np,qn yo = 2 3m)3muyom y
n=m n=m
O
Definition 5.11 For 0 < y < € < 1 define
k
y _x B(e)
B(y)i=——-= and Bcp:i=€¢ "——. (5.3)
z.24—y2 ‘ 1~ B(e)
Lemma5.12 If0 <y <€ < 1, then
B(y)k B
log(l + ) ) < €.k yk, k> 1.
1—B() 1 — (Be €)?

Proof First note that for 0 < y < +/24 the function B(y) is increasing and also that

k k
B(y) < B(y) and B(y) <

_ 1
1-B(y) — 1-B(e) =€~ ' yB(e). Hence

y
IV24—¢?

B(y)¥ e *y*B(e)ft
1—B(e) = 1-B(e)

= Be,kyk~
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Consequently,

B(y)* i o (D"
1 1+ ——) < 1+ B = — n n
0g< i l—B(y)) <tog 1+ B’ T e

n
00
_ 2n 2kn 2n+1 k(2n+l)
Z 5. B Z B

n=1

o]

o0
B4 < 3 phutl kD
ZZn—i—l ek HX(:) Y

IA

Bs,ky < Be,k yk
1 — (Bexy®)? = 1 — (Berek)?

Lemma5.13 If0 <y <€ < 1, then

B(y)¥ B
10g<1 _ &) > _;kyk, k>1
1 — B() 1 — B ek

Proof

_Ly)k — n L kn _ n _kn
log( 1 >log(1 — Bexy") = Z — B! Y > ZBé,ky
=1

1 —B(y)

Be,ky > _ Be,k k
1 - Be,kyk I Be,ka .

Lemmab5.14 Forallk > 2 and (0 < € < % we have

6k by - 65

1
6

V7 A /247%

where by := and again Be i as in (5.3).

1—

Proof Define

1
=24 -2 [;:=,/24 — 7 Us = 49, I, :=0, and u, :=

Sl-

Forallk >2and0 < ¢ < %,wehave

Iy <s<u; and I <€ <u.
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The following conventions for the letters / and u will be useful: /, denotes a lower

bound for the quantity a, and u, will denote an upper bound for the quantity a. And
again we use B(y) as defined in Definition 5.11.
Then

I € u
0=—— <B(€)= 7 < —
6 Us N 6
Let us define lp :=0and upg := 1”; . Then
6 s

Ip<Be)<up=>1—up<1—-B(e)<1l-Ip=1

1 1 1 - 1
= < ,
1—1Ip 1—B(e) — 1—up
1 1 1
and T < T < (%mk.Hence
6~ 6~ 1 5. < 1
< = <
Skak = @9kak T (1 —Ip)(Zugk N T A —up) (ElF
1 b
% k 1 5 K 1 ©
T
() () 7
O
Definition 5.15 Define

1

B:=,/24— =

7

and for k > 0,
6k
Cp = ——.

(7 B)*

Lemma5.16 Let0 <€ < -

7 and Be  be as in (5.3). Then for k > 2,
- (ii,kkekﬂ < 1Bk and % = b2Bek,
with
by = ; , by = ;,
1 — 5b3C4 e
and by as in Lemma 5.14.
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Proof We obtain, using Lemma 5.14,

B B B
€.k < ek < €.k

< < =byBc .,
1—Begek = 1-1B. = 1-1pycy ©
and
B B B
e T
1_(B€,k€ ) I_EBe,k 1_Eb0C4 '
[m}
Lemma 5.17 Let Cy be as in Definition 5.15, then
69 1
sz < W’ m > 10, and sz_] < g23m3mam(2m — 1), m = 14.

Proof We start with the first inequality:

252 \m (364 2™ 6048 m
16772 3m3mpy g 2m 6012 + 16772

6048

m and note that

To prove the inequality in the rewritten form, define £ :=
{ < 1. Moreover, for m > 10,

me™ <1< logm + mlogt < 0.

Define f(m) := mlog £ 4+ log m. We have to show f(m) < O for all m > 10. We first
show that f(m) is decreasing for m > 10. This is equivalent to f'(m) = logﬂ—i—% <0
for m > 10. This is equivalent to showing Lel/m < 1 form > 10.

