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1. Introduction

A partition of a positive integer n is a weakly decreasing sequence (A1, Az, ..., A)
of positive integers such that A\; + Ay + --- + A\ = n. Let p(n) denote the number of
partitions of n. Hardy and Ramanujan [12] studied the asymptotic growth of p(n) as
follows:

1 /3
~ —em™V2n - 0. 1.1
p(n) 4n\/§6 as n — 0o (1.1)

Rademacher [18,20,19] improved the work of Hardy and Ramanujan and found a con-
vergent series for p(n) and Lehmer’s [14,13] study was on estimation for the remainder
term of the series for p(n). The Hardy-Ramanujan-Rademacher formula reads

V12 X Ag(n) kO k
= _ 1(n) /K " en(n)/k
p(n) 2471—1,; Ny 1 ) e + 1+M(n) e + Ra(n, N),
(1.2)
where
,u(n):%\/m, Ap(n) = Z p—2minh/k+mis(h,k)
h mod k
(h,k)=1
with
<~ pu; 1\[(ha (hu 1
s, k) = (E‘bJ‘ﬁ)(?ﬂﬂ—i)
p=1
and
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A sequence {ay, }n>0 is said to satisfy the Turdn inequalities or to be log-concave, if
ai — Gp-10p4+1 >0 forall n> 1. (1.4)

Independently Nicolas [16] and DeSalvo and Pak [8, Theorem 1.1] proved that the par-
tition function p(n) is log-concave for all n > 26, conjectured by Chen [5]. DeSalvo and
Pak [8, Theorem 4.1] also proved that for all n > 2,

p(n—1) 1 p(n)
p(n) (1 + E) ” p(n+1)’ (1:9)

conjectured by Chen [5]. Further, they improved the rate of decay in (1.5) and proved
that for all n > 7,

n—1 240 n
p( )<1_%(24an2> > péj*}1)7 (1.6)

see [8, 4.2]. DeSalvo and Pak [8] finally came up with the conjecture that the coefficient
of 1/n/? in (1.6) can be improved to 7/v/24; i.e., for all n > 45,

pn—1) p(n)

p() (1 ! mn3/2> 7 pn 1)

(1.7)

which was proved by Chen, Wang and Xie [7, Sec. 2]. Recently, the author along with
Paule, Radu, and Zeng [3, Theorem 7.6] confirmed that the coefficient of 1/n/? is indeed
m/+/24, which is the optimal; i.e., they proved that for all n > 120,

p(n)? > (1 + m - n12>p(n —p(n+1). (1.8)

DeSalvo and Pak [8, Theorem 5.1] also established that p(n) satisfies the strong log-
concavity property; i.e., for all n > m > 1,

p(n)? — p(n —m)p(n +m) > 0. (1.9)

Ono and Bessenrodt [4] extended (1.9) by considering the border case m = n. This leads
to unveil multiplicative properties of the partition function encoded in the following
theorem.

Theorem 1.1. [/, Theorem 2.1] If a and b are integers with a,b > 1 and a+b > 8, then

p(a)p(b) > pla+b), (1.10)

with equality holding only for {a,b} = {2,7}.
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Let A be the forward difference operator define by Aa(n) := a(n + 1) — a(n) for
a sequence (a(n))p>o. It is clear that the log-concavity property for p(n) is equivalent
to say that —A2logp(n — 1) > 0 for all n > 26. Equations (1.7) and (1.8) show the
asymptotic growth of —A2logp(n — 1). Chen, Wang, and Xie proved the positivity of
(—=1)""LA" log p(n) along with estimation of an upper bound.

Theorem 1.2. [7, Thm. 3.1 and 4.1] For each r > 1, there exists a positive integer n(r)
such that for all m > n(r),

1 A m /1 1
0<(-1) A"logp(n) < log(l + %(§)T1m> (1.11)

The above inequalities can be rephrased in the following form:

T T
H (n+s;) H (n+m;), (1.12)
i=1 i=1

which we call multiplicative inequalities for the partition function. Instead of applying
the Hardy-Ramanujan-Rademacher formula (1.2) and Lehmer’s error bound (1.3) but
with different methodology for different inequalities for p(n) as done in [4,7,8,16], we will
see how one can prove all such multiplicative inequalities under a unified framework so
as to decide explicitly N(T'), such that for all n > N(T'), (1.12) holds. To prove (1.12),
it is equivalent to show

T T
Y logp(n+si) > > logp(n+17:), (1.13)

i=1 i=1

and therefore, an infinite family of inequalities for logarithm of the shifted version of
the partition function is a prerequisite, see Theorems 3.9 and 3.13. As an application of
Theorem 3.9, we shall complete Theorem 1.2 (see Theorems 4.9 and 4.10 below) in the
following aspects:

