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Abstract. An extensive amount of studies have been done on inequalities for the partition
function. In particular, the Turán inequality and the higher order Turán inequalities for p(n)
has been one of the more predominant themes. Recently, Griffin, Ono, Rolen, and Zagier proved
that for every integer d ≥ 1, there exists an integer N(d) such that the Jensen polynomial
of degree d and shift n associated with the partition function, denoted by Jd,n

p (x), has only
distinct real roots for all n ≥ N(d), conjectured by Chen, Jia, and Wang. Larson and Wagner
have provided an estimate for N(d). This implies that the discriminant of Jd,n

p (x) is positive;

i.e., Discx(Jd,n
p ) > 0. For d = 2, Discx(Jd,n

p ) > 0 when n ≥ N(d) is equivalent to the fact that
(p(n))n≥26 is log-concave. In 2017, Chen undertook a comprehensive investigation on inequalities
for p(n) through the lens of invariant theory of binary forms of degree n. Positivity of the
invariant of a quadratic binary form (resp. cubic binary form) associated with p(n) reflects that
the sequence (p(n))n≥26 satisfies the Turán inequalities (resp. (p(n))n≥95 satisfies the higher
order Turán inequalities). Chen further studied on the two invariants for a quartic binary form
where its coefficients are shifted values of integer partitions and conjectured four inequalities for
p(n). In this paper, we confirm the conjectures of Chen.
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1. Introduction

Throughout this paper, we consider only sequences of real numbers. A sequence (an)n≥0 is
said to satisfy the Turán inequlaities or to be log-concave, if

a2n − an−1an+1 ≥ 0 for all n ≥ 1, (1.1)

see [41]. We say that a sequence (an)n≥0 is said to satisfy the higher order Turán inequlaities if
for all n ≥ 1,

4(a2n − an−1an+1)(a
2
n+1 − anan+2)− (anan+1 − an−1an+2)

2 ≥ 0. (1.2)
1
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The Turán inequalities and the higher order Turán inequalities are related to the Laguerre-Pólya
class of real entire functions [13, 43]. A real entire function

ψ(x) =
∞∑
k=0

ak
xk

k!
(1.3)

is said to be in Laguerre-Pólya class, denoted by ψ(x) ∈ LP , if it is of the form

ψ(x) = cxme−αx
2+βx

∞∏
k=1

(
1 +

x

xk

)
e
− x
xk ,

where c, β, xk are real numbers, α ≥ 0, m ∈ Z≥0, and
∞∑
k=1

x−2k converges. Any sequence of

polynomials with only real zeroes, say (Pn(x))n≥0, converges uniformly to a function P (x) ∈ LP .
For a more detailed study on the theory of the LP class, we refer to [38]. Jensen [21] proved that
a real entire function ψ(x) is in LP class if and only if for any d ∈ Z≥1, the Jensen polynomial
of degree d associated with a sequence (an)n≥0:

Jda (x) =
d∑

k=0

(
d

k

)
akx

k

has only real zeroes. Pólya and Schur [40] proved that for a real entire function ψ(x) ∈ LP and
for any n ≥ Z≥0, the n-th derivative ψ(n)(x) of ψ(x) also belongs to the LP class, that is, the
Jensen polynomial associated with ψ(n)(x)

Jd,na (x) =
d∑

k=0

(
d

k

)
an+kx

k

has only real zeroes. Observe that for d = 2 and for all nonnegative integer n, the real-rootedness
of Jd,na (x) implies that the discriminant 4(a2n+1−anan+2) is nonnegative. Pólya’s work [34] on LP
class is closely connected with the Riemann hypothesis. He showed that the Riemann hypothesis
is equivalent to the real rootedness of Jensen polynomial Jd,na (x) for all nonnegative integers d
and n, where the coefficient sequence {an}n≥0 is defined by

(−1 + 4z2) Λ
(1

2
+ z
)

=
∞∑
n=0

an
n!
z2n,

with Λ(s) = π−s/2Γ(s/2)ζ(s) = Λ(1 − s), where ζ denotes the Riemann zeta function and Γ
denotes the Gamma function. In 2019, Griffin, Ono, Rolen, and Zagier [17, Theorem 1] proved
that for all d ≥ 1, Jd,na (x) has only real roots for all sufficiently large n.

Now we discuss in brief the inequalities of the partition function. A partition of a positive
integer n is a weakly decreasing sequence (λ1, λ2, . . . , λr) of positive integers such that λ1 +λ2 +
· · ·+λr = n. Let p(n) denote the number of partitions of n. Estimates on the partition function
systematically began with the work of Hardy and Ramanujan [18] in 1918 and independently by
Uspensky [44] in 1920:

p(n) ∼ 1

4n
√

3
eπ
√

2n/3 as n→∞. (1.4)

Hardy and Ramanujan’s proof involved an important tool called the Circle Method which has
manifold applications in analytic number theory. For a well documented exposition on this
collaboration, see [28]. During 1937-1943, Rademacher [35, 37, 36] improved the work of Hardy
and Ramanujan and found a convergent series for p(n) and Lehmer’s [27, 26] considerations
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were on the estimation for the remainder term of the series for p(n). The Hardy-Ramanujan-
Rademacher formula reads

p(n) =

√
12

24n− 1

N∑
k=1

Ak(n)√
k

[(
1− k

µ(n)

)
eµ(n)/k +

(
1 +

k

µ(n)

)
e−µ(n)/k

]
+R2(n,N), (1.5)

where
µ(n) =

π

6

√
24n− 1, Ak(n) =

∑
h mod k
(h,k)=1

e−2πinh/k+πis(h,k)

with

s(h, k) =
k−1∑
µ=1

(
µ

k
−
⌊µ
k

⌋
− 1

2

)(
hµ

k
−
⌊hµ
k

⌋
− 1

2

)
,

and

|R2(n,N)| < π2N−2/3√
3

[(
N

µ(n)

)3

sinh
µ(n)

N
+

1

6
−

(
N

µ(n)

)2]
. (1.6)

Independently Nicolas [31] and DeSalvo and Pak [12, Theorem 1.1] proved that the partition
function (p(n))n≥26 is log-concave, conjectured by Chen [6]. DeSalvo and Pak [12, Theorem 4.1]
also proved that for all n ≥ 2,

p(n− 1)

p(n)

(
1 +

1

n

)
>

p(n)

p(n+ 1)
, (1.7)

conjectured by Chen [6]. Further, they improved the term (1 + 1
n
) in (1.7) and proved that for

all n ≥ 7,

p(n− 1)

p(n)

(
1 +

240

(24n)3/2

)
>

p(n)

p(n+ 1)
, (1.8)

see [12, p. 4.2]. DeSalvo and Pak [12] finally came up with the conjecture that the coefficient of
1/n3/2 in (1.8) can be improved to π/

√
24; i.e., for all n ≥ 45,

p(n− 1)

p(n)

(
1 +

π√
24n3/2

)
>

p(n)

p(n+ 1)
, (1.9)

which was proved by Chen, Wang and Xie [9, Sec. 2]. Paule, Radu, Zeng, and the author [4,
Theorem 7.6] confirmed that the coefficient of 1/n3/2 is indeed π/

√
24, which is the optimal; i.e.,

they proved that for all n ≥ 120,

p(n)2 >

(
1 +

π√
24n3/2

− 1

n2

)
p(n− 1)p(n+ 1). (1.10)

Chen [7] conjectured that p(n) satisfies the higher order Turán inequalities for all n ≥ 95 which
was proved by Chen, Jia, and Wang [8, Theorem 1.3] and analogous to the inequality (1.9), they
conjectured that for all n ≥ 2,

4(1− un)(1− un+1) <

(
1 +

π√
24n3/2

)
(1− unun+1)

2 with un :=
p(n+ 1)p(n− 1)

p(n)2
, (1.11)

settled by Larson and Wagner [25, Theorem 1.2]. In [8], Chen, Jia, and Wang conjectured1 that
for any integer d ≥ 1 there exists an integer N(d) such that the Jensen polynomial of degree d
and shift n associated with p(n) has only real roots which was settled by Griffin, Ono, Rolen,
and Zagier [17, Theorem 5] and inspired by their work, Larson and Wagner [25, Theorem 1.3]

1Independently conjectured by K. Ono
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proved that N(d) ≤ (3d)24d(50d)3d
2
. Proofs of the inequalities, stated before, primarily relies

on the Hardy-Ramanujan-Rademacher formula (1.5) and Lehmer’s error bound (1.6) but with
different methodology.

While studying on higher order Turán inequality for p(n), Chen [7] undertook a comprehensive
study on inequalities pertaining to invariants of a binary form. A binary form P (x, y) of degree
d is a homogeneous polynomial of degree d in two variables x and y is defined by

Pd(x, y) :=
d∑
i=0

(
n

i

)
aix

iyn−i,

where (ai)1≤i≤n ∈ Cn. But we restrict ai to be real numbers. The binary form Pd(x, y) is
transformed into a new binary form, say Q(x, y) with

Qd(x, y) =
d∑
i=0

(
n

i

)
cix

iyn−i

under the action of M =

(
m11 m12

m21 m22

)
∈ GL2(R) as follows:(
x
y

)
= M

(
x
y

)
.

The transformed coefficients (ci)0≤i≤d are polynomials in (ai)0≤i≤d and entries of the matrix M .
For k ∈ Z≥0, a polynomial I(a0, a1, . . . , ad) in the coefficients (ai)0≤i≤d is called an invariant of
index of k of the binary form Pd(x, y) if for any M ∈ GL2(R),

I(a0, a1, . . . , ad) = (detM)kI(a0, a1, . . . , an).

For a more detailed study on the theory of invariants, see, for example, Hilbert [19], Kung and
Rota [24], and Sturmfels [42]. We observe that I(a0, a1, a2) = a21 − a0a2 is an invariant of the
quadratic binary form

P2(x, y) = a2x
2 + 2a1xy + a0y

2

and the discriminant is 4I(a0, a1, a2). For a sequence (an)n≥0, define

In−1(a0, a1, a2) := I(an−1, an, an+1) = a2n − an−1an+1.

Therefore, if we choose an = p(n), then In−1(p(0), p(1), p(2)) > 0 for all n ≥ 26 is the same thing
as saying (p(n))n≥26 is log-concave. For degree 3,

I(a0, a1, a2, a3) = 4(a21 − a0a2)(a22 − a1a3)− (a1a2 − a0a3)2

is an invariant of the cubic binary form P3(x, y) = a3x
3 + 3a2x

2y + 3a1xy
2 + a0y

3 and the
discriminant is 27I(a0, a1, a2, a3). Similarly, setting an = p(n), the positivity of In−1(a0, a1, a2, a3)
for all n ≥ 95 is equivalent to state that (p(n))n≥95 satisfies the higher order Turán inequality.
Two invariants of the quartic binary form

P4(x, y) = a4x
4 + 4a3x

3y + 6a2x
2y2 + 4a1xy

3 + a0y
4

are of the following form

A(a0, a1, a2, a3, a4) = a0a4 − 4a1a3 + 3a22,

B(a0, a1, a2, a3, a4) = −a0a2a4 + a32 + a0a
2
3 + a21a4 − 2a1a2a3.