Now for m > 10 we have Lel/™ < ¢e!/19,

By numerics, £e!/1% < 1 and f(10) < 0. Since f(m) is decreasing and f(m) <
f(10) < 0 for m > 10, the first inequality is proven. Now for the second inequality,
first note that

= ()" = Gz (G

Hence we have to show

252 16 69 1
(W)m(%\/?) = 25 23m3mamm — 1)
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1318 K. Banerjee et al.

which is equivalent to

(ﬂ)’”@m M ST o < T
6012 + 16772 257V 167 257V 167
< mlogl +log(2m — 1) — log(ﬂ,/ l) <0
257V 167
=:g(m)

Now analogously to the proof of the first case one observes that g(m) is decreasing
for m > 14 and that g(14) < 0, hence g(m) < g(14) < 0. O

6 Proofs of Theorems 6.6 and 1.1

After the preparations made in Sect. 5, in this section we prove our Main Theorem,
Theorem 6.6, which implies Theorem 1.1 as a corollary. Again we let

7.[2

“= 36 + 72

Definition 6.1 Let Bc x be as in Definition 5.11 and w1, 2 as in Lemma 5.9 and

. 3a—1 1
v 1= *%—_ Moreover, let 0 < € < ik Form, k > 1 we define
Be i k=2 !
A1 x2m) i= ————— " A3y i
1,k( m) 1 — (Be,kEk)ze + 3m03my ym
. Be,k k—2m ! 1
A1 x(2m) = T B Ry X e P
. 323
N K1 1
23m meom (| 2 _ €2
3ma™ (1 +2m) | a3
Be k k—2m+1 K2
Arg@m — 1) 1= ——5 k=il ’
1.k(2m —1) 1= (Boreh)? 23m=33m=Tgm=1(2m — 1)
o Bek  koms1 1 !
A1 Cm—1) := 1— B, keke + 3m3m+lygm | _ _
> 3.3
N 3 1
23m=33m—lgm=1Qm — 1) | _ _€

3023

Lemma 6.2 Let Zflozl gnyY" as in Definition 5.1 and G r(y) as in Definition 5.2.
Moreoverlet) <y <e < % Then for k > 2m > 2, we have

2m—1 2m—1
D gy — Ak @m)y?™ < Gk () and Gri(y) < Y gy + ALk @m)y*",
n=1 n=1
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and fork > 2m —1 > 1,

2m—2
Y ey — A k@m— 1)y < Gy i(y) and
n=1
2m—2
Gia() = Y gy + Ark@m — 1y,
n=1

Proof For k > 2m > 2, by using the Lemmas 5.9 to 5.12, we obtain

2m—1

B i 1
G - n €, k v 2m
l,k()’) = Zl 8ny + 1— (Be,kek)zy + 3m23mmamy
_ M2 y2m+1
23m3mom (1 4 2m)
2m—1
Bek k—2m 2 1 2
< n_’_—’e m m+V— m
= nX:; 8ny 1 — (Be,kek)z y 3m23mmamy
2m—1
= > gy + Apem)y™".
n=1

By using the Lemmas 5.9 to 5.10 together with Lemma 5.13 we obtain

2m—1

n m
Gk = Y ey — ) keky T g T 2
= 3-23a
_ M1 1 y2m+1
23m3mym (] 4 2 —
o™ (1 +2m) 1 3a-23
2m—1
= Z Be k 6k—2m 2m __ 1 1 2m
= gny" 1_ B, kek y 3m3m+1yy, om 1— €2 Y
3-23a
_ M1 1 y2m
23m3mem (| 4 2, _
et (I 42m) 3023
2m—1
= > gy — A x@m)y™".
n=1
The statement for A_; x(2m — 1) is proven analogously. O
Lemma 6.3 We have for m > 10 that
2
Ak < e A1) < S g
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1320 K. Banerjee et al.

and form > 14

2 7
A Cm—1 .
3123 (2m — 1o 1@m = 1) < S G = D

A]gk(2m — 1) <
Proof For m > 10 we have

B 1
ek ek=2m 4, (by Definition 6.1)

Are@m) = =B 3m3m gy

< blBE,kek_zm +v (by Lemma 5.16)

3mQ3m gy
k

< bibg (7t,3)k6 "+ VW (by Lemma 5.14)

= bobCre™2" +v (using Definition 5.15)

3m 23mamm
1
3m3mgin

(because f(k) := Ckek_zm is decreasing for all k > 2m)

< bob1Coyy +v

< boby (by Lemma 5.17)

3m3momy Ty 3m3m gy

- (b0b1 + v)

3m 23mamm

< Jmyamymy; (0Y evaluating boby + v numerically).