(1) by improving the lower bound in (1.11) to show that the rate of decay given in the
upper bound is the optimal one,

(2) for each r > 1, computation of n(r) by estimating error bound based on the minimal
choice of the truncation point w in Theorem 3.9,

(3) and a full asymptotic expansion for (—1)""1A” log p(n). This seems to be inaccessible
from Theorem 1.2 because a key tool in the proof was on the relations between the
higher order differences and derivatives (cf. Prop. 3.5, [7]) due tlo Odlyzko [117] which

™

only contributes to the main term in the expansion; i.e.,

WS
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Even having Theorem 3.13 in hand, in order to decide whether (1.12) holds or not,
there are two key factors remain unexplained. First, an explanation of the following
assumption

T T
Zs;” #* Zr:" for at least one m > Z>q, (1.14)

=1 i=1

and an appropriate choice of w, i.e., the truncation point as in Theorem 3.13. Now we
move on to see how these two factors are intricately connected through a classical prob-
lem in Diophantine equations known as the Prouhet-Tarry-Escott problem [9, Chapter
XXIV]. The problem originated in different guise from a letter of Goldbach [10] to Eu-
ler that dates back to 18 July, 1750. The Prouhet-Tarry—Escott problem asks for two

distinct tuples of integers (si, s2,...,s7) and (r1,72,...,rr) such that
T T T T
Zsf:z:rf, forall0 <k <m—1 and ZSZ"#ZTZ”
i=1 i=1 i=1 i=1
We write (sy1,...,57) = (r1,...,77) to denote a solution of the Prouhet-Tarry-Escott

problem. Recently, Merca and Katriel [15] connects the non-trivial linear homogeneous
partition inequalities with the Prouhet—Tarry—Escott problem. In brevity, we shall ex-
plain why the optimal choice of truncation point w = m + 1, with (sq,...,sr) z
(ri,...,rp) for a given (1.12) in Section 5.

The rest of the paper is organized as follows. In Section 2, we state preliminary lemmas
and theorems from the work of Paule, Radu, Zeng, and the author [3]. Section 3 presents a
detailed synthesis on derivation of inequalities for log p(n+s) for any non-negative integer
s that leads to the main result of this paper, see Theorem 3.13. As an application of
Theorem 3.13, we provide a full asymptotic expansion of (—1)""1A" log p(n) in Section 4.

In Section 5, we work out the steps to verify multiplicative inequalities for the partition
T

function. Section 6 is devoted to derive an infinite family of inequalities for H p(n+s;),

i=1
given in Theorem 6.9. Finally we conclude this paper with a short discussion on the
applications of Theorems 3.13 and 6.9.

2. Set up

Throughout this section, we follow the notations as in [3].

Definition 2.1 (Def. 5.1, [3]). For y € R, 0 < y? < 24, we define

2 2
(1o Uy VAL Ly v
Gly) = —log(1 24) e ( 1-% 1) +log (1 %\/w) (2.1)
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and its sequence of Taylor coeflicients by

Gy) = guy™. (2.2)

Lemma 2.2 (Lem. 5.4, [3]). Let G(y) = Y vey guy" be the Taylor expansion of G(y) as
in Definition 2.1. Then forn > 1,

1 1 1
L= - -1 —), 2.3
92 = Bngsny, 3n23n+1n( o (2:3)

and forn >0,

- —\/6[(—1)“1( 1/2) T 1 - (—%'—i-j)

n+41)23n+33n+2  23n+13nan(2n 4 1)1 = J
(2.4)
Lemma 2.3 (Lem. 5.8, [3]). For n > 0, we have
6 2 a 6 a
- V6 (W—+1+7)§92n+1§_ V6 (1—|——).
2723n3nan(2n + 1) \ 72 2(1 — @) 2723n3nan(2n + 1) 2
(2.5)
Lemma 2.4 (Lem. 5.9, [3]). For n > 1, we have
1 1 3 1
e <y < (=) 2.6
S < 9 < Fagamn (3~ 3) (2.6)

Definition 2.5 (Def. 4.3, [3]). For k € Z >, define

2
o) = 5 (i— R+ 1>,

log1
where v(k) := 2log6 + (2log 2)k + 2k logk + 2kloglogh + 22108108 F

log k

Definition 2.6 (Def. 6.4, [3]). For n,U € Z>1, we define

U
P,(U) := —log4v/3 — logn + W\/?—&— ZQUQ/\/ﬁ)u
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Theorem 2.7 (Thm 6.6, [3]). Let G(y) = > o~ | guy" as in Definition 2.1. Let g(k) be as
in Definition 2.5 and P,(U) as in Definition 2.6. If m > 1 and n > g(2m), then