Setting an = p(n), Chen [7] conjectured that

A(an−1, an, an+1, an+2, an+3) > 0 and B(an−1, an, an+1, an+2, an+3) > 0,

along with the associated companion inequalities in the spirit of (1.9) and (1.11). Here we list
all the four conjectures with an = p(n).
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Conjecture 1.1 (Eqn. (6.17), [7]).

an−1an+3 + 3a2n+1 > 4anan+2 for all n ≥ 185. (1.12)

Conjecture 1.2 (Conjecture 6.15, [7]). We have

4
(

1 +
π2

16n3

)
anan+2 > an−1an+3 + 3a2n+1 for all n ≥ 218. (1.13)

Conjecture 1.3 (Eqn. (6.18), [7]).

a3n+1 + an−1a
2
n+2 + a2nan+3 > 2anan+1an+2 + an−1an+1an+3 for all n ≥ 221. (1.14)

Conjecture 1.4 (Conjecture 6.16, [7]). We have(
1 +

π3

72
√

6n9/2

)
(2anan+1an+2 + an−1an+1an+3) > a3n+1 + an−1a

2
n+2 + a2nan+3 for all n ≥ 244.

(1.15)

We prove all the four conjectures along with the confirmation that the rate of decay π2/16n3

(resp. π3/72
√

6n9/2) in (1.2) (resp. in (1.4)) is the optimal one, as stated in Theorem 1.5 (resp.
Theorem 1.7). We also ensure that the rate of decay is π/

√
24n3/2 in context of (1.11) can not

be improved further by proving Theorem 1.9.
A major part of this paper is devoted to obtain an infinite family of inequalities for p(n− `)

for a non-negative integer `, stated in Theorem 4.5, so that under a unified framework, we can
prove inequalities for p(n) stated below. Work done in Sections 3 and 4 incarnates the theme of
work presented in [3].

Let an := p(n).

Theorem 1.5. For all n ≥ 218,

4
(

1 +
π2

16n3

)
anan+2 > an−1an+3 + 3a2n+1 > 4

(
1 +

π2

16n3
− 6

n7/2

)
anan+2. (1.16)

Corollary 1.6. Conjecture 1.1 and 1.2 is true.

Theorem 1.7. For all n ≥ 244,(
1 +

π3

72
√

6n9/2

)
(2anan+1an+2 + an−1an+1an+3) > a3n+1 + an−1a

2
n+2 + a2nan+3

>
(

1 +
π3

72
√

6n9/2
− 8

n5

)
(2anan+1an+2 + an−1an+1an+3).

(1.17)

Corollary 1.8. Conjecture 1.3 and 1.4 is true.

Theorem 1.9. For all n ≥ 115,(
1 +

π√
24n3/2

)
(anan+1 − an−1an+2)

2 > 4(a2n − an−1an+1)(a
2
n+1 − anan+2)

>
(

1 +
π√

24n3/2
− 3

n2

)
(anan+1 − an−1an+2)

2.
(1.18)

Remark 1.10. We observe that Theorem 1.9 immediately implies the following three statements:

(1) (p(n))n≥95 satisfies the higher order Turán inequalities [8, Theorem 1.3].
(2) For all n ≥ 2, (1.11) holds [25, Theorem 1.2].
(3) π√

24n3/2 is the optimal rate of decay of the quotient

4(a2n − an−1an+1)(a
2
n+1 − anan+2)/(anan+1 − an−1an+2)

2.
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The rest of this paper is organized as follows. In Section 2, we shall present a couple of lemmas
from [4, 3] that will be helpful in later sections. Following the work done by Paule, Radu,
Schneider, and the aurhor [3], Section 3 prepares the set up by determining the coefficients in
the asymptotic expansion of p(n− `) along with its estimates. An infinite family of inequalities
for p(n − `) is presented in Section 4. Section 5 presents proofs of the Theorems 1.9, 1.5, and
1.7. We conclude this paper by a brief discussion on the future aspect of this work, given in
Section 7.

2. Preliminaries

This section presents all the preliminary lemmas required for the proofs of the lemmas pre-
sented in subsequent sections.

Lemma 2.1. [3, Lemma 3.3] For j, k ∈ Z≥0,

k∑
i=0

(−1)i
(
k

i

)(
i/2

j

)
=

{
1, j = k = 0

(−1)j2k−2j k
j

(
2j−k−1
j−k

)
, otherwise

. (2.1)

Lemma 2.2. [3, Lemma 4.1] Let x1, x2, . . . , xn ≤ 1 and y1, . . . , y1 be non-negative real numbers.
Then

(1− x1)(1− x2) · · · (1− xn)

(1 + y1)(1 + y2) · · · (1 + yn)
≥ 1−

n∑
j=1

xj −
n∑
j=1

yj.

Lemma 2.3. [3, Lemma 4.2] For t ≥ 1 and non-negative integer u ≤ t, we have

1

2t
≥ t(−t)u(−1)u

(1 + 2t)(t+ u)(t)u
≥ 1

2t

(
1−

u2 + 1
2

t

)
.

Lemma 2.4. [3, Lemma 4.3] For t ≥ 1 and non-negative integer u ≤ t, we have

2u+ 1

2t
≥ 1

1 + 2t
+

2t

1 + 2t

u∑
i=1

(−t)i(−1)i

(t+ i)(t)i
≥ 2u+ 1

2t
− 4u3 + 6u2 + 8u+ 3

12t2
.

Throughout the rest of this paper,

α` :=
π

6

√
1 + 24`.

Lemma 2.5. We have
∞∑
u=0

α2u
`

(2u)!
= cosh(α`),

∞∑
u=0

uα2u
`

(2u)!
=

1

2
α` sinh(α`),

∞∑
u=0

u2α2u
`

(2u)!
=
α2
`

4
cosh(α`) +

α`
4

sinh(α`),

and
∞∑
u=0

u3α2u
`

(2u)!
=

3α2
`

8
cosh(α`) +

α`(α
2
` + 1)

8
sinh(α`).

Lemma 2.6. [3, Lemma 4.5] Let u ∈ Z≥0. Assume that an+1 − an ≥ bn+1 − bn for all n ≥ u,
and limn→∞ an = limn→∞ bn = 0. Then

bn ≥ an for all n ≥ u.

Lemma 2.7. For t ≥ 1 and k ∈ {0, 1, 2, 3} we have
∞∑

u=t+1

ukα2u
`

(2u)!
≤ Ck(`)

t2
,
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where

Ck(`) =


Ck =

α4
` · 2k

18
, ` = 0

d
√
`e2
(

1 + d
√
`e
)k+2

α
2(1+d

√
`e)

`

(1 + 2d
√
`e)(2 + 2d

√
`e)!

, ` ≥ 1

.

Proof. Applying Lemma 2.6 with an =
∑∞

u=n+1

ukα2u
`

(2u)!
and bn = Ck(`)

n2 , bn+1 − bn ≤ an+1 − an is

equivalent to show that f(n) :=
n2(n+1)k+2α2n+2

`

(2n+1)(2n+2)!
≤ Ck(`). To prove f(n) ≤ Ck(`), it is sufficient to

show that f(m) ≤ Ck(`) for a minimal m such that f(m) is maximal. In order to find such m, it is

enough to that f(n+1)
f(n)

≤ 1 for all n ≥ max{d
√
`e, 1}, and therefore, max

n∈Z≥0

f(n) = f(d
√
`e) = Ck(`)

for all ` ≥ 1 and for ` = 0, max
n∈Z≥0

f(n) = f(1) = Ck(0). Now, f(n+1)
f(n)

=
α2
` (n+2)k+2(2n+1)

(2n+4)(2n+3)2(n+1)kn2 ≤ 1

holds for all all n ≥ max{d
√
`e, 1}. �

Lemma 2.8. [4, Equation 7.5, Lemma 7.3] For n, k, s ∈ Z≥1 and n > 2s let

bk,n(s) :=
4
√
s√

s+ k − 1

(
s+ k − 1

s− 1

)
1

nk
,

then

0 <
∞∑
t=k

(
−2s−1

2

t

)
(−1)k

nk
< bk,n(s). (2.2)

Lemma 2.9. [4, Equation 7.9, Lemma 7.5] For m,n, s ∈ Z≥1 and n > 2s let

cm,n(s) :=
2

m

sm

nm
,

then

− cm,n(s)√
m

<
∞∑
k=m

(
1/2

k

)
(−1)ksk

nk
< 0. (2.3)

Lemma 2.10. [4, Equation 7.7, Lemma 7.4] For n, s ∈ Z≥1, m ∈ N and n > 2s let

βm,n(s) :=
2

nm

(
s+m− 1

s− 1

)
,

then

0 <
∞∑
k=m

(
−s
k

)
(−1)k

nk
< βm,n(s). (2.4)

3. Set Up

Using the Hardy-Ramanujan-Rademacher formula for p(n) and Lehmer’s error bound, we have
the following inequality for p(n) due to Chen, Jia, and Wang.

Lemma 3.1. [8, Lemma 2.2 ] For all n ≥ 1206,
√

12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)10

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)10

)
, (3.1)

where for n ≥ 1, µ(n) := π
6

√
24n− 1.

The definition of µ(n) is kept throughout this paper. Paule, Radu, Zeng, and the author
extended Lemma 3.1 as follows.
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Theorem 3.2. [4, Theorem 4.4] For k ∈ Z≥2, define

ĝ(k) :=
1

24

(
36

π2
· ν(k)2 + 1

)
,

where ν(k) := 2 log 6 + (2 log 2)k + 2k log k + 2k log log k +
5k log log k

log k
. Then for all k ∈ Z≥2

and n > ĝ(k) such that (n, k) 6= (6, 2), we have
√

12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)k

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)k

)
. (3.2)

By making the shift n− ` in p(n) for any ` ≥ 0, we obtain the following result.

Theorem 3.3. Let ` ∈ Z≥0. For k ∈ Z≥2, let ĝ(k) be as in Theorem 3.2. Then for all k ∈ Z≥2
and n > ĝ(k) + ` such that (n, k) 6= (6, 2), we have
√

12eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)
− 1

µ(n− `)k

)
< p(n−`) <

√
12eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)
+

1

µ(n− `)k

)
.

(3.3)

Rewrite the term

√
12 eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)

)
in the following way:

√
12 eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)

)
=

1

4n
√

3
eπ
√

2n/3 eπ
√

2n/3
(√

1− 1+24`
24n

−1
)︸ ︷︷ ︸

:=A1(n,`)

(
1− 1 + 24`

24n

)−1(
1− 1

µ(n− `)

)
︸ ︷︷ ︸

:=A2(n,`)

.

(3.4)
Now we compute the Taylor expansion of the residue parts of A1(n, `) and A2(n, `), defined in
(3.4).