Similarly,

A_1x(2m)
Bé,k k_2m 1 1

= ok ey
1 — Be xer 3m3mtlgmy, | _ €
’ 24a

M1
23m3ma"1(2m +1)1— 62

(by Definition 6.1)

) t 2Im3mem am + 1) 1 —

< baBese 23m3mampm 1 _ =

4
(by Lemma 5.16)

6* 1 1 1 1
< byby ek=2m 4 + ]
(mB)* 23m3mgmp 1 _ 24 23m3momm + 1) 1 _
o
(by Lemma 5.14)
1 1 i 1
< boby - C —
= bob2 Com S g 1 . t e am + 1)1 = .
1 1 1 1 1
< boby + = ad

3m3mgin *3 23m3mgmyy 1 _L_

3
168 22°m3mymyy |

16801

@ Springer



New inequalities for p(n) and log p(n) 1321

(by Lemma 5.17)

1 1
= (bob - (1 )—
(02+21—ﬁ( + u1) LRI

1 1
< ———— (by evaluating bob) + ——— (1 + numerically).
Sy Img (by gbobr+ 37— 16180{( ©1) y)

The statements for A x(2m — 1) and A_; x(2m — 1) are proven analogously. O

Definition 6.4 For n, U > 1 we define

5 U
P,(U) := —log4~/3 — logn —i—n\/g—i— ;gu(l/ﬁ)“.

Lemma 6.5 Let g(k) be as in Definition 4.3 and P, (U) as in Definition 6.4. If m > 1,
k > 2m and

6 ifm=1,
"I ew ifm =2,

then
1 1
—A_1x2m)— <logp(n) — P,2m — 1) < A1 x2m)—. 6.1)
n nm

Ifm>2k>2m—1,andn > g(k), then

1 1
—A_1x2m—1) - <logp(n) — P,2m —2) < A1 x(2m — 1) -. (6.2)
}'lm_i nm_f
Proof We start with the inequality from Lemma 5.3. Next we use Lemma 6.2 to bound
G1x(y). Finally we set y = ﬁ and obtain the desired result. O

Theorem 6.6 Let G(y) = Y ooy gny" be as in Definition 5.1. Let g(k) be as in Defi-
nition 4.3 and P, (U) as in Definition 6.4. [f m > 1 and n > g(2m), then

1
(6.3)
ifm>2andn > g(2m — 1), then
7
P,(2m —2) — 323 (m — D172 < log p(n)
2
< P2m —2) + (6.4)

3m)3mgm Qm — 1)nm—1/2 :
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Proof We start by setting k = 2m in (6.1) of Lemma 6.5, and k = 2m — 1 in (6.2).
In this inequality we bound A ; (m) resp A_1 x(m) by using Lemma 6.3. This gives
(6.4)forallm > 14andn > g(2m — 1), and (6.3) form > 10 and n > g(2m).

In order to prove (6.3) and (6.4) for the remaining values of m, firstly we will prove
that

if (6.3) holds form > 2 andalln >y > 1,
then (6.3) holds form — 1 and alln > y. (6.5)

In particular, if we subtract from the lower bound on log p(n) with parameter m in
(6.3) the lower bound on log p(n) with parameter m — 1, we obtain f(2m, —4) —
g(2m — 2, —4), where

w—1
swn= Y alE) o ()

u=w-2

and

( ) X 1 \w
g(w, x) = —u(—) .

(24a) 51w \/n
Similarly, if we subtract from the upper bound for m — m — 1 in (6.3) the upper
bound for m, we obtain g(2m — 2,2) — f(2m, 2). Hence in order to prove (6.5), it
suffices to prove

fQm,—4) > g2m —2,—-4) and f(2m,2) <g(m—2,2).  (6.6)

Analogously, in order to prove that if (6.4) holds forallm > 3 andalln > y > 1,
then (6.4) holds for m — 1 and all n > y, it suffices to prove

f@Cem—1,-7)>g2m—3,-7) and fQ2m—1,2) <glm—3,2). (6.7)
For proving (6.6) and (6.7), we shall prove

, if wis even

f(w, xo(w)) > g(w — 2, xo(w)) with xo(w) := { :‘; s odd (6.8)

and

fw, yo) < g(w — 2, yp) with yp > 0. (6.9)
From Lemmas 5.7 and 5.8, we have

b <M
4ol zlw 4a) 2w
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with
—ua, if wis odd

) —wm1, if wisodd .
b = { —1, if wiseven and uy = 2v, ifwiseven’

where (1 and py are as in Lemma 5.9 and v as in Definition 6.1. Consequently,

w—1
f(w,x0) = u:Zw_z g(%) + T (%)
e 1 \w-2 e 1 \w-
- <z4a>th’ZJ2<w 2 (&) <24a>V”T"J1(w 1 ()
X0 1 \w
()"

+——
4a) 71w

In order to prove (6.8), it is enough to prove
Loy— 1 X 1 X
w—1 0 0 6.10)

oz | +
w—2 " Qdayu(w—1) i | QénPewn . Qda)ye(w—2)

where
0, if wiseven

w—1 w—2
““}Z{ 2 J_L 2 Jz{l, if w is odd °
By = {E“_LW_JJ ={1, i.fwi.seven’

2 2, if wis odd
0, if wis even

46, — w—2 w—2 _
an “’_( 2 W_L 2 J_[l, if wis odd °

Inequality (6.10) is equivalent to
1 Luw—1 1 X0 1

(o2 o) = SR L
U2 ey Jw—2 T Qe (w — 1) i 2da)Pewn’

which is implied by
X0 1 Luw—1 X0
Cwr — - — (.
( w2 (24a)aw)w 2~ <(24a)“w(w— nt (24a)ﬂww)ﬁ .11

since 8, = oy, xo < 0 and JLE > % for all n > 1. Inequality (6.11) is equivalent to

Loy X
(w_2)2< ZmE ey P )
(24a)*w (w—1) (24a)Pww —‘2: N1 (w, x0).