2 1

P2m—-1)— ——— <1 P,2m —1 —_—; 2.7
n(2m —1) gmasm gy, ogp(n) < Po(2m —1)+ 3madmampmm’ 2.7)
if m>2andn > g(2m —1), then
P,(2 2 ! 1
”( m = ) - 37n237namn7n—1/2(2m _ 1) < ng(n)
2
< P,(2m —2 .
@m =)t 172 (2m — 1)
(2.8)
In other words, for w € Z~o with [w/2] > v and n > g(w), we have
P,(w—1)— L(Lyﬂ <logp(n) < Py(w—1)+ S — (L)w, (2.9)
(24a)lw/21\\/n (24a)Tw/21\ \/n
where
(1,4,2), if w is even
V0,71, 72) = : 2.10
(o, 72) {(2,7,2), if w is odd (2.10)
Lemma 2.8 (Lem 7.3, [3]). Forn,s € Z>1,m € N and n > 2s, let
o (5) 1= Y5 <s+m—1>i
T s+ m — 1 s—1 nm’
then
0 _ 2s—1 1
~bmn(s) < Z ( k2 )W < bymn(s) (2.11)
k=m
and
o _ 2s—1 (71)]{3
2
0< ). ( B ) —— <bmnls). (2.12)
k=m
Lemma 2.9 (Lem 7.4, [3]). Forn,s € Z>1,m € N and n > 2s, let
2 (s+m—1

then
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= (=5 1
~Bmn(s) < > (k)nk < Bmm(5) (2.13)
k=m
and

k:

< Bmn(s). (2.14)

0<Z<>

Lemma 2.10 (Lem 7.5, [3]). For m,n,s € Z>1 and n > 2s, let

2 sm
Cm,n(s) = Enim,
then
e -1 k+1 & 1 k
—Cmon(s) < Z %S—k <Cmn(s) and  —cpa(s) < — Z Es_k <0 (2.15)
k=m " k=m "
and
_ Cma(s = (1/2 cmn(s) Cm,n(8) (172 (—1)Fs*
: : d — —= — < 0.
\/ﬁ<k_zm<> vm \/ﬁ<k§mknk<

3. Inequalities for log p(n;¥)

In this section, first we prove an infinite family of inequalities for logp(n + s) with
s being a non-negative integer, see Theorem 3.9. Starting from Theorem 2.7, we will
estimate P, 4,(U) and the error terms given in (2.7) and (2.8), stated in Lemma 3.3-3.6.
Finally, generalizing Theorem 3.9 by taking into consideration 2?21 logp(n + s;) for
(s1,82,...,87) € ZL ), we obtain Theorem 3.13.

Lemma 3.1. Let the coefficient sequence (gn)n>1 be as in Lemma 2.2. Then for alln > 1,
we have

1 1
| < —————. 1
lgn < n (24a)ln/2) (3.1)

Proof. Observe that for all n > 0, %f(l + %) > 0and 0 < f(m +1+

1
(24a)™ (2n+1)

ﬁ) < 1. Using (2.5), we obtain for all n > 0,

1
—— <o <O 3.2
(24a)"(2n + 1) 92+ (3:2)

Since 370‘ — 3 <0, from (2.6), it follows that for all n > 1,
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1

From (3.2) and (3.3), we conclude that for all n > 1,

1

24a)n/2ln

Definition 3.2. For s € Z>(, define

1, ifs>1
EES .
0, ifs=0

Lemma 3.3. For (n,s) € Z>1 X Z>q, w € Z>a, and n > 2s, let

5= 1J )es w1
1 \2k 2551, 1 \w
=—1 E — E} =——
(W) = —logn + k (ﬁ) and B, () = 75 (\/ﬁ) %,
then
Py (w) = By [(w) < ~log(n+s) < P, (w) + E, (w). (3-4)

Proof. For all n,s € Z>1, w € Z>2, and n > 2s, we split log(n + s) as follows

v—1
1)k+1 s 157 J 1)k+

log(n + s) = logn—i—z =logn + Z 1n’“ + i kﬂﬁ.
o (3.5)
Applying (2.15) with m — [¥], it follows that for all n > 2s,
2 [w/2] = 1)kt s 2 [w/2]
_W<%> < kz;ﬁ — < Tw/2] ( ) . (3.6)
Since for all s € Z>q, s/"*/?1 < s“21 from (3.5) and (3.6), it follows that
Py y(w) = By (w) < ~log(n +s) < P, (w) + E, ,(w). (3.7)