Definition 3.4. For t, ` ∈ Z≥0, define

e1(t, `) :=


1, if t = 0

(−1)t(1 + 24`)t

(24)t
(1/2− t)t+1

t

t∑
u=1

(−1)u(−t)u
(t+ u)!(2u− 1)!

α2u
` , otherwise

, (3.5)

and

E1

( 1√
n
, `
)

:=
∞∑
t=0

e1(t, `)
( 1√

n

)2t
, n ≥ 1. (3.6)

Definition 3.5. For t, ` ∈ Z≥0, define

o1(t, `) := − π

12
√

6
(1 + 24`)

(
(−1)t(1/2− t)t+1(1 + 24`)t

(24)t

t∑
u=0

(−1)u(−t)u
(t+ u+ 1)!(2u)!

α2u
`

)
(3.7)

and

O1

( 1√
n
, `
)

:=
∞∑
t=0

o1(t, `)
( 1√

n

)2t+1

, n ≥ 1. (3.8)

Lemma 3.6. Let A1(n, `) be defined as in (3.4). Let E1(n, `) be as in Definition 3.4 and O1(n, `)
as in Definition 3.5. Then

A1(n, `) = E1

( 1√
n
, `
)

+O1

( 1√
n
, `
)
. (3.9)
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Proof. From (3.4), we get

A1(n, `) = eπ
√

2n/3
(√

1− 1+24`
24n

−1
)

=
∞∑
k=0

(π
√

2n/3)k

k!

(√
1− 1 + 24`

24n
− 1

)k

=
∞∑
k=0

(π
√

2/3)k

k!
(
√
n)k

k∑
i=0

(
k

i

)
(−1)k−i

(√
1− 1 + 24`

24n

)i

=
∞∑
k=0

(π
√

2/3)k

k!
(
√
n)k

k∑
i=0

(
k

i

)
(−1)k−i

∞∑
j=0

(
i/2

j

)
(−1)j(1 + 24`)j

(24n)j

=
∞∑
k=0

k∑
i=0

∞∑
j=0

(π
√

2/3)k

k!

(−1)k−i+j(1 + 24`)j

(24)j

(
k

i

)(
i/2

j

)
(
√
n)k−2j. (3.10)

Split S :=
{

(k, i, j) ∈ Z3
≥0 : 0 ≤ i ≤ k

}
:=

⋃
t∈Z≥0

V (t), where for each t ∈ Z≥0,

V (2t) =
{

(2u, i, u+ t) ∈ Z3
≥0 : 0 ≤ i ≤ 2u

}
and

V (2t+ 1) =
{

(2u+ 1, i, u+ t+ 1) ∈ Z3
≥0 : 0 ≤ i ≤ 2u+ 1

}
.

By Lemma 2.1, we have
k∑
i=0

(
k

i

)(
i/2

j

)
= 0 for k > j. For r = (k, i, j) ∈ S, we define

S(r) :=
(π
√

2/3)k

k!

(−1)k−i+j(1 + 24`)j

(24)j

(
k

i

)(
i/2

j

)
and f(r) := k − 2j.

Rewrite (3.10) as

A1(n, `) =
∞∑
t=0

∑
r∈V (2t)

S(r)
( 1√

n

)2t
+
∞∑
t=0

∑
r∈V (2t+1)

S(r)
( 1√

n

)2t+1

. (3.11)

Now

∞∑
t=0

∑
r∈V (2t)

S(r)
( 1√

n

)2t
=

∞∑
t=0

(−1)t(1 + 24`)t

(24)t

(
∞∑
u=0

(−1)u

(2u)!
α2u
` E1(u, t)

)( 1√
n

)2t
,

(3.12)

where by Lemma 2.1,

E1(u, t) :=
2u∑
i=0

(−1)i
(

2u

i

)(
i/2

u+ t

)
=


1, if u = t = 0
0, if u > t

2u(1/2−t)t+1(−t)u
t(t+u)!

, otherwise
.

Consequently, we have

∞∑
t=0

∑
r∈V (2t)

S(r)
( 1√

n

)2t
= E1

( 1√
n
, `
)
. (3.13)
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Simplifying,
∞∑
t=0

∑
r∈V (2t+1)

S(r)
( 1√

n

)2t+1

= −π(1 + 24`)

12
√

6

∞∑
t=0

(−1)t(1 + 24`)t

(24)t

(
∞∑
u=0

(−1)u

(2u+ 1)!
α2u
` O1(u, t)

)( 1√
n

)2t+1

,

(3.14)

where by Lemma 2.1,

O1(u, t) :=
2u+1∑
i=0

(−1)i
(

2u+ 1

i

)(
i/2

u+ t+ 1

)
=

{
0, if u > t

− (2u+1)(1/2−t)t+1(−t)u
(t+u+1)!

, otherwise
.

Therefore, we have
∞∑
t=0

∑
r∈V (2t+1)

S(r)
( 1√

n

)2t+1

= O1

( 1√
n
, `
)
. (3.15)

From (3.11), (3.13), and (3.15), we get (3.9). �

Definition 3.7. For t ∈ Z≥0, define

E2

( 1√
n
, `
)

:=
∞∑
t=0

e2(t, `)
( 1√

n

)2t
with e2(t, `) :=

(1 + 24`)t

(24)t
. (3.16)

Definition 3.8. For t ∈ Z≥0, define

O2

( 1√
n

)
:=

∞∑
t=0

o2(t)
( 1√

n

)2t+1

with o2(t) := − 6

π
√

24

(
−3/2

t

)
(−1)t(1 + 24`)t

(24)t
. (3.17)

Lemma 3.9. Let A2(n, `) be defined as in (3.4). Let E2(n, `) be as in Definition 3.7 and O2(n, `)
as in Definition 3.8. Then

A2(n, `) = E2

( 1√
n
, `
)

+O2

( 1√
n
, `
)
. (3.18)

Proof. Following the definition of A2(n, `) from (3.4) and expand it as follows:

A2(n, `) =
(

1− 1 + 24`

24n

)−1
− 6

π
√

24

1√
n

(
1− 1 + 24`

24n

)−3/2
= E2

( 1√
n
, `
)

+O2

( 1√
n
, `
)
. (3.19)

This completes the proof of (3.18). �

Definition 3.10. Following the Definitions 3.4-3.8, we define

Se,1

( 1√
n
, `
)

:= E1

( 1√
n
, `
)
E2

( 1√
n
, `
)
, (3.20)

Se,2

( 1√
n
, `
)

:= O1

( 1√
n
, `
)
O2

( 1√
n
, `
)
, (3.21)

So,1

( 1√
n
, `
)

:= E1

( 1√
n
, `
)
O2

( 1√
n
, `
)
, (3.22)

and

So,2

( 1√
n
, `
)

:= E2

( 1√
n
, `
)
O1

( 1√
n
, `
)
. (3.23)
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Lemma 3.11. For each i ∈ {1, 2}, let Se,i

( 1√
n
, `
)

and So,i

( 1√
n
, `
)

be as in Definition 3.10.

Then
√

12 eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)

)
=

1

4n
√

3
eπ
√

2n/3

2∑
i=1

(
Se,i

( 1√
n
, `
)

+ So,i

( 1√
n
, `
))

. (3.24)

Proof. The proof follows immediately by applying Lemmas 3.6 and 3.9 to (3.4). �

3.1. Coefficients in the asymptotic expansion of p(n− `).

Definition 3.12. For t, ` ∈ Z≥0, define

S1(t, `) :=
t∑

s=1

(−1)s(1/2− s)s+1

s

s∑
u=1

(−1)u(−s)u
(s+ u)!(2u− 1)!

α2u
` , (3.25)

and

ge,1(t, `) :=
(1 + 24`)t

(24)t

(
1 + S1(t, `)

)
. (3.26)

Lemma 3.13. Let Se,1

( 1√
n
, `
)

be as in (3.20). Let ge,1(t, `) be as in Definition 3.12. Then

Se,1

( 1√
n
, `
)

=
∞∑
t=0

ge,1(t, `)
( 1√

n

)2t
. (3.27)

Proof. From (3.6), (3.16), and (3.20), we have

Se,1

( 1√
n
, `
)

= 1 +
∞∑
t=1

(
e1(t, `) + e2(t, `) +

t−1∑
s=1

e1(s, `)e2(t− s, `)

)( 1√
n

)2t
.

(3.28)

Combining (3.5) and (3.16), we obtain

e1(t) + e2(t) +
t−1∑
s=1

e1(s)e2(t− s) =
(1 + 24`)t

(24)t

(
1 + S1(t, `)

)
= ge,1(t, `), (3.29)

which concludes the proof of (3.27). �

Definition 3.14. For t ∈ Z≥1 and ` ∈ Z≥0, define

S2(t, `) :=
t−1∑
s=0

(1/2− s)s+1

(
−3/2

t− s− 1

) s∑
u=0

(−1)u(−s)u
(s+ u+ 1)!(2u)!

α2u
` , (3.30)

and

ge,2(t, `) :=
(−1)t−1(1 + 24`)t

(24)t
S2(t, `). (3.31)

Lemma 3.15. Let Se,2

( 1√
n
, `
)

as in (3.21) and ge,2(t, `) as in Definition 3.14. Then

Se,2

( 1√
n
, `
)

=
∞∑
t=1

ge,2(t, `)
( 1√

n

)2t
. (3.32)
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Proof. From (3.8), (3.18) and (3.21), we have

Se,2

( 1√
n
, `
)

= O1

( 1√
n
, `
)
O2

( 1√
n
, `
)

=
∞∑
t=1

(
t−1∑
s=0

o1(s, `)o2(t− s− 1, `)

)( 1√
n

)2t
=

∞∑
t=1

ge,2(t, `)
( 1√

n

)2t
(by (3.7) and (3.17)). (3.33)

�

Definition 3.16. For t ∈ Z≥2 and ` ∈ Z≥0, define

S3(t, `) :=
t∑

s=1

(1/2− s)s+1

(−3/2
t−s

)
s

s∑
u=1

(−1)u(−s)u
(s+ u)!(2u− 1)!

α2u
` , (3.34)

and

go,1(t, `) :=



− 6

π
√

24

(−1)t(1 + 24`)t

(24)t

((−3/2
t

)
+ S3(t)

)
, if t ≥ 2

−432 + (1 + 24`)π2

2304
√

6π
, if t = 1

− 6

π
√

24
, if t = 0

. (3.35)

Lemma 3.17. Let So,1

( 1√
n
, `
)

as in (3.22) and go,1(t, `) be as in Definition 3.16. Then

So,1

( 1√
n
, `
)

=
∞∑
t=0

go,1(t, `)
( 1√

n

)2t+1

. (3.36)

Proof. From (3.6), (3.17) and (3.22), it follows that

So,1

( 1√
n
, `
)

= E1

( 1√
n
, `
)
O2

( 1√
n
, `
)

= go,1(0, `)
1√
n

+ go,1(1, `)
1
√
n
3 +

∞∑
t=2

(
o2(t) +

t∑
s=1

e1(s, `)o2(t− s, `)

)( 1√
n

)2t+1

= go,1(0, `)
1√
n

+ go,1(1, `)
1
√
n
3 +

∞∑
t=2

go,1(t, `)
( 1√

n

)2t+1

(by (3.5) and (3.17)).