. 2
Xi
(62~ o)
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We checked with Mathematica that N1 (w, xo(w)) < 1; see the Appendix, Sect. 3.
Similarly to above, for yp > 0 one has,

w—1

fa =Y g<%>+m£—?m<%)w

u=w-2

Uy—2 I \w=2 Uy—1 1wl
= 4a) T (w —2) (ﬁ) i Q4a) "7 1w — 1) (ﬁ)
+L(L)w
Q4a) 51w \yn/

In order to prove (6.9), it is enough to show

Uw—2 I w2 Uy—1 1 \w-I
2 = + w—1 =
24a)“T V(w — 2) («/ﬁ) 4a) T V(w — 1) (Jﬁ)

n Yo ( 1 )w Yo ( 1 )w—2

— | —= < — — .
4a) 21w \/n Q4a) T (w — 2) W

This last inequality can be rewritten as the following equivalent inequality,

o Uy—1 is n yo 1 - Yo
w—2 " (Qda)®(w—1)n  Qda)rwn - Qda)w(w —2)’

which is implied by

Yo 1 Uy—1 Yo 1
((24a)aw - lfiw72> w_2 > ((240{)% w—1) + (24a)ﬁww>ﬁ (6.12)

1

. 1
since yp > 0 and W >

. Inequality (6.12) is equivalent to

Y Uy—1 Yo
. Fw 2) ((24a>aw<w—1) + Gaorow
2
y
((24a0)aw - ”w—2)

We checked using Mathematica that N> (w, yo) < 1 for all yy > 1; see the Appendix,
Sect. 3.

We have checked with Mathematica that (6.3) holds form € {2, ..., 10}andn € N
such that

2
) W =: Na(w, yo).

g2m —2) <n < g(2m). (6.13)
Now (6.3)istrue form = 10andn > g(2m). Next, assume that (6.3) is true form = N
with2 < N < 10andn > g(2N). Then, as shown above, (6.3) is true form = N — 1
if n > g(2N). By (6.13), (6.3) is true form = N — 1 if g2N —2) < n < g(2N).
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This implies that (6.3) is true form = N — 1 and n > g(2N — 2). Hence the result
follows inductively. The proof of (6.4) is done analogously. O

Finally, we are put into the position to prove Theorem 1.1.

Proof of Theorem 1.1 We apply (6.3) in Theorem 6.6, withm = 1. Then forn > 1, we
have

2n b4 1 1 2 1
“log4v3 —1 N oy
og4V3 —logn + 1/ —V6( 7 + o Ji 2d4an

2n b4 1 1 11
1 —log4+v/3 —1 o5 - 6(— —)— — .
< log p(n) < —log V3 ogn+m 3 NG 144+27r ﬂ+24an

Noting that ﬁ(ﬁﬂ + %) = 0.44 ... finishes the proof. O

7 An application to Chen-DeSalvo-Pak log concavity result

In 2010 at FPSAC [3], William Chen conjectured that {p(n)},>26 is log-concave and
that forn > 1,

1
p(n)? < (1 n ;)p(n —Dp+1). 7.1)

DeSalvo and Pak [6] proved these two conjectures. Moreover, they refined (7.1) by
proposing the following conjecture:

p(n)? < (1 )p(n —Dpm+1), n > 45. (12)

b
e
V24n3/2

Chen, Wang, and Xie [2] gave an affirmative answer to (7.2). In this section, using
Theorem 6.6, we continue this research by obtaining the following inequality:

T 1
(1 t o ﬁ)p(n —Dpn+1)
< pm? < (14 ——)ptn — DHp(n + 1;
N

for a more precise statement see Theorem 7.6. Note that the right inequality is just
(7.2), but we give here our proof in order to show that, alternatively, one can obtain this
from Theorem 6.6. In order to achieve our goal, we also need to prove the Lemmas 7.3
to 7.5 in this section. These lemmas deal with estimating the tail of an infinite series
involving standard binomial coefficients.
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Proposition 7.1 Fors > 1 and k > 0 we have

(—%) _ o CEEDCED
k T gk (2s—2)

s—1

and

—s s+k—1
= (=¥ :
()= (5
Proof By simplifying quotients formed by taking each expression in k + 1 divided by
the original expression in k. O