Observe that equality holds when s =0. O

Lemma 3.4. For (n,s) € Z>1 X L>q, w € Z>9, and n > 2s, let

E
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then

P2 w) = B2 (w) < m| T2 < P2 ) + 2 (w), (33)

/2 2
Proof. For all n,s € Z>1, w € Z>2, and n > 2s, we split 7 n; % as follows

R G B 5, (0

b2 )
(3.9)
Applying (2.16) with m — |“+2], it follows that for all n > 2s,
2 s\ o (s 2 syl
_ﬁ(ﬁ) < 2 ( k )ﬁ < W(ﬁ) . (3.10)
(LTJ) k=] (LTJ)
Therefore,
2 sl 1 \/7 1/2
i ()T s (V)5
(LTJ) k=242
3.11
2 sl*2?l 1 \21%82 -1 (8:11)
< 27 5—3/2(7) .
(LTJ)

Now for all s € Z>y,

sl “32] 2|22 I3t w
”\EW(T) <y (7m)

From (3.9) and (3.11), it follows that

P2 (w) ~ B2 (w) < [ T < P2 ) + B (w), (312)

with equality holds for s =0. O
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Lemma 3.5. For (n,s) € Z>1 X Z>q, w € Z>2, and n > 2s, let

Go(s;t) = 9@( —fé?%) t=L3) for all €€ Z>q,
w—1 252 41 o1
P} (w):=Y g ( ) Y Y an(si) (%) "
u= t=1 u=0

and

29 1 \[ 1+, 1 \w
Braw) =0 (% 530) () o

then

Py o(w) — < Po(w) + By (w). (3.13)

Zg“(m)

Proof. For all n,s € Z>1, w € Z>2, and n > 2s, we split Y . _| L gu(1/v/n+ )"

S ) =SS ()5
fzgu%) +zgu<;ﬁ>“§(‘éi”)2i

Now
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[¥52]

- mn > (1,

t=u+1

u=0 t=u+1
I.WZ_Z o0 _ 2u+l 1 241
+ Z J2u+1 Z (t—Qu )st“<n)
u=0 t (wfl]
L¥52) -1 1 \2t+1
= §2u+1(8;t)<_)
t=1 u=0 \/ﬁ

[t o0 2u—1 u—
+ ZZ: > gzu_1<_ K )s'f(%)%+2 | (3.15)

u=l =[] _y+1

=:S8,(w,n,s)

Next, we proceed to estimate the absolute value of the error sum S,(w,n, s) for s € Z>;.

|So(w,n,s)|
2u—1 © _2u—1N gt
< E |g20u— 1|(7) Z ( t2 )F
t=[%51]—u+1
[w 1

2u 1 w— 11 [“’ Ll —u41
4 u— 2
<43 el 7)) =(,7)6)

-1
(by substitution (m, s, n) +— ([WT—‘ —u+1,u, 2) in (2.11))
s

4 ZZ: |gzu_1<[uw?_ll])siu> (%)QF”TWHS[W;]H
i (2u — 1)12404)11—1 (Lw?_?) S%)
_Xz:_ 2u+1 O?]) (24;S>u> (%)MS[%W

[es11-1 w1l
16 Z 1 [L = 5 ( 1 )
3 £ 2u+ 2 U 24045 Vn

IN

]. w w—
(%> sl 1+1 (by Lemma 3.1)

IN
.
/_\/—\_‘A
e
|
—

A
|
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4 8
< for all >1)
(as 2wl 3wl M=

B [251
- ?W«(HMLJ 2 +1_1>240“9_(241as) 2 )
y (\/15) s
(- R R

< Bl )T (3.16)

Similar to (3.15), we get

Il
[~
)
[\V)
g
N
~
|
e <
N——— N———
m&
|
s
N
:‘H
N—
I

S (P

Consequently for s € Z>1,

L5+
Setwin,s)| < 37 lgaul(

> (O
<2 i: |92u|(%)2u<%1_—11) (%)f%%u
7| —wut) i (2.13)>

(Lfm AN )ﬁ ()"

—

S

~—
v
<

(by substitution (m, s,n) — ([

|
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< 2<L§3 %(%1—_11> (24;3)“)8% (L)w (by Lemma 3.1)

u=

Mg -1 w] _ w
=2< > %Cfﬂ-f) (24;3)u>sH (%)

B

u=1 n
(%1

1 1 T NT8TY (wqy/ 1w
- — _1_ 51—

w<<1+24048> ! (24ozs) )S (ﬁ)

1 TN R A BN

- — —) . 3.18
<w<8+24a> (\/ﬁ) (3.18)