(3.37)

�

Definition 3.18. For t ∈ Z≥1 and ` ∈ Z≥0, define

S4(t, `) :=
t∑

s=0

(−1)s(1/2− s)s+1

s∑
u=0

(−1)u(−s)u
(s+ u+ 1)!(2u)!

α2u
` , (3.38)

and

go,2(t, `) := −π(1 + 24`)

12
√

6

(1 + 24`)t

(24)t
S4(t). (3.39)
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Lemma 3.19. Let So,2

( 1√
n
, `
)

be as in (3.23) and go,2(t, `) be as in Definition 3.18. Then

So,2

( 1√
n
, `
)

=
∞∑
t=0

go,2(t, `)
( 1√

n

)2t+1

. (3.40)

Proof. From (3.8), (3.16) and (3.23), it follows that

So,1

( 1√
n
, `
)

= O1

( 1√
n
, `
)
E2

( 1√
n
, `
)

=
∞∑
t=0

(
t∑

s=0

o1(s, `)e2(t− s, `)

)( 1√
n

)2t+1

=
∞∑
t=0

go,2(t, `)
( 1√

n

)2t+1

(by (3.8) and (3.16)). (3.41)

�

Definition 3.20. For each i ∈ {1, 2}, let ge,i(t, `) and go,i(t, `) be as in Definitions 3.12-3.18.
We define a power series

G(n, `) :=
∞∑
t=0

g(t, `)
( 1√

n

)t
=
∞∑
t=0

g(2t, `)
( 1√

n

)2t
+
∞∑
t=0

g(2t+ 1, `)
( 1√

n

)2t+1

,

where
g(2t, `) := ge,1(t, `) + ge,2(t, `) and g(2t+ 1, `) := go,1(t, `) + go,2(t, `). (3.42)

Lemma 3.21. Let G(n, `) be as in Definition 3.20. Then
√

12 eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)

)
=

1

4n
√

3
eπ
√

2n/3 ·G(n, `). (3.43)

Proof. Applying Lemmas 3.13-3.19 to Lemma 3.9, we have (3.43). �

Remark 3.22. Using Sigma due to Schneider [39] and GeneratingFunctions due to Mallinger
[29], we observe that for all t ≥ 0,

g(2t, `) = ge,1(t, `) + ge,2(t, `) = ω2t,` and g(2t+ 1, `) = go,1(t, `) + go,2(t, `) = ω2t+1,`, (3.44)

where

g(t, `) = ωt,` =
(1 + 24`)t

(−4
√

6)t

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k 1

(1 + 24`)k
. (3.45)

Note that for ` = 0, we retrieve ωt as in O’Sullivan’s [32, Proposition 4.4] work.

3.2. Estimation of (Si(t, `)). We present the Lemmas 3.24-3.30 which will be needed in the
Subsection 3.3. A brief sketch of proofs of these lemmas are presented in the Section 6.

Definition 3.23. Let Ck(`) be as in Lemma 2.7. Define

CL1 (`) :=
cosh(α`)− 1

4
+ C0(`) +

α2
` cosh(α`) + α` sinh(α`)

8
,

CU1 (`) := C1(`) +
α2
` + 1

4
cosh(α`) +

α`(α
2
` + 12)

24
sinh(α`).

Lemma 3.24. Let S1(t, `) be as in Definition 3.12 and CL1 (`), CU1 (`) as in Definition 3.23. Then
for all t ≥ 1,

− CL1 (`)

t2
<

S1(t, `)

(−1)t
(− 3

2
t

) − (−1)t(− 3
2
t

) (cosh(α`)− 1
)

+
1

2t
α` sinh(α`) <

CU1 (`)

t2
. (3.46)
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Definition 3.25. Let Ck(`) be as in Lemma 2.7. Define

CL2,1(`) :=
cosh(α`)

4
+

sinh(α`)

4α`
+
α` sinh(α`)

4
+

2C1(`)

α2
`

,

CU2,1(`) := −cosh(α`)

2
+

sinh(α`)

2α`
+

2C2(`)

α2
`

,

csh(`) := cosh(α`) + α` sinh(α`),

C2,2(`) :=
8C3(`)

α2
`

+
(α2

` + 1) cosh(α`)

4
+

(α3
` + 12α`) sinh(α`)

24
,

CL2 (`) := CU2,1(`) +
csh(`)

2
+

4C2(`)

α2
`

,

CU2 (`) := CL2,1(`)−
csh(`)

2
+ C2,2(`).

Lemma 3.26. Let S2(t, `) be as in Definition 3.14 and CL2 (`), CU2 (`) as in Definition 3.25. Then
for all t ≥ 1,

− CL2 (`)

t
<
S2(t, `)(− 3

2
t

) − (−1)t(− 3
2
t

) cosh(α`) +
sinh(α`)

α`
<
CU2 (`)

t
. (3.47)

Definition 3.27. Let Ck(`) be as in Lemma 2.7. Define

C3,1(`) :=
3α2

` cosh(α`) + 7α` sinh(α`) + 2 cosh(α`)− 2

8
+ C0(`),

C3,2(`) :=
9α3

` sinh(α`) + (α4
` + 24α2

`) cosh(α`) + 18α` sinh(α`)

24
+ 2C2(`) + C1(`),

sch(`) := α2
` cosh(α`) + 2α` sinh(α`),

CL3 (`) := C3,1(`) + C3,2(`)−
sch(`)

2
,

CU3 (`) := 3C1(`) +
sch(`)

2
.

Lemma 3.28. Let S3(t, `) be as in Definition 3.16 and CL3 (`), CU3 (`) as in Definition 3.27. Then
for all t ≥ 2,

− CL3 (`)

t
<
S3(t, `)(− 3

2
t

) +
(−1)t(− 3

2
t

) α` sinh(α`) + 1− cosh(α`) <
CU3 (`)

t
. (3.48)

Definition 3.29. Let Ck(`) be as in Lemma 2.7. Define

C4,1(`) :=
α4
`

72
+

(α2
` + 6) cosh(α`) + 3α` sinh(α`)

16
,

CL4 (`) := C4,1(`)−
cosh(α`)

4
+

2C0(`)

3
,

CU4 (`) :=
(α2

` + 12) cosh(α`) + 3α` sinh(α`) + 12C0(`)

24
.

Lemma 3.30. Let S4(t, `) be as in Definition 3.18 and CL4 (`), CU4 (`) as in Definition 3.29. Then
for t ≥ 1,

− CL4 (`)

t2
<

S4(t, `)

(−1)t
(− 3

2
t

) − (−1)t(− 3
2
t

) sinh(α`)

α`
+

1

2t
cosh(α`) <

CU4 (`)

t2
. (3.49)
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3.3. Error bounds.

Lemma 3.31. For all k ∈ Z≥1, ` ∈ Z≥0, and n ≥ `+ 1,

(1 + 24`)k

(24n)k
<

∞∑
t=k

(1 + 24`)t

(24n)t
≤ 24(`+ 1)

23

(1 + 24`)k

(24n)k
. (3.50)

Proof. Equation (3.50) follows from
∞∑
t=k

(1 + 24`)t

(24n)t
=

(1 + 24`)k

(24n)k
24n

24n− 24`− 1
and 1 <

24n

24n− 24`− 1
≤ 24(`+ 1)

23
for all n ≥ `+1.

�

Lemma 3.32. For all n, k, s ∈ Z≥1, ` ∈ Z≥0, and n ≥ `+ 1,

1

(k + 1)s−
1
2

(1 + 24`)k

(24n)k
<
∞∑
t=k

(−1)t
(− 3

2
t

)
ts

(1 + 24`)t

(24n)t
<

12(`+ 1)

5(k + 1)s−
1
2

(1 + 24`)t

(24n)k
. (3.51)

Proof. We observe that

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

1

(24n)t
=
∞∑
t=k

(
2t+2
t+1

)
4t

t+ 1

2ts
(1 + 24`)t

(24n)t
. (3.52)

For all t ≥ 1,
4t

2
√
t
≤
(

2t

t

)
≤ 4t√

πt
.

From (3.52) we obtain

∞∑
t=k

√
t+ 1

ts
(1 + 24`)t

(24n)t
≤

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

1

(24n)t
≤ 4√

π

∞∑
t=k

√
t+ 1

2ts
(1 + 24`)t

(24n)t
. (3.53)

For all k ≥ 1,

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

(1 + 24`)t

(24n)t
≥

∞∑
t=k

√
t+ 1

ts
(1 + 24`)t

(24n)t
>

1

(k + 1)s−
1
2

(1 + 24`)k

(24n)k
(3.54)

and
∞∑
t=k

(−1)t
(− 3

2
t

)
ts

(1 + 24`)t

(24n)t
<

4√
π

∞∑
t=k

1

(t+ 1)s−
1
2

(1 + 24`)t

(24n)t

≤ 4
√
π(k + 1)s−

1
2

∞∑
t=k

(1 + 24`)t

(24n)t

<
4 · 24(`+ 1)

23 ·
√
π

1

(k + 1)s−
1
2

(1 + 24`)k

(24n)k
(by (3.50)).

<
12

5

(`+ 1)

(k + 1)s−
1
2

1

(24n)k
. (3.55)

Equations (3.54) and (3.55) imply (3.51). �

Lemma 3.33. For n ∈ Z≥1, k, ` ∈ Z≥0, and n ≥ 4`+ 1,

0 <
∞∑
t=k

(
−3

2

t

)
(−1)t(1 + 24`)t

(24n)t
< 4
√

2

√
k + 1(1 + 24`)k

(24n)k
. (3.56)



16 K. BANERJEE

Proof. Setting (n, s) 7→ (
24n

24`+ 1
, 2) in (2.2), it follows that for all n ≥ 4`+ 1,

0 <
∞∑
t=k

(
−3

2

t

)
(−1)t

(24n)t
< 4
√

2

√
k + 1(1 + 24`)k

(24n)k
.

�

Definition 3.34. Let CL1 (`) and CU1 (`) be as in Definition 3.23. Then for all k ≥ 1 and ` ≥ 0,
define

L1(k, `) :=

(
cosh(α`)−

6α` sinh(α`)(`+ 1)

5
√
k + 1

− 12(`+ 1)

5(k + 1)3/2
CL1 (`)

)(√
1 + 24`

24n

)2k

and

U1(k, `) :=

(
24(`+ 1) cosh(α`)

23
− α` sinh(α`)

2
√
k + 1

+
12(`+ 1)

5(k + 1)3/2
CU1 (`)

)(√
1 + 24`

24n

)2k

.