Lemma?7.2 Fork,m >0ands > 1,

(s—1+m+k>§<s—1+m>sk. 73)
s — 1 s —1

Proof From

<s—l+m+k)_ (s—14+m-+k)! _(s—l+m>(s+m)~-~(s+m+k—1)

s—1 TG =DIim+k! O\ s—1 (m+1)---(m+k)
we have fntrmjijl < s foreach 0 < j < k — 1; this is because
s+m+j<sm+j+1H)Sms—1)+js—1)>0.
This proves (7.3). O

Lemma?7.3 Forn,s >1,m >0, andn > 2s let

4/s <s+m—1>n1

buny= === g2y )

then

0 25—l
—bun(s) < Y ( C )n—k < by n(s) (74)

k=m

and

0 o (—OT ) e b 7.5
< Z k nk < by,u(s). (7.5)

k=m
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Proof Fors > 1:

~ 21 k(222 skt

‘Z < )7‘ ‘Z 0* Gre) (o )i‘ (by Proposition 7.1)
iy I

k=m -1

2s+2k— 2)(5+k 1) 1

1 Gro) (G
<2:4k s+(2132)51 nk

s—1

- X 2 s —1 (s—i—k—l) (usm 4qn <(2n)< 4")
- Jris+Fk=—D\ s—1 /Jnk gZﬁ_ n) = Jmn

k=m

s —1 e (s—1+k\1

«/HTZ< s—1 )n

. 1 1 1

><(us1ngﬁ<1and\/s+k_1 \/S+m_lf0rallk2m)

2= T (s 14mtk) 1

«/s—i—m Z( s—1 )W

2Vs—1 1 s—14+m+k\1
ZMng< s—1 ),Tk

Now we apply Lemma 7.2 to obtain,

ECP ) atm (g

k=0
2Js — 1 s—14+m\ 1 n by o (5)
= — < s),
Js+m—1\ s—1 Janmn—s mn

where the latter inequality is by n > 2s. This proves (7.4). Moreover, the bound we
obtained also works for

i 1 GEECED 1
k 25—2 k’
k=m 4 (xs—l ) n

because this term showed up along the way in the proof of the previous case. Hence
applying Proposition 7.1 implies (7.5). O

Lemma7.4 Forn,s > 1, m >0, andn > 2s let

nm s —1
then
as —s\ 1
— Bun(s) < k;n ( B >n—k < Bun(s) (7.6)
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and

o (=5 (=DF¥
0< 1;1 ( L ) = < Bua®. (7.7)

Proof

-1

o o0
—s\ 1 ofS Ttk 1 .
‘g(k)n—k‘z‘];n(—l) < s_1 )n—k‘ (by Proposition 7.1)
o
s+k—1\1
< _
_kgn;( s—1 >nk
1 i s+k—14+m\ 1
_nmk—o s—1 nk
©  k

) Z S—k (by Lemma 7.2),
n

k=0

A
| —
[
|
n
3

and geometric series summation implies (7.6). The proof of (7.7) is analogous. O

Finally, we need another similar lemma which is easy to prove.

Lemma?7.5 Form,n,s > 1 andn > 2s let

2 5™
Cmn(s) == Zn_m
Then
o0 o0
(_1)k+1 Sk lsk
—Cmn(s) < Z B —— <cCmn(s) and —cpmu(s) < — Z Tk <0
k=m n k=m n
and
Cn (8) > 1/2 Sk Cmn ()
- — : d
N ;;n< k )k = m
cmn(s) o (1/2) (=DFsk
—— — < 0. 7.8
S ,;1( k) T 78

The following theorem was announced in the abstract; its proof is the goal of
this section. To arrive at the intermediate inequality (7.13), we need our main result,
Theorem 6.6. For the remainder of the proof, one spends some time on simplifying
(7.13) in order to arrive at the desired form. In order to do, one needs the Lemmas 7.3
to 7.5 which we have proven above in this section.
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Theorem 7.6 Forn > 45,

p? < (1 )p(n—Dpn+ 1),

T
T
and forn > 120

5 b4 1
p? > (1+ N = )P = p(n +1).
Proof We set m = 3 in the first equation of Theorem 6.6, which gives for all n >

[g(tsﬂ that

| ]
o PS)+ —
3040 3~ 10gP) < B+ 3755 3

=:1(n) =u(n)

Pu(5)

using the notation from Definition 6.4. This inequality has the form
l(n) <log p(n) < u(n). (7.9)
By substituting # by n 4+ 1 and multiplying by —1 into (7.9) we obtain
—un+1)<—-logpn+1) < —-Il(n+1), (7.10)
and by substituting n by n — 1 and multiplying by —1 again into (7.9) gives
—umn—1)<—logp(n—1) < —=Il(n—1). (7.11)
Multiplying (7.9) by 2, and by adding (7.10) and (7.11), results in