From (3.14), (3.15), and (3.17), we obtain

w—1
1 u 3
;gu(\/n——ks> = Py (w) = So(w,n, s) + Se(w,n, s), (3.19)

and taking absolute on both sides of (3.19) and applying (3.16) and (3.18), it follows
that

‘EQU(\/;—HY —Pfi,s(w)‘ = |So(w, n, S)+Se(w7n,s)‘

<

S, (w, n, s)‘ +

<29( N 1 )("%lm( 1 >w
w \" T 24q NV

Note that in (3.13), the equality holds for s = 0 because first, P2 ;(w) = 0 and secondly,
the error term S,(w, n,0) (resp. Se(w,n,0)) in (3.15) (resp. in (3.17)) is identically zero
and therefore, we conclude that E} ((w) =0. O

Se(w, n, s)’ (3.20)

Lemma 3.6. Let v1,v2 as in Equation (2.10). For (n,s) € Z>1 X Z>o, and w € Z>2, then

- (%a;#ﬂwuiﬁ)w = _(2404)7[1“/2Tw (\/nliﬂ)w (3.21)

and

(2405)’}2”/2111) <\/n1——|—s)w = (2404)7[3”/2711) (%)w (3.22)

Proof. The proof of both (3.21) and (3.22) is immediate from the fact that 7;L+S <
for all (n,s) € Z>1 X Z>q. O

Sk
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Definition 3.7. Let the coefficient sequence (g, )n>1 be as in Lemma 2.2 and (g,,(8;¢))n>1
be as in Lemma 3.5. Then for (n,s) € Z>1 x Z>¢ and U € Z>1, we define

U
/2 _ 1\
P, s(U) := —log4V3 —logn + 7 gn + E QU<E) ’ (3.23)
u=1

where
_ (—s)“ =
Gous = + gou + ;g%(s;u) forall 1 <wu<|U/2|
and
N 2/ 1/2\ wir g
Goutls =T AU s + gout1 + Zg%ﬂ(s;u) forall 0 <u<|[(U-1)/2].
k=0

Definition 3.8. Let 1,72 be as in (2.10). For (n,s) € Z>1 X Z>¢, w € Z>2, and n > 2s,
we define

1 [2411 Y 1 1 \w

and

'u);»l'l

EE (w) = (45(5 + ﬁ) 5o+ W) i(%)w

Theorem 3.9. Let P, ((U) be as in Definition 3.7 and ES ,(w), EY ,(w) be as in Defini-
tion 3.8. If (n,8) € Z>1 X Z>o, w € Z>3, and n > max{g(w) — s, 2s}, then

Pos(w—1) = EE (w) <logp(n+s) < Py s(w— 1)+ EY (w). (3.24)

Proof. From (2.9), it follows that for [§] > 40 and n > g(w) — s,

ge! 1 w
Prys(w—1) (240()[w/2]w<\/n—+s) <logp(n +s)

72 1 w
Pn s -1 ’
< + (’(U )+ (2404)]'111/2]11}( /n—|—$)
(3.25)

where
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2(n+s)

Pois(w—1) = —log4V3 —log(n +s) + = 3

w—1
1 u
+ UZ:ZI gu(\/ni_i_J (by Definition 2())

Applying Lemma 3.6 into (3.25), we obtain

M Ly B 1
Prys(w—1)— (240&)“"/2-"11) (%) <logp(n+s) < Poys(w—1)+ (24a) "w/g]w (\/—>
(3.26)
Invoking Lemma 3.3, 3.4, and 3.5 into (3.26), it follows that
3 3
—10g4\/§+ZPi Z ¢<L)w<logp(n+s)
s — (24a) /21w \\/n
- - (3.27)
3
i 1
_10g4\/§+§Pn’ Z i) fw/ﬂw( n)
For s > 1,
3
. Y2 1 w
Ei _r (
2 Enal) + Gty (77)
gsl*3+1 29 1N\ [2521+1 Y 1 \w
( fw/a] + 5+ 5m) MNCYSICIET, (=)
sz 29 BN 1w
( fw/2] o) (24a)rw/21w ( n)
165/ 29 1 N[5 Y 1\w
= <—w S Card B (24a) 2T (%)
1 ’—wTH] Y2 1 1 \w
— — 2 —(— 2
< (45(8+ 24a) + (24a)[w/21 | w (\/ﬁ) ’ (3.28)
and for s =0,
ZEi (w) + 772 (L)w = L (L)w (3.29)
= (24a) /21w \ /0 (24a) /21w \ /0
Similarly, for s > 1,
3 w41
; WLy L 11
2 Enal0) + gy et () < (45 (+am)  + Gagre (f)
(3.30)
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and for s =0,

3
; 80! L yw 8! L yw
B (LYl Ly gy
; ns(W+ G\ s T e me\ Vs (3:31)
Putting (3.28)-(3.31) together into (3.27), we get

—log4\/_+z EE( ) <logp(n+s) < —log4\/_+z +E“( ).