Lemma 3.35. Let L1(k, `) and U1(k, `) be as in Definition 3.34. Let ge,1(t, `) be as in Definition
3.12. Then for all k ∈ Z≥1 and n ≥ 4`+ 1,

L1(k, `)
( 1√

n

)2k
<
∞∑
t=k

ge,1(t, `)
( 1√

n

)2t
< U1(k, `)

( 1√
n

)2k
. (3.57)

Proof. From (3.26) and (3.46), it follows that for t ≥ 1,

cosh(α`)−
(−1)t

(− 3
2
t

)
2t

α` sinh(α`)−
(−1)t

(− 3
2
t

)
t2

CL1 (`) <
( 24

1 + 24`

)t
ge,1(t) = 1 + S1(t, `)

< cosh(α`)−
(−1)t

(− 3
2
t

)
2t

α` sinh(α`) +
(−1)t

(− 3
2
t

)
t2

CU1 (`).

(3.58)

Applying (3.50) and (3.51) with s = 1 and 2, respectively, to (3.58), we obtain (3.57). �

Definition 3.36. Let CL2 (`) and CU2 (`) be as in Definition 3.25. For all k ≥ 1 and ` ≥ 0, define

L2(k, `) :=

(
−24(`+ 1) cosh(α`)

23
− 12(`+ 1)

5
√
k + 1

CU2 (`)

)(√
1 + 24`

24

)2k

and

U2(k, `) :=

(
− cosh(α`) +

4
√

2 sinh(α`)

α`

√
k + 1 +

12(`+ 1)

5
√
k + 1

CL2 (`)

)(√
1 + 24`

24

)2k

.

Lemma 3.37. Let L2(k, `) and U2(k, `) be as in Definition 3.36. Let ge,2(t, `) be as in Definition
3.14. Then for all k ∈ Z≥1 and n ≥ 4`+ 1,

L2(k, `)
( 1√

n

)2k
<
∞∑
t=k

ge,2(t, `)
( 1√

n

)2t
< U2(k, `)

( 1√
n

)2k
. (3.59)
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Proof. From (3.31) and (3.47), it follows that for t ≥ 1,

− cosh(α`) + (−1)t
(
−3

2

t

)
sinh(α`)

α`
−

(−1)t
(− 3

2
t

)
t

CU2 (`) <
(1 + 24`

24

)t
ge,2(t, `) = (−1)t−1S2(t, `)

< − cosh(α`) + (−1)t
(
−3

2

t

)
sinh(α`)

α`
+

(−1)t
(− 3

2
t

)
t

CL2 (`).

(3.60)

Applying (3.50), (3.51) with s = 1 and (3.56) to (3.60), we get (3.59). �

Definition 3.38. Let CL3 (`) and CU3 (`) be as in Definition 3.27. For all k ≥ 1 and ` ≥ 0, define

L3(k, `) := −

(
−6α` sinh(α`)

π
√

1 + 24`
+

24
√

2 cosh(α`)
√
k + 1

π
√

1 + 24`
+

72(`+ 1)

5π
√

1 + 24`

CU3 (`)√
k + 1

)(√
1 + 24`

24

)2k+1

and

U3(k, `) :=

(
6 · 24(`+ 1)

23π
√

1 + 24`
α` sinh(α`) +

72(`+ 1)

5π
√

1 + 24`

CL3 (`)√
k + 1

)(√
1 + 24`

24

)2k+1

.

Lemma 3.39. Let L3(k, `) and U3(k, `) be as in Definition 3.38. Let go,1(t, `) be as in Definition
3.16. Then for all k ∈ Z≥1 and n ≥ 4`+ 1,

L3(k, `)
( 1√

n

)2k+1

<
∞∑
t=k

go,1(t, `)
( 1√

n

)2t+1

< U3(k, `)
( 1√

n

)2k+1

. (3.61)

Proof. Define c1(t, `) := − 6

π
√

1 + 24`
(−1)t

(− 3
2
t

)
. From (3.35) and (3.48), it follows that for

t ≥ 2,

6α` sinh(α`)

π
√

1 + 24`
− 6 cosh(α`)

π
√

1 + 24`
(−1)t

(
−3

2

t

)
− 6CU3 (`)

π
√

1 + 24`

(−1)t
(− 3

2
t

)
t

<

(√
24

24`+ 1

)2t+1

go,1(t, `) = c1(t, `)

(
1 +

S3(t, `)(− 3
2
t

) )

<
6α` sinh(α`)

π
√

1 + 24`
− 6 cosh(α`)

π
√

1 + 24`
(−1)t

(
−3

2

t

)
+

6CL3 (`)

π
√

1 + 24`

(−1)t
(− 3

2
t

)
t

.

(3.62)

We observe that (3.62) also holds for t ∈ {0, 1}; see (3.35). Now, applying (3.50), (3.51) with
s = 1, and (3.56) to (3.62), we conclude the proof. �

Definition 3.40. Let CL4 (`) and CU4 (`) be as in Definition 3.29. For all k ≥ 1 and ` ≥ 0, define

L4(k, `) := −π
√

1 + 24`

6

(
−cosh(α`)

2
√
k + 1

+
24(`+ 1) sinh(α`)

23α`
+

12(`+ 1)CU4 (`)

5(k + 1)3/2

)(√
1 + 24`

24

)2k+1

and

U4(k, `) :=
π
√

1 + 24`

6

(
6(`+ 1) cosh(α`)

5
√
k + 1

− sinh(α`)

α`
+

12(`+ 1)CL4 (`)

5(k + 1)3/2

)(√
1 + 24`

24

)2k+1

.

Lemma 3.41. Let L4(k, `) and U4(k, `) be as in Definition 3.40. Let go,2(t, `) be as in Definition
3.18. Then for all k ∈ Z≥1 and n ≥ 4`+ 1,

L4(k, `)
( 1√

n

)2k+1

<
∞∑
t=k

go,2(t, `)
( 1√

n

)2t+1

< U4(k, `)
( 1√

n

)2k+1

. (3.63)
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Proof. Define c2(t, `) := −π
√

1 + 24`

6
(−1)t

(− 3
2
t

)
. From (3.39) and (3.49), it follows that for

t ≥ 1,

π
√

1 + 24` cosh(α`)

12

(−1)t
(− 3

2
t

)
t

− π
√

1 + 24` sinh(α`)

6α`
− π
√

1 + 24` CU4 (`)

6

(−1)t
(− 3

2
t

)
t2

<

(√
24

24`+ 1

)2t+1

go,2(t, `) = c2(t, `)
S4(t, `)

(−1)t
(− 3

2
t

)
<
π
√

1 + 24` cosh(α`)

12

(−1)t
(− 3

2
t

)
t

− π
√

1 + 24` sinh(α`)

6α`
+
π
√

1 + 24` CL4 (`)

6

(−1)t
(− 3

2
t

)
t2

.

(3.64)

Now, applying (3.50) and (3.51) with s = 1 and 2, respectively, to (3.64), we have (3.63). �

Definition 3.42. For k ≥ 1 and ` ≥ 0, define

n0(k, `) := max
k≥1,`≥0

{
(24`+ 1)2

16
,
(k + 3)(24`+ 1)

24

}
.

Definition 3.43. Let n0(k, `) be as in Definition 3.42. For k ≥ 1 and ` ≥ 0, define

L̂2(k, `) :=
1(

α0

√
24
)k
(

1− 1 + 24`

4
√
n0(k, l)

)
and Û2(k, `) :=

1(
α0

√
24
)k
(

1 +
k(1 + 24`)

3 · n0(k, l)

)
.

Lemma 3.44. Let L̂2(k, `), and Û2(k, `) be as in Definition 3.43. Let n0(k, `) be as in Definition
3.42. Then for all k ∈ Z≥1 and n > n0(k, `),

eπ
√

2n/3

4n
√

3

L̂2(k, `)
√
n
k

<

√
12 eµ(n−`)

24(n− `)− 1

1

µ(n− `)k
<
eπ
√

2n/3

4n
√

3

Û2(k, `)
√
n
k
. (3.65)

Proof. For all k ≥ 1 and ` ≥ 0, define

E(n, k, `) :=

√
12 eµ(n−`)

24(n− `)− 1

1

µ(n− `)k
, U(n, k, `) =

eπ
√

2n/3

4n
√

3

1
√
n
k

and

Q(n, k, `) :=
E(n, k, `)

U(n, k, `)
=
e
π
√

2n
3

(√
1− 1+24`

24n
−1
)

(
α0

√
24
)k (

1− 1 + 24`

24n

)− k+2
2
.

Using (2.3) with (m,n, s) 7→ (1, 24n, 24`+ 1), we obtain for all n ≥ 2`+ 1,

−1 + 24`

12n
<

√
1− 1

24n
− 1 =

∞∑
m=1

(
1/2

m

)
(−1)m

(24n)m
< 0,

and consequently for n ≥ n0(k, `),(
1− 1 + 24`

4
√
n0(k, `)

)
< e

−π(1+24`)

6
√
6n < e

π
√

2n
3

(√
1− 1

24n
−1
)
< 1. (3.66)

Therefore

1(
α0

√
24
)k(1− 1 + 24`

24n

)− k+2
2
(

1− 1

4
√
n0(k, `)

)
< Q(n, k, `) <

1(
α0

√
24
)k(1− 1 + 24`

24n

)− k+2
2
.

(3.67)
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We estimate
(

1− 1 + 24`

24n

)− k+2
2

by splitting it into two cases depending on whether k is even or

odd.
For k = 2r with r ∈ Z≥0:(

1− 1 + 24`

24n

)− k+2
2

=
(

1− 1 + 24`

24n

)−(r+1)

= 1 +
∞∑
j=1

(
−(r + 1)

j

)
(−1)j(1 + 24`)j

(24n)j
.

From (2.4) with (m, s, n) 7→ (1, r + 1, 24n
24`+1

), for all n > (r+1)(1+24`)
12

, we get

0 <
∞∑
j=1

(
−(r + 1)

j

)
(−1)j(1 + 24`)j

(24n)j
<

(r + 1)(24`+ 1)

12n
,

which is equivalent to

1 <
(

1− 1 + 24`

24n

)− k+2
2
< 1 +

(k + 2)(24`+ 1)

24n
for all n > n0(k, `). (3.68)

For k = 2r + 1 with r ∈ Z≥0:(
1− 1 + 24`

24n

)− k+2
2

=
(

1− 1 + 24`

24n

)− 2r+3
2

= 1 +
∞∑
j=1

(
−2r+3

2

j

)
(−1)j(1 + 24`)j

(24n)j
.