2i(n) —u(n — 1) —u(n+1) < 2log p(n) —log p(n — 1) —log p(n + 1)
<2u(mn)—In—-1)—In+1). (7.12)

Ai(n) = log <1 + l) + log <1 - l) )
n n
2n [ (1/2) (=DF S (1/2)\ 1
As(n) == —m ?<E (k) 2 +E (k)n_")’
and fort > 3
L g2 S _ZEZ (_l)k 0 _ZEZ L
A= (Vm)' =2 (k:1< k ) nt +k:l< ko Jnk)”
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where g, is as in Definition 5.1. Then from (7.12), by substituting /(n) and u(n)
according to their definitions, we obtain

_mn% + 37, Ai(n) < 2log p(n) —log p(n — 1) —log p(n + 1)
<Y A+ ﬁ%,

which implies

~ Gy T Xi—1 A(n) < 2log p(n) —log p(n — 1) — log p(n + 1)
<7 An) + Pttt (7.13)

Finally, we establish bounds for the A;(n). Fort =1,
1 1 1 1 (— 1)k+1 S |
Aﬂn):log(l—i—;)—i—log(l—;)=—n—2—ﬁ+z Z—k
k=5 k=5
Taking s = 1 and m = 5 in Lemma 7.5 we have

1 1 4 1 1 2
T T s M ST T At s

which implies
2
- <A@ <——. (7.14)
n

For t = 2, note that

B 2n 5 1 212\ (=DF S 172\ 1
Az(’”"”@(‘@‘ﬁ*?(ﬁ 7 +Z(k)n—k)'

4n?2  64n*  5./5n°
Ay(n) Zn( 1 5 n 2 1 )
< n)<-—-m,—(——————+—=—1,
: V3 \T 42 " 6ant " 550
which implies

T T
LR L. 7.15
N 2(n) < NoPeE Ry (7.15)
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Next we consider odd indices; i.e., for 1 <t < 3,

-1
Asi1(n) = — (jzt);tl_l (( :lz )2

Lol S (S ()

n
k=5

where (a); :=a(a—1)...(a —k+ 1). Applying Lemma 7.3 withs =t andm =5
gives

n2 + 12n4 JtF4a\r—

821 (<%)2 <@>4 4/t <t+4>1

_ WoiE | —) < Az41(n)

nd

2t—1 2t—1

8211 ((T)z (T)4 8Vt <t+4)ni5)’

S (Yn)¥T n2 + 12n* +./z+4 t—1

which implies

3g1 | 4g1 1 581
4J6 3 29g3
8 _ Asn) < —ns%, (7.17)
4[  117gs
<A . 7.18
i (2)n 7(n) < 5 (7.18)

Finally, we consider even indices; i.e., for | <7 <2,

82 ((_%)2 + (_%)4

(\/_)21‘ n2 12n4

Adrq2(n) = —

Applying Lemma 7.4 with s = t and m = 5, we obtain

(=12 (=04 2 [(t+4 82
—( ot n5< >>([;21 Aniq2(n)

(=02 (=04 t+4 8
_( n? + 12n4 +n_5<t—1))(ﬁ)2f‘
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From this,
2g> 8g2
e < A4(n) < 5 (7.19)
1284 4084
3 < Ag(n) < — Tk (7.20)

Now, substituting (7.14) to (7.20) into (7.13) gives,

L(n) <2log p(n) —logp(n — 1) —log p(n + 1) < U(n),

4g,
L) i= T — — = e (<24 25 420+ 4V/6gs + 1284

NG
AT 3]

V7 \2 (24a)3/ n3
and
Uy = L1 +(2 Sg1 — 82 — 293 — 40g4 — 117g5 + — ) L
V2an32 2 (24a)3 /) n5/2
By using numerical estimations of the coefficient of 1 /5 725/ 2 and of the coefficient of

1 /n3 in the lower bound, and of the coefficient of 1/n
we are led to

in the upper bound above,

Li(n) <2logpmn) —logpn—1)—logpn+1) < Ui(n),

with
T 1 1 11 4 T 1 1 7
1(n):=ﬁm—n—2+zm—n—3 and Ul(m:ﬁﬁ‘ﬁﬂﬁ'
Next we observe that
1 7 n?

_n_2+;¢57 < T forall n > 50

and

1 T 1 11 4 1
RN T T R 4/— n

Therefore, for n > 257,

for all n > 257.
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b4 1
m -3 <2log p(n) —logp(n — 1) —logp(n+1)

d 7’ (7.21)
< — = —. .
J24n3/2  48n3
Because of log(1 + x) < x for x > 0, we have
T 1 b4 1
1 (1 ———) —_ = —, 7.22
T g ) T e w 72
and because of x — % < log(1 + x) for all x > 0, we have
B S S Y U S 7.23
J2and? 48n3 Og( * «/24n3/2>. (7:23)

Applying (7.22) and (7.23) to (7.21) gives

T 1
] (1 T _)
st J24n32 n?