(3.32)
From Lemmas 3.3-3.5, it follows that

3
— log 43 + Z Pﬁ;ys(w)

i=1

w—1
2n 1 \u
flog4\/§flogn+m/?+ Eﬁ gu(fn)

k

k=1 t=2 wu=1

—log4v/3 — logn+7m/

252 ] - u
+ Z ( \/><kli21>5k+l +92“+1+292k+1(s;u)> (%)2 +1

k=0
o L5 1 \2u 7] 1 \2utl
_log4\/§—logn+7r\/;+ ; §2u,s(%> + 7;) §2u+1,s(%)
= Py y(w—1). (3.33)

From (3.32) and (3.33), we conclude the proof of (3.24). O

T
Next, we proceed to estimate Z log p(n + s;).
i=1
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Definition 3.10. For n,T € Z>; and §:= (s1, 82,...,87) € Zgo, we define
T
log p(n;§) := Z logp(n + s;).
i=1

Definition 3.11. Let the coefficient sequence (g,,)n>1 be as in Lemma 2.2, (g,,(8;¢))n>1
be as in Lemma 3.5, and § be as in Definition 3.10. For n,T € Z>; and U € Z>1, we
define

U
[2 ~ 1 \v
Pn,g(U) = —T.log4\/§—T~10gn+T~7r ?TL + E g%g(ﬁ) , (3.34)
u=1

where
1 T T u—1
§2u,§ = Z( 51) +T- 92u + Z Zg2k Slvu for all 1 S u S LU/QJ
1_1 =1 k=1
and

1/2 T T u—1
Jout1 g =T \/7<u+1)z utl 4y . g2u+1+2292k+1 8i;U)

i=1 k=0
forall 0<u<|(U-1)/2].

Definition 3.12. Let 71,72 be as in (2.10) and § be as in Definition 3.10. For each
{si}1<i<r, s, be as in Definition 3.2. For n,T € Z>1, w € Z>9, and n > 2s;, we
define

wtl w
EY (w (452(51 )[ : W&ﬁ—ﬁ)i(%)
and
stsy = (83 (ot ) o+ it ) 1 (0
(24c)[w/21 Jw \\/n
A generalized version of Theorem 3.9 is as follows:

Theorem 3.13. Let log p(n;§) be as in Definition 3.10, P, 5(U) be as in Definition 3.11,
and let g(k) be as in Definition 2.5. Let EX (w) and EY (w) be as in Definition 3.12. If
n, T € Z>1, w € ZL>a, and

n > g(w;s) := lréllang{g(w) - lglgrlT{si}, 2s;},
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then

P,g(w—1)— Efg(w) <logp(n;5) < P, s(w—1) + E%;(w) (3.35)
Proof. Applying (3.24) for each {s; }1<i<r and summing up, we get (3.35). O
Remark 3.14. A few applications of Theorem 3.13 are listed below.

(1) Choosing w =5 (resp. w = 7), we obtain (p(n)),>26 is log-concave (resp. (1.7)).

(2) Define u,, := % and let N be any positive integer. Then choosing w = N,

we have a full asymptotic expansion of logu, with a precise estimation of the error
bound after truncation of the asymptotic expansion at a point V.
(3) Applying § = {m,m} and ¥ = {0,2m} to (3.35), and estimation of

Pn,§(4) + E§,§(5) - Pn,f'(4) - Eu*(5)7

leads to the strong log-concavity property of p(n).

(4) Without loss of generality, assume b = Aa with A > 1 in Theorem 1.1. By making
the substitutions (n,s) = (a,0), (n,8) = (Aa,0), and (n,r) = (a(l + A),0) to (3.35),
we can retrieve (1.10).

4. Asymptotics of (—1)""1A" log p(n)

Lemma 4.1. Let P, ;(w — 1) be as in Theorem 5.9. Then for all r > 2,
~ (" tp o — o (YT (LY
; <Z>( 1) *+1P, ;(2r) = cr<\/ﬁ) (r 1).(\/5) , (4.1)

1
where C). = T (§> and (a)y, s the standard notation for the rising factorial.
r—1

V6

Proof. From Definition 3.7, it follows that

(Yo
7;)( )z+1< log 4v/3 — logn+\/7 Zgl” ))

(
> () e ()
(

u=1

Yoo (&) 5 (Yoo )
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+z( ) D) (4.2)

Following the notation from [11], here {"} denotes the Stirling number of second kind
which counts the number of ways to partition a set of n elements into m nonempty
subsets. Here we state three facts about {:1} which is required in the later part of the
proof:

Fact 4.2. [11, Table 264] {"}= (") = 0.