Using (2.2) with (m, s, n) 7→ (1, r + 2,
24n

24`+ 1
), for all n > (r+2)(1+24`)

12
, we get

0 <
∞∑
j=1

(
−2`+3

2

j

)
(−1)j

(24n)j
<

(r + 2)(1 + 24`)

6n

which is equivalent to

1 <
(

1− 1 + 24`

24n

)− k+2
2
< 1 +

k(1 + 24`)

3n
for all n > n0(k, `). (3.69)

From (3.68) and (3.69), for all n > n0(k, `) it follows that

1 <
(

1− 1 + 24`

24n

)− k+2
2
< 1 +

k(1 + 24`)

3 · n0(k, `)
. (3.70)

From (3.67) and (3.70), we conclude the proof.
�

4. Inequalities for p(n− `)

Definition 4.1. Let (Li(k, `))1≤i≤4 and (Ui(k, `))1≤i≤4 be as in Definitions 3.34-3.40. Let Û2(k, `)
be as in Definition 3.43. Then for all w ∈ Z≥1 with dw/2e ≥ 1, define

L(w, `) := L1

(⌈w
2

⌉
, `
)

+ L2

(⌈w
2

⌉
, `
)

+ L3

(⌊w
2

⌋
, `
)

+ L4

(⌊w
2

⌋
, `
)
− Û2(w, `)

and

U(w, `) := U1

(⌈w
2

⌉
, `
)

+ U2

(⌈w
2

⌉
, `
)

+ U3

(⌊w
2

⌋
, `
)

+ U4

(⌊w
2

⌋
, `
)

+ Û2(w, `).

Lemma 4.2. Let ĝ(k) be as in Theorem 3.2 and n0(k, `) as in Definition 3.42. Let g(t, `)
be as in (3.45). Let L(w, `) and U(w, `) be as in Definition 4.1. If m ∈ Z≥1 and n >
max

{
1, n0(2m, `), ĝ(2m) + `

}
, then

eπ
√

2n/3

4n
√

3

(
2m−1∑
t=0

g(t, `)
√
n
t +

L(2m, `)
√
n
2m

)
< p(n− `) < eπ

√
2n/3

4n
√

3

(
2m−1∑
t=0

g(t, `)
√
n
t +

U(2m, `)
√
n
2m

)
.
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Proof. Following Definition 3.20 and from Lemma 3.21, we have

∞∑
t=0

g(t, `)
( 1√

n

)t
=

2m−1∑
t=0

g(t, `)
( 1√

n

)t
+

∞∑
t=2m

g(t, `)
( 1√

n

)t
=

2m−1∑
t=0

g(t, `)
( 1√

n

)t
+
∞∑
t=m

g(2t, `)
( 1√

n

)2t
+
∞∑
t=m

g(2t+ 1, `)
( 1√

n

)2t+1

=
2m−1∑
t=0

g(t, `)
( 1√

n

)t
+
∞∑
t=m

(ge,1(t, `) + ge,2(t, `))
( 1√

n

)2t
+
∞∑
t=m

(go,1(t, `) + go,2(t, `))
( 1√

n

)2t+1

.

(4.1)

Using Lemmas 3.35-3.41 by making the substitution k 7→ m, it follows that

L1(m, `) + L2(m, `)√
n
2m +

L3(m, `) + L4(m, `)√
n
2m+1 <

∞∑
t=2m

g(t, `)
( 1√

n

)t
<

U1(m, `) + U2(m, `)√
n
2m +

U3(m, `) + U4(m, `)√
n
2m+1 .

(4.2)

Moreover, by Lemma 3.44 with k = 2m, it follows that

√
12 eµ(n−`)

24(n− `)− 1

1

µ(n− `)2m
<
eπ
√

2n/3

4n
√

3

Û2(2m, `)√
n
2m . (4.3)

Combining (4.2) and (4.3), and applying to Theorem 3.2, we conclude the proof. �

Lemma 4.3. Let ĝ(k) be as in Theorem 3.2 and n0(k, `) as in Definition 3.42. Let g(t, `)
be as in Equation (3.45). Let L(w, `) and U(w, `) be as in Definition 4.1. If m ∈ Z≥0 and
n > max

{
1, n0(2m+ 1, `), ĝ(2m+ 1) + `

}
, then

eπ
√

2n/3

4n
√

3

(
2m∑
t=0

g(t, `)
√
n
t +

L(2m+ 1, `)
√
n
2m+1

)
< p(n− `) < eπ

√
2n/3

4n
√

3

(
2m∑
t=0

g(t, `)
√
n
t +

U(2m+ 1, `)
√
n
2m+1

)
.

Proof. The proof is analogous to the proof of Lemma 4.2. �

Definition 4.4. Let g(t, `) be as in (3.45), L(w, `), U(w, `) as in Definition 4.1. If w ∈ Z≥1
with dw/2e ≥ 1, define

Ln(w, `) :=
w−1∑
t=0

g(t, `)
( 1√

n

)t
+
L(w, `)√

n
w and Un(w, `) :=

w−1∑
t=0

g(t, `)
( 1√

n

)t
+
U(w, `)√

n
w .

Theorem 4.5. Let ĝ(k) be as in Theorem 3.2 and n0(k, `) as in Definition 3.42. Let Ln(w, `)
and Un(w, `) be as in Definition 4.4. If w ∈ Z≥1 with dw/2e ≥ 1 and n > max{ĝ(w)+`, n0(w, `)},
then

eπ
√

2n/3

4n
√

3
Ln(w, `) < p(n− `) < eπ

√
2n/3

4n
√

3
Ln(w, `). (4.4)

Proof. Putting Lemmas 4.2 and 4.3 together, we obtain (4.4). �
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5. Proof of Theorems 1.5, 1.7, and 1.9

Proof of Theorem 1.5: To prove the lower bound of (1.16), it is equivalent to show that

p(n− 4)p(n) + 3p(n− 2)2 > 4

(
1 +

π2

16(n− 3)3
− 6

(n− 3)7/2

)
p(n− 3)p(n− 1). (5.1)

Since 1 +
π2

16n3
− 5

n7/2
> 1 +

π2

16(n− 3)3
− 6

(n− 3)7/2
for all n ≥ 5, it is enough to show that

p(n− 4)p(n) + 3p(n− 2)2 > 4

(
1 +

π2

16n3
− 5

n7/2

)
p(n− 3)p(n− 1). (5.2)

Choosing w = 12 and applying Theorem 4.5, for all n ≥ 2329, we have

p(n− 4)p(n) + 3p(n− 2)2 >

(
eπ
√

2n/3

4n
√

3

)2(
Ln(12, 4) · Ln(12, 0) + 3 L2

n(12, 2)

)
, (5.3)

and

p(n− 3)p(n− 1) <

(
eπ
√

2n/3

4n
√

3

)2(
Un(12, 3) · Un(12, 1)

)
. (5.4)

Therefore, it suffices to show that

Ln(12, 4) · Ln(12, 0) + 3 L2
n(12, 2) > 4

(
1 +

π2

16n3
− 5

n7/2

)
Un(12, 3) · Un(12, 1). (5.5)

Using the Reduce1 command within Mathematica, it can be easily checked that for all n ≥ 625,
(5.5) holds.

Similarly, to prove the upper bound of (1.16), it is equivalent to prove that

p(n− 4)p(n) + 3p(n− 2)2 < 4

(
1 +

π2

16(n− 3)3

)
p(n− 3)p(n− 1). (5.6)

Since 1 +
π2

16n3
< 1 +

π2

16(n− 3)3
for all n ≥ 4, it is enough to show that

p(n− 4)p(n) + 3p(n− 2)2 < 4

(
1 +

π2

16n3

)
p(n− 3)p(n− 1). (5.7)

Choosing w = 12 and applying Theorem 4.5, for all n ≥ 2329, we have

p(n− 4)p(n) + 3p(n− 2)2 <

(
eπ
√

2n/3

4n
√

3

)2(
Un(12, 4) · Un(12, 0) + 3 U2

n(12, 2)

)
, (5.8)

and

p(n− 3)p(n− 1) >

(
eπ
√

2n/3

4n
√

3

)2(
Ln(12, 3) · Ln(12, 1)

)
. (5.9)

Therefore, it suffices to show that

Un(12, 4) · Un(12, 0) + 3 U2
n(12, 2) < 4

(
1 +

π2

16n3

)
Ln(12, 3) · Ln(12, 1). (5.10)

1Reduce uses cylindrical algebraic decomposition for polynomials over real domains which is based on Collin’s
algorithm [10]. Cylindrical Algebraic Decomposition (CAD) is an algorithm which proves that a given polynomial
in several variables is positive (non-negative).
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In a similar way as stated before, it can be easily checked that for all n ≥ 784, (5.5) holds. We
conclude the proof of Theorem 1.5 by verifying the inequality (1.16) for all 218 ≤ n ≤ 2328 with
Mathematica. �

Proof of Theorem 1.7: To prove the lower bound of (1.17), it is equivalent to show that

p(n− 2)3 + p(n− 4)p(n− 1)2 + p(n− 3)2p(n) >(
1 +

π3

72
√

6(n− 3)9/2
− 8

(n− 3)5

)(
2p(n− 3)p(n− 2)p(n− 1) + p(n− 4)p(n− 2)p(n)

)
.

(5.11)

As 1 +
π3

72
√

6n9/2
− 7

n5
> 1 +

π3

72
√

6(n− 3)9/2
− 8

(n− 3)5
for all n ≥ 4, it suffices to show that

p(n− 2)3 + p(n− 4)p(n− 1)2 + p(n− 3)2p(n) >(
1 +

π3

72
√

6n9/2
− 7

n5

)(
2p(n− 3)p(n− 2)p(n− 1) + p(n− 4)p(n− 2)p(n)

)
.

(5.12)

Choosing w = 15 and applying Theorem 4.5, for all n ≥ 4047, we have

p(n− 2)3 + p(n− 4)p(n− 1)2 + p(n− 3)2p(n) >(
eπ
√

2n/3

4n
√

3

)3(
L3
n(15, 2) + Ln(15, 4) · L2

n(15, 1) + L2
n(15, 3) · Ln(15, 0)

)
,

(5.13)

and

2p(n− 3)p(n− 2)p(n− 1) + p(n− 4)p(n− 2)p(n) <(
eπ
√

2n/3

4n
√

3

)3(
2 · Un(15, 3) · Un(15, 2) · Un(15, 1) + Un(15, 4) · Un(15, 2) · Un(15, 0)

)
.

(5.14)

Similar to the proof of (5.5), it can be easily checked that for all n ≥ 1444,

L3
n(15, 2) + Ln(15, 4) · L2

n(15, 1) + L2
n(15, 3) · Ln(15, 0) >(

1 +
π3

72
√

6n9/2
− 7

n5

)(
2 · Un(15, 3) · Un(15, 2) · Un(15, 1) + Un(15, 4) · Un(15, 2) · Un(15, 0)

)
(5.15)

Analogously, one can prove that for all n ≥ 2916,

U3
n(15, 2) + Un(15, 4) · U2

n(15, 1) + U2
n(15, 3) · Un(15, 0) <(

1 +
π3

72
√

6n9/2

)(
2 · Ln(15, 3) · Ln(15, 2) · Ln(15, 1) + Ln(15, 4) · Ln(15, 2) · Ln(15, 0)

)
,

(5.16)

which is sufficient to prove the upper bound of (1.17). We conclude the proof of Theorem 1.7
by verifying the inequality (1.17) for all 244 ≤ n ≤ 4047 with Mathematica. �

Proof of Theorem 1.9: Corresponding to (1.18), we show(
1 +

π√
24n3/2

)(
p(n− 2)p(n− 1)− p(n− 3)p(n)

)2
>

4
(
p(n− 2)2 − p(n− 3)p(n− 1)

)(
p(n− 1)2 − p(n− 2)p(n)

)
,

(5.17)
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and

4
(
p(n− 2)2 − p(n− 3)p(n− 1)

)(
p(n− 1)2 − p(n− 2)p(n)

)
>(

1 +
π√

24n3/2
− 2

n2

)(
p(n− 2)p(n− 1)− p(n− 3)p(n)

)2
.