< 2logpn) —logp(n —1) —logpn+1)

b4
< log(l + —24n3/2>7

which after exponentiation gives the desired result for n > 257. To extend the proofs
of the statements for n > 45, resp. n > 120, is done by straight-forward numerics. O
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Appendix A
A. 1 Methods to discover the results
We will describe very briefly the mathematical experiments used in this research.

We want to point out that without these experiments, the theoretical results of this
paper would never have been found. For this reason we feel that it is important to
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give at least a brief sketch of what led us to the final formulas and how we were led
to conjecture special cases of related asymptotics. The final asymptotic formulas can
easily be derived from our main result, Theorem 6.6 presented in Sect. 6.

In Sect. 3 we proved the inequality

u e

which was found by mathematical experiments. Our proof uses methods similar to
those used in [6] and [1]. In our attempt to prove the following formula for the asymp-
totics of log p(n),

] ()~,/2 —logn — log(4+/3 044... 7.25)
ogp(n) ~ 7y = —logn 0g(4v/3) — N (7.

we first tried to prove the log-version of (7.24). However, we soon realized that this
inequality is not sharp enough in order to prove (7.25). We noted that the inequality
for p(n) in [1, Lemma 2.2] can be used instead. This formula says that for n > 1206,

12eHm (1 1 1 )

24n — 1 wn) (o
V12em 1 1
< pn) < Y= (l — e + /,L(I’l)lo) (7.26)

where u(n) := %«/ 24n — 1. We observed that after taking the log of both sides, with
some extra work, (7.25) can be proven. When we saw the asymptotics (1.3), discovered
by Schoenfield and Kotesovec, we naturally wondered whether these asymptotics can
also be proven by taking the log of an appropriate inequality. We observed that (7.26)
is enough also to prove these asymptotics, and we observed that (7.26) can be used to
prove an even more refined asymptotic formula that takes the form

oo a1 () o)

where
/6 6
b = ——— — — ~ —0.44328...
! 2432 27
1 3
n«f f NG
by = — — ~ —0.028428...
3T U938 T 2537 228
1 1 9
by = — — ~ —0.0080728...,

2732 2572 4g4
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/6 NG V6 96

bs = — - - - ~ —0.0033007...,
5 21338~ 21037 2653 5.875
b = ! 3 0 0.001174124716
07 2938 T 28352 7 2654 24x6
57+/6 54/6 56 /6 336
by = — nV6  5V6 | 5V6 36 36 —0.00045651....,
21935 214337 2lI33 2755 24757
1 1 3 322 34
by = ~ —0.00017464....,

21434 Hl13272 21054~ 97,6 9748

16 356 3546 7V6  9v6 96
by = — TV6  35V6 | 35V6 V6 9v6  9V6 ~ —0.000068757...,
22336 220347.[ 215337.[3 2127.[5 287T7 257T9

Of course we wondered whether one can get an even better formula. The only obstacle
that seemed to limit us was the 10 in the formula (7.26) above. This led us to look
into the details of the proof of (7.26), and we observed that the 10 can be replaced by
a k. This then led us to the discovery of the complete asymptotics. That is, we also
got byo, b1y, - . ., etc. At this point we still were not fully satisfied. Even though we
observed that the formula (7.26) could be generalized, it was not a proper generaliza-
tion because we could not say explicitly for which precise range of n the generalized
inequality (4.3) for p(n) holds. We only could say that there is some sufficiently big
constant C (k) such that (4.3) for all n > C (k).

We felt that this is not a proper generalization because (7.26) gives C(10) explicitly,
namely C(10) = 1206. After some work, we realized that we can obtain an explicit
expression for C(k), which is very close to the optimal value, according to mathemat-
ical experiments. This C (k) is our g(k) of Sect. 4 where we gave a generalization of
(7.26).

Because (7.26) could be generalized, we suspected that also (7.24) could be gen-
eralized. The difference between the two inequalities is that (7.24) is in terms of /7,
while (7.26) is in terms of 1 (n). We again took the log of both sides of the generalized
version of (7.26) and aimed not only at getting a refined asymptotic but rather a new
type of inequality. This was achieved in Sect. 6. However, even after we found a pre-
liminary version of Theorem 6.6, still something was missing. We wondered whether
we can guarantee that this inequality is optimal in some sense, and not overestimated.
After various experiments, we got control in the form (6.3) and (6.4), where the error
term in the inequality cannot be improved to a smaller integer in the numerator—the
same time keeping the statement unaltered. This is the point where we stopped.