Fact 4.3. [11, Table 264] {"}= (") = 1.

Fact 4.4. [11, Table 265, Eq. (6.19)] m!{"}="" <’Z> Em(—1)mk,

k=0

For all integers 1 < u < 2r — 2 and u = 0 (mod 2), we have

=30 ”12[ ' +92u+:zig%m>] ()"
:§<i)u 1y {u} (L) oy et 0
E (L)L (e (R
-5 oG
()G

= (by Fact 4.2). (4.3)

Similarly for all integers 1 < u < 2r — 2 and v = 1 (mod 2), we obtain
T r—2
r . 1 2u+1
)
> (1) S (5
r u—1

AT 12\ ., o 1\ 2ut1

S (e B () e S| ()

i= k=0

Bl
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DNTH A G

—2
—2
—k—-1/2 1 fu—Fk) /1 \2ut+l
+ 92k 1( )(—1)T+ 7"!{ } —) (by Fact 4.4)
2 kz T\ e (&

— 0 (by Fact 4.2). (4.4)
From (4.3) and (4.4), it follows that for all 1 < wu < 2r — 2,

T 2r—2

(e By =

=0

Now,
(i)

B }7"0 (:) =™ [”\/%(112) i" + gar1 + gagkﬂ(i; r— 1)] (%)2”
W\/%(%) (_1)r+1r!{:}
a5l

_ % (%)7‘_1 (%)QH (by Facts 4.2 - 1.4). (4.5)

We finish the proof by showing that

> ()0 (=)

=0
_Z(> z+1[( i)" JrgQrJr;ng%zr)] (\/1_)27«
_ [—(r—l)!-{-kzzlg% (r_kk> l)r+1 ! ( 1n
e 1)!(%)2“. - (4.6)

Definition 4.5. Let 77 be as in (2.10) and C, be as in Lemma 4.1. Then for all r > 2,
define
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— gl " [ 1 \rHl 1
La(r) = <W+4E’;<i>(+%) >2r+1’
L(r) :=(r — D!+ Ly (r),

and

Np(r):= max{ (%7;))2,9(27" + 1)}

Lemma 4.6. Let L(r), Np(r) be as in Definition 4.5 and C,. be as in Lemma 4.1. Then
for alln > Np(r),

(—=1)""*A"log p(n) > log (1 + C«T(%)”l 3 L(r)(%yr) W

Proof. We split (—1)""!A"log p(n) as follows:

r

(18t togpln) = 3 () (-0 omptr-+)

=0

175 L
Z (2 +1)logp(n+2i+1)—

=0

J

[V

(;) logp(n + 2i). (4.8)

i=0
Applying Theorem 3.9 with w = 2r + 1 to (4.8), for all n > g(2r + 1) = Jnax {g(2r +
<i<r

1) — 4,24}, we have

(1" A" log p(n)

R .
z+1 L
> Z ( > Pni(2r) — ; <2i n 1>En72i+1(2r +1) -

7]

:CT<%>2T1_(T_1)!<%)QT_ ;
L)

- (2 )E%%(Qr +1) (by Lemma 4.1).
0

1=

Lz]

[ME]

(27;) EY,(2r +1)

=0

-
<2i n 1> E5,2i+1<27"+ 1)

[ME]

(4.9)
From Definition 3.8, it is clear that EY ,(w) < Ef  (w) because 72 < 1. Therefore,

L3]

O <2:) EYy(2r +1) < Z C) EE,(2r + 1),

=0

[V

=]
”
Z <2i+1>E5,2i+1(27”+1)+

=0

=

(4.10)
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and
ET: (:) Epi(2r +1) = Ll(r)<%)2r+l. (4.11)

=0

From (4.9) and (4.11), it follows that

(—=1)""*A"log p(n) > C’,.( 1 )QPI —(r— 1)!(L)2T B Ll(r)( 1 >2r+1

Bl

Tn
> Cr(%)%l - L(r)(%)zr, (4.12)

and consequently for all n > Np(r), we get

(—=1)" A" log p(n) > log <1 + Cr(%)%_l — L(r) (L)Qr) |

Definition 4.7. Let L;(r) be as in Definition 4.5 and C,. be as in Lemma 4.1. Then for
all r > 2, define