(5.18)

Applying Theorem 4.5 with w = 13, and following the similar method worked out in the proof
of Theorem 1.5, we obtain (1.18) for all n ≥ 2842. For 115 ≤ n ≤ 2841, we verified (1.18)
numerically with Mathematica. �

6. Appendix

In the proofs of Lemmas 3.24-3.30, we follow the same notations and the proof strategy as in
[3, Subsection 5.2].

Proof of Lemma 3.24: Following Definition 3.12, write S1(t, `) as follows:

S1(t, `) =
t∑

u=1

(−1)uα2u
`

(2u− 1)!

t∑
s=u

(−1)s

s

(1

2
− s
)
s+1

(−s)u
(s+ u)!

=
t∑

u=1

(−1)uα2u
`

(2u− 1)!

t−u∑
s=0

(−1)s+u

s+ u

(1

2
− s− u

)
s+u+1

(−s− u)u
(s+ 2u)!︸ ︷︷ ︸

=:S1(t,u)

.

From [3, Eqn. (5.6)], we have

S1(t, u) = (−1)t
(
−3

2

t

)
(−1)u

2u
A1(t, u), (6.1)

where

A1(t, u) =
t(−t)u(−1)u

(1 + 2t)(t+ u)(t)u
−

(
(−1)t+1(− 3

2
t

) +
1

(1 + 2t)
+

2t

1 + 2t

u∑
i=1

(−t)i(−1)i

(t+ i)(t)i

)
.

Now by Lemmas 2.3 and 2.4,

(−1)t(− 3
2
t

) − 1

4t2
− u

t
− u2

2t2
≤ A1(t, u) ≤ (−1)t(− 3

2
t

) +
1

4t2
+ u
( 2

3t2
− 1

t

)
+
u2

2t2
+
u3

3t2
. (6.2)

Equations (6.1) and (6.1), it follows that

S1(t, `) = (−1)t
(
−3

2

t

) t∑
u=1

α2u
` A1(t, u)

(2u)!
. (6.3)

Applying (6.2) to (6.3), we get the following lower bound of S1(t, `),

S1(t, `)

(−1)t
(− 3

2
t

) ≥ ((−1)t(− 3
2
t

) − 1

4t2

)
t∑

u=1

α2u
`

(2u)!
− 1

t

t∑
u=1

uα2u
`

(2u)!
− 1

2t2

t∑
u=1

u2α2u
`

(2u)!

≥

(
(−1)t(− 3

2
t

) − 1

4t2

)(
∞∑
u=0

α2u
`

(2u)!
− 1−

∞∑
u=t+1

α2u
`

(2u)!

)
− 1

t

∞∑
u=0

uα2u
`

(2u)!
− 1

2t2

∞∑
u=0

u2α2u
`

(2u)!
.

>

(
(−1)t(− 3

2
t

) − 1

4t2

)(
∞∑
u=0

α2u
`

(2u)!
− 1− C0(`)

t2

)
− 1

t

∞∑
u=0

uα2u
`

(2u)!
− 1

2t2

∞∑
u=0

u2α2u
`

(2u)!
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by Lemma 2.7 and

(−1)t(− 3
2
t

) >
1

4t2
for all t ≥ 1

)

>

(
(−1)t(− 3

2
t

) − 1

4t2

)(
cosh(α`)− 1

)
− C0(`)

t2
− α` sinh(α`)

2t

− 1

2t2

(α2
`

4
cosh(α`) +

α`
4

sinh(α`)
)

(
by Lemma 2.5 and

(−1)t(− 3
2
t

) − 1

4t2
< 1 for all t ≥ 1

)

=
(−1)t(− 3

2
t

) (cosh(α`)− 1)− α` sinh(α`)

2t
− CL1 (`)

2t2

(
by Definition 3.23

)
. (6.4)

For the upper bound estimation, we have for all t ≥ 1,

S1(t, `)

(−1)t
(− 3

2
t

)
≤ (−1)t(− 3

2
t

) t∑
u=1

α2u
`

(2u)!
− 1

t

t∑
u=1

uα2u
`

(2u)!
+

1

4t2

t∑
u=1

α2u
`

(2u)!
+

2

3t2

t∑
u=1

uα2u
`

(2u)!
+

1

2t2

t∑
u=1

u2α2u
`

(2u)!
+

1

3t2

t∑
u=1

u3α2u
`

(2u)!

≤ (−1)t(− 3
2
t

) (cosh(α`)− 1)− 1

2t
α` sinh(α`) +

C1(`)

t3
+

1

4t2
cosh(α`) +

1

3t2
α` sinh(α`)

+
1

2t2

(
α2
`

4
cosh(α`) +

α`
4

sinh(α`)

)
+

1

3t2

(
3α2

`

8
cosh(α`) +

α`(α
2
` + 1)

8
sinh(α`)

)
(

by Lemmas 2.5 and 2.7
)

≤ (−1)t(− 3
2
t

) (cosh(α`)− 1)− 1

2t
α` sinh(α`) +

CU1 (`)

t2

(
by Definition 3.23

)
. (6.5)

Combining (6.4) and (6.5), we arrive at (3.46) which concludes the proof. �
Proof of Lemma 3.26: Following Definition 3.14, write S2(t, `) as follows:

S2(t, `) =
t−1∑
u=0

(−1)uα2u
`

(2u)!

t−1∑
s=u

(1

2
− s
)
s+1

(
−3

2

t− s− 1

)
(−s)u

(s+ u+ 1)!

=
t−1∑
u=0

(−1)uα2u
`

(2u)!

t−u−1∑
s=0

(1

2
− s− u

)
s+u+1

(
−3

2

t− s− u− 1

)
(−s− u)u

(s+ 2u+ 1)!︸ ︷︷ ︸
=:S2(t,u)

. (6.6)

From [3, Eqn. (5.13)], we have

S2(t, u) =

(
−3

2

t

)
(−1)u+1

(
A2,1(t, u) + A2,2(t, u)

)
, (6.7)

where

A2,1(t, u) =
2t(t− u)(−t)u(−1)u

(1 + 2t)(1 + 2u)(t+ u)(t)u
and

A2,2(t, u) =
(−1)t+1(− 3

2
t

) +
1

1 + 2t
+

2t

1 + 2t

u∑
i=1

(−1)i(−t)i
(t+ i)(t)i

.
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Combining (6.6) and (6.7), we get

S2(t, `) = −
(
−3

2

t

)(
s2,1(t, `) + s2,2(t, `)

)
, (6.8)

where

s2,1(t, `) =
t−1∑
u=0

α2u
`

(2u)!
A2,1(t, u) and s2,2(t, `) =

t−1∑
u=0

α2u
`

(2u)!
A2,2(t, u). (6.9)

By Lemma 2.3, we have

1

1 + 2u
−
u2 + u+ 1

2

t(1 + 2u)
≤ A2,1(t, u) ≤ t− u

t(1 + 2u)
. (6.10)

Applying (6.10) into (6.9) we obtain

t−1∑
u=0

α2u
`

(2u+ 1)!
− 1

t

t−1∑
u=0

u2 + u+ 1
2

(2u+ 1)!
α2u
` ≤ s2,1(t) ≤

t−1∑
u=0

α2u
`

(2u+ 1)!
− 1

t

t−1∑
u=0

uα2u
`

(2u+ 1)!
,

and consequently,
∞∑
u=0

α2u
`

(2u+ 1)!
−
∞∑
u=t

α2u
`

(2u+ 1)!
− 1

t

∞∑
u=0

u2 + u+ 1
2

(2u+ 1)!
α2u
` ≤ s2,1(t, `) ≤

∞∑
u=0

α2u
`

(2u+ 1)!
− 1

t

(
∞∑
u=0

uα2u
`

(2u+ 1)!
−
∞∑
u=t

uα2u
`

(2u+ 1)!

)
.

(6.11)

By Lemma 2.7, it follows that
∞∑
u=t

α2u
`

(2u+ 1)!
≤ 2C1(`)

α2
` t

2
and

∞∑
u=t

uα2u
`

(2u+ 1)!
≤ 2C2(`)

α2
` t

2
. (6.12)

Applying (6.12) into (6.11) and by Lemma 2.5, we obtain

sinh(α`)

α`
−
CL2,1(`)

t
≤ s2,1(t, `) ≤

sinh(α`)

α`
+
CU2,1(`)

t
. (6.13)

Next we apply Lemma 2.4 and get

2u+ 1

2t
− 4u3 + 6u2 + 8u+ 3

12t2
+

(−1)t+1(− 3
2
t

) ≤ A2,2(t, u) ≤ 2u+ 1

2t
+

(−1)t+1(− 3
2
t

) . (6.14)

Plugging (6.14) into (6.9), we obtain

1

2t

∞∑
u=0

(2u+ 1)α2u
`

(2u)!
− 1

2t

∞∑
u=t

(2u+ 1)α2u
`

(2u)!
+

(−1)t+1(− 3
2
t

) ∞∑
u=0

α2u
`

(2u)!
− 1

12t2

∞∑
u=0

p3(u)α2u
`

(2u)!

≤ s2,2(t, `) ≤
1

2t

∞∑
u=0

(2u+ 1)α2u
`

(2u)!
+

(−1)t+1(− 3
2
t

) ∞∑
u=0

α2u
`

(2u)!
− (−1)t+1(− 3

2
t

) ∞∑
u=t

α2u
`

(2u)!
,

(6.15)

where p3(u) = 4u3 + 6u2 + 8u+ 3. By Lemma 2.7 we obtain
∞∑
u=t

α2u
`

(2u)!
≤ 4C2(`)

α2
` t

2
and

∞∑
u=t

(2u+ 1)α2u
`

(2u)!
≤ 8C3(`)

α2
` t

2
. (6.16)

Note that for all t ≥ 1,
(−1)t(− 3

2
t

) =
22t+1

t+ 1

1(
2t+2
t+1

) < 1. (6.17)
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Combining (6.16) with (6.17) and applying Lemma 2.7 to (6.15), we obtain

(−1)t+1(− 3
2
t

) cosh(α`)+
csh(α`)

2t
−C2,2(α`)

t2
≤ s2,2(t, `) ≤

(−1)t+1(− 3
2
t

) cosh(α`)+
csh(α`)

2t
+

4C2(`)

α2
` t

2
. (6.18)

Applying (6.13) and (6.18) to (6.8), we obtain (3.47). �
Proof of Lemma 3.28: Recalling Definition 3.16, rewrite S3(t, `) as follows:

S3(t, `) =
t∑

u=1

(−1)uα2u
`

(2u− 1)!

t∑
s=u

1

s

(1

2
− s
)
s+1

(
−3

2

t− s

)
(−s)u

(s+ u)!