A. 2 Discovery of Kotesovec’s formula (1.5) by regression analysis
We used the procedure shown in Fig. 3 to compute the sequence a(n) defined in

(1.4). This procedure works fine for computing a(n) in the range 1 < n < 215, The
computation took 24 h on a notebook computer with Intel Core i7 CPU.

@ Springer



1336 K. Banerjee et al.

To find the approximate relation between loga(n), /i, and log(n), substitute the
values n = 2K, 251 2%+2 into the target expression,

loga(n) ~ a - y/n — B - log(n) — log(y),

to obtain a system with three equations:

log, a(2X) = ay logy(e) - V2K — by - k — ¢x + &,
log, a1y = gy log, (e) - V2K — by - (k + 1) — ¢k + x1,
log, a(2%2) = ar log,(e) - V2H2 — by - (k +2) — cx + k42

and solve it successively for k from 1 to 13. Let (ax, b, ci) be the solution of the above
equation system under the assumption g = €x41 = €r42 = Oforallk € {1, ..., 13}.
The numerical values of the (ai, by, cx) are presented in Fig. 4. In the limit k — oo,

_ log a(2¥)+log, a(2¥+2)—2log, a2k =

P k(3—2ﬁ)«/k2'<2 log, (e) . @
+2y_ +
by = logy a(2 )+logzli(/2§_1) 2logy a2t {10g20(2k+1) _ logza(Zk)} =B,
ay logy (e)V 2k _k by
Ck = ZT — log, (y).

The numerical values in Fig. 4 clearly support the precise values

a=m ,3—5 =23=38
=7 p=, r=2=8

Note that we have used a sub-sequence a(Zk), k=1,2,...,15. The regression anal-
ysis to obtain the numerical data for Figs. 1 and 2 are rather routine, so we will not
list any further details here.

A. 3 Mathematica computations used in the proof of Theorem 6.6

We present Mathematica computations needed in the proof of Theorem 6.6. Note that
in order to complete the proof of Theorem 6.6 we needed to bound four terms by 1;
however, in each inequality proven with Mathematica as shown below, we checked

with(combinat) ;
rt := proc (n) local rtn, k;
rtn := combinat:-numbpart(n);
for k to (1/2)*n do
rtn := rtn+combinat:-numbpart (k)*combinat:-numbpart (n-2*k)
end do;
rtn

end proc

Fig.3 Procedure for computing the number of cubic partitions of n
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a; = 2.856681587, by = 0.829251071. cp = 3.414213592,
as = 3.104034810, by = 1.124879663. ca = 3486666941,
ag = 3138359816, by = 1.182896591. 3 = 3.502681525,
ay = 3.134634608, by = 1.173992098. cy = 3.516802205,
a5 = 3.133095462, bs = 1.168789090. c5 = 3.530255390,
ag = 3.135881324, b = 1.182107364. cg = 3.482499147,
ar = 3138560309, bz = 1.200219526. c7 = 3.399441064,
ag = 3.140063351, bg = 1.214590204. cg = 3.319170509,
ag = 3.140825208, by = 1.224893620. cg = 3.251316705,
ao = 3.141207944, bio = 1.2322117706, c10 = 3.195805627,

a1 = 3.141399944, b1 = 1.237403601. c11 = 3.151230912,
arpp = 3.141496152, bio = 1.241082894, c12 = 3.115957155,
a1z = 3.141544378, biz = 1.243690699, c13 = 3.088371824.

Fig.4 Numerical values of the (ay, by, ck)

that each inequality holds in fact for bounds smaller than 1, namely %, %, 21—6, and %.
The Mathematica computations are based on Cylindrical Algebraic Decomposition

[5].

n,Z
In[1]:= a 1=
36+ n2
/6 a a 1
n2i= (mul, mu2, nu) := (2 (72 )) o (1 + E)’3E — E)
2
— 1
3= CylindricalDecomposition[{(2w — 2)2 ~0— =W (2w (24a)2w) > wW=1,x >4}, {w,x}]
(-1+x)2 5

outBl= w>1&&x>4

.. e 2w-3 1 X 2 1
k= CylindricalDecomp """”((x — mul)(Zw =3 % SaGw = 1))) <3 W22x2 7w,

outidl= w>2 &&x>17

(2w 1+z4a<2w>)) 5oz Ly 21wyl

In[5]:= CylindricalDecomposition[{((Zw -2) v—2mu

outsl: w>1&&y > 1

2w -3 2 nu
— CylindricalDec ition[
in(e):= CylindricalD: p “((y T24a muZ)(Z 24a(2w _— )) 2%’ w>2,y>1}, {w,y}]

outlel= w>2 &&y >1
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