=
t∑

u=1

(−1)uα2u
`

(2u− 1)!

t−u∑
s=0

1

s+ u

(1

2
− s− u

)
s+u+1

(
−3

2

t− s− u

)
(−s− u)u
(s+ 2u)!︸ ︷︷ ︸

=:S3(t,u)

. (6.19)

From [3, Eqn. (5.34)], we have

S3(t, u) =

(
−3

2

t

)
(−1)u

(
A3,1(t, u) + A3,2(t, u)

)
, (6.20)

where

A3,1(t, u) =
t(1 + 2t− 2u)(−t)u(−1)u

2(1 + 2t)u(t+ u)(t)u

and

A3,2(t, u) =
(−1)t+1(− 3

2
t

) +
1

1 + 2t
+

2t

1 + 2t

u∑
i=1

(−t)i(−1)i

(t+ i)(t)i
.

From (6.19) and (6.20), it follows that

S3(t, `) =

(
−3

2

t

)(
s3,1(t) + s3,2(t)

)
, (6.21)

with

s3,1(t, `) =
t∑

u=1

α2u
`

(2u− 1)!
A3,1(t, u) and s3,2(t, `) =

t∑
u=1

α2u
`

(2u− 1)!
A3,2(t, u). (6.22)

By Lemma 2.3, we have

−
3u2 + 2u+ 1

2

4ut
≤ A3,1(t, u)− 1

2u
≤ 0. (6.23)

Applying (6.23) into (6.22) and by Lemmas 2.7 and 2.5, we obtain

− C3,1(`)

t
≤ s3,1(t, `) + 1− cosh(α`) ≤ 0. (6.24)

Now, by Lemma 2.4, we obtain

− 4u3 + 6u2 + 8u+ 3

12t2
≤ A3,2(t, u) +

(−1)t(− 3
2
t

) − 2u+ 1

2t
≤ 0. (6.25)

Applying (6.25) to (6.22), it follows that

s3,2(t, `) +
(−1)t(− 3

2
t

) ∞∑
u=1

α2u
`

(2u− 1)!
− 1

2t

∞∑
u=1

(2u+ 1)α2u
`

(2u− 1)!
≤ (−1)t(− 3

2
t

) ∞∑
u=t+1

α2u
`

(2u− 1)!
, (6.26)
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and

s3,2(t, `) +
(−1)t(− 3

2
t

) ∞∑
u=1

α2u
`

(2u− 1)!
− 1

2t

∞∑
u=1

(2u+ 1)α2u
`

(2u− 1)!
≥

− 1

12t2

∞∑
u=1

p3(u)α2u
`

(2u− 1)!
− 1

2t

∞∑
u=t+1

(2u+ 1)α2u
`

(2u− 1)!
,

(6.27)

where p3(u) = 4u3 + 6u2 + 8u+ 3 is as in (6.15). By Lemma 2.7 we obtain

∞∑
u=t+1

α2u
`

(2u− 1)!
≤ 2C1(`)

t2
and

∞∑
u=t+1

(2u+ 1)α2u
`

(2u− 1)!
≤ 4C2(`) + 2C1(`)

t2
. (6.28)

Applying (6.28) and Lemma Lemma 2.5 into (6.26) and (6.27), we have

− C3,2(`)

t2
≤ s3,2(t, `) +

(−1)t(− 3
2
t

) α` sinh(α`)−
1

2t
sch(α`) ≤

3C1(`)

t2
. (6.29)

Applying (6.24) and (6.29) into (6.21) we arrive at (3.48). �
Proof of Lemma 3.30: Following Definition 3.18, write S4(t, `) as follows:

S4(t, `) =
t∑

u=0

(−1)uα2u
`

(2u)!

t∑
s=u

(−1)s
(1

2
− s
)
s+1

(−s)u
(s+ u+ 1)!

=
t∑

u=0

(−1)uα2u
`

(2u)!

t−u∑
s=0

(−1)s+u
(1

2
− s− u

)
s+u+1

(−s− u)u
(s+ 2u+ 1)!︸ ︷︷ ︸

=:S4(t,u)

. (6.30)

From [3, Eqn. (5.53)], we have

S4(t, u) =

(
−3

2

t

)
(−1)u+t

(
A4,1(t, u) + A4,2(t, u)

)
, (6.31)

where

A4,1(t, u) =
t(−t)u(−1)u

2(1 + 2t)(t+ u)(t+ u+ 1)(t)u

and

A4,2(t, u) =
1

1 + 2u

(
(−1)t(− 3

2
t

) − 1

1 + 2t
− 2t

1 + 2t

u∑
i=1

(−1)i(−t)i
(t+ i)(t)i

)
.

From (6.30) and (6.31) it follows that

S4(t, `) = (−1)t
(
−3

2

t

)(
s4,1(t, `) + s4,2(t, `)

)
, (6.32)

where

s4,1(t, `) =
t∑

u=0

α2u
`

(2u)!
A4,1(t, u) and s4,2(t) :=

t∑
u=0

α2u
`

(2u)!
A4,2(t). (6.33)

Lemmas 2.2 and 2.3 imply that

1

4t2

(
1−

u2 + u+ 3
2

t

)
≤ A4,1(t, u) ≤ 1

4t2
. (6.34)
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From (6.34) and (6.33), we obtain

1

4t2

∞∑
u=0

α2u
`

(2u)!
− 1

4t2

∞∑
u=t+1

α2u
`

(2u)!
− 1

4t3

∞∑
u=0

(u2 + u+ 3
2
)α2u

`

(2u)!
≤ s4,1(t, `) ≤

1

4t2

∞∑
u=0

α2u
`

(2u)!
. (6.35)

Applying Lemmas 2.7 and 2.5 to (6.35), it follows that

1

4t2
cosh(α`)−

C4,1(`)

t3
≤ s4,1(t, `) ≤

1

4t2
cosh(α`). (6.36)

Now, by Lemma 2.4, we obtain

0 ≤ A4,2(t, u)− 1

1 + 2u

(
(−1)t(− 3

2
t

) − 2u+ 1

2t

)
≤ 1

1 + 2u

p3(u)

12t2
, (6.37)

where p3(u) is as in (6.15). Plugging (6.37) into (6.33), it follows that

−(−1)t(− 3
2
t

) ∞∑
u=t+1

α2u
`

(2u+ 1)!
≤s4,2(t, `)−

∞∑
u=0

α2u
`

(2u+ 1)!

(
(−1)t(− 3

2
t

) − 2u+ 1

2t

)
≤

1

12t2

∞∑
u=0

p3(u)α2u
`

(2u+ 1)!
+

1

2t

∞∑
u=t+1

(2u+ 1)α2u
`

(2u+ 1)!
.

(6.38)

Using Lemma 2.7, we get
∞∑

u=t+1

α2u
`

(2u+ 1)!
≤ C0(`)

t2
and

∞∑
u=t+1

(2u+ 1)α2u
`

(2u+ 1)!
=

∞∑
u=t+1

α2u
`

(2u)!
≤ C0(`)

t2
. (6.39)

Plugging (6.39) to (6.38) and using Lemma 2.5, we finally obtain

− 2C0(`)

3t2
≤ s4,2(t, `)−

(−1)t(− 3
2
t

) sinh(α`)

α`
+

cosh(α`)

2t
≤ (α2 + 6) cosh(α`) + 3α` sinh(α`) + 12C0(`)

24t2
.

(6.40)
We conclude the proof by combining (6.36), (6.40), and (6.32). �

7. Conclusion

We conclude this paper with a list of possible ideas emerged from our work.

(1) Double Turán inequality (also known as 2-log-concavity) for the partition function has
been studied independently in [22, Theorem 1.6] and [20, Page 128]. Similar to the proofs
of Theorems 1.5-1.9, (p(n))n≥1873 is 2-log-concave follows directly from Theorem 4.5 by
choosing w = 11 and with Mathematica, we confirm that (p(n))n≥221 is 2-log-concave.

(2) The partition function p(n) satisfies shifted Laguerre-Pólya inequality of order m if

Lm(p(n)) :=
1

2

2m∑
k=0

(−1)k+m
(

2m

k

)
p(n+ k)p(2m− k + n).

In [45], Wagner proved them-th order shifted Laguerre-Pólya inequalities for the partition
function as n → ∞. He proposed a conjecture for the cut offs (N(m))1≤m≤10 such that
for all n ≥ N(m), p(n) satisfies the m-th order shifted Laguerre-Pólya inequalities. Wang
and Yang [46] settled the case m = 2. Dou and Wang [14] gave an explicit bounds for
(N(m))3≤m≤10 and consequently, Wagner’s conjecture for m = 3 and 4 have been settled.

Applying Theorem 4.5, one can easily retrieve the result of Wang and Yang [46, The-
orem 2.1]. Moreover, it seems to be possible that we can trace N(m) for 3 ≤ m ≤ 10
using our set up. In spite of having Wagner’s proof on positivity of Lm(p(n)) as n→∞,
it would be interesting to ask for the growth of Lm(p(n)) as n→∞.



REFERENCES 29

(3) Recently, Gomez, Males, and Rolen [16] studied the positivity of ∆2
j(p(n)) := p(n) −

2p(n− j) + p(n− 2j) and consequently proved that Nk(m,n)−Nk(m+ 1, n) > 0, where
the k-rank function Nk(m,n) which counts the number of partitions of n into at least
(k − 1) successive Durfee squares with k-rank equal to m. One might retrieve their
results from Theorem 4.5 by taking appropriate w. More generally, we believe that one
can come up with the asymptotic expansion of ∆r

j(p(n)) for any positive integer r, which
would finally complete Odlyzko’s work [33] on ∆rp(n) by not only proving the positivity
phenomena but also shows its asymptotic growth.

(4) Partition inequalities arising from truncated theta series that has been documented in [1,
2, 15] among many research works done by Andrews, Guo, Merca, Yee, Zeng, to name a
few. In spite of having combinatorial proofs of such inequalities for p(n), it seems that
no such inequalities have been traced via the analytic approach. Theorem 4.5 might
play a key role in proving these inequalities. More generally, given non-trivial linear
homogeneous partition inequalities considered by Merca and Katriel [23, 30], it would
be nice to develop an algorithm by making an appropriate choice for w and applying
Theorem 4.5 so as to decide whether such a given inequality holds or not.

(5) Starting from the estimates of Dawsey and Masri [11] on Andrews’ spt function, one can
follow the similar method as worked out in this paper to settle all the conjectures on
inequalities for spt function pertaining to the invariants of a quartic binary form given
by Chen [7].
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[40] J. Schur and G. Pólya. Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen
Gleichungen. J. Reine Angew. Math., 144 (1914), pp. 89–113.

[41] R. P. Stanley. Log-concave and unimodal sequences in algebra, combinatorics, and geom-
etry. Ann. New York Acad. Sci., 576 (1989), pp. 500–535.

[42] B. Sturmfels. Algorithms in invariant theory. Springer Science and Business Media, 2008.
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