Ny(r) := max{ (%)2, (%)2/%73,9(27“ + 1)}

Lemma 4.8. Let Li(r) be as in Definition 4.5, C, be as in Lemma 4.1, and Ny (r) be as
in Definition 4.7. Then for all n > Ny(r),

(—1)""*A" log p(n) < log <1 + Cr(%)%_l). (4.13)

Proof. Applying Theorem 3.9 with w = 2r + 1 to (4.8), we have for all n > g(2r + 1),

(—=1)"" A" log p(n)

< Z ( > 1)P, o(2r) +

<C,(%)2T1 r—l( )+

:Cr(%)%l r—l( ) 4 Li(r ( )2T+1. (4.14)

For all n > Ny(r), it follows that

L5 L3]

2 T
> (541 BlanCr 41+ 3 () BEwr +1)
=0

(MR

T

(r) L(2r+1) (by Lemma 4.1)
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S IRTILICR A SRt

From (4.14) and (4.15), it follows that for all n > Ny (r),

(—=1)""'A"log p(n) < log (1 + Cr(%)%—l). _

Theorem 4.9. Let L(r), N (r) be as in Definition /.5 and Ny (r) be as in Definition /.7.
Let Cy be as in Lemma 4.1. Then for all n > N(r) := max{NL(r), NU(T)},

1Og<1+CT(%)2TI_L(”(%)QT) < (1) A" logp(n) < 1og<1+cr(%)2”>,

(4.16)
Proof. Lemmas 4.1 and 4.6 together imply (4.16). O
Theorem 4.10. For all r > 2,
o0 1 u
1) AT ~ G (—) : 417
(st opn), D (s (417)

with

=[S} B e sz

o= 5T S L e
for allu>r—1. k:O ws)

Proof. Following (4.2) and letting w — oo, we obtain

(1) A"logp(n) ~ Z Z() 1) z(%)u (4.19)

u=2r—1 =0

For all u > 2r — 1 and w = 0 (mod 2), we get

i <:> (—1)" ' Gou; = l(_i)u {Z} +§gzk (u_—kk) {u ; k}] (—1)" !

i=0
[ S ST i Y )[R
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Similarly, for all u > 2r — 1 and u = 1 (mod 2), it follows that
—~ (T " 2/ 1/2\ fu+1]
-1 1 u i — \/j
Z (z>( )92 +1, [W FAURE| , +Zgzk+1
=0 k=0
" (—k - 1/2> {u - k}
u—Fk r

5. A framework to verify multiplicative inequalities for p(n)

(-1l o

Here we list down the steps in order to make a decision whether a given multiplicative
inequality holds or not.

T T
o (Step 0): Given Hp(n + s;) and Hp(n + ;) with T > 1. Without loss of gener-
i=1 i=1
ality, assume that s;,r; are non-negative integers for all 1 < ¢ < T. Transform the
T

products into additive ones by applying the natural logarithm; i.e., Z logp(n + s;)
i=1

T
and Z logp(n + ;).
i=1
 (Step 1): Choose w = m + 1, where (s1,...,s7) = (r1,...,7r7). From (3.35), we
observe that for each 1 <1 < T, logp(n + s;) and logp(n + r;) has the main term
P,s(w—1)and P, r( — 1) respectively. Conbequently7 each of these main terms are

dominated by T - CZ vn—+s; and T - cz Vn+r; with ¢ = m1/2/3 respectively.

Therefore, in order to choose w, it is enough to compute the Taylor expansion of
T

Z(\/n + 5; —v/n + s;) which is given by:
i=1
T o 1/2) T
> (Vntsi—Vntsi) Z e D (s =), (5.1)
i=1 i=1
T
So our optimal choice is such minimal m > 1 so that Z(s:” —ri") #0.
i=1

o (Step 2): Applying w = m + 1 as in the previous step to Theorem (3.35), it remains
to verify whether

Pos(m) — Ef((m+1) > P, z(m) + EX(m + 1) (5.2)

or
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P, #(m) — Ef o(m+ 1) > P, 5(m) + EY (m + 1), (5.3)
T T T

in order to decide whether Z logp(n+s;) > Z logp(n +r;) or Z logp(n+r;) >
i=1 i=1 i=1

Z log p(n + s;) respectively.
i=1

6. Inequalities for p(n;s)

Definition 6.1. Let g,z be as in Definition 3.11, and § be as in Definition 3.10. For
n,T,U € Z>1, define

ervan/3\
M(n;T) == (W)

and

~ v 1 \u
P,5(U) :=exp (Z: §u§(%) >

Definition 6.2. Let 1,2 be as in (2.10) and § be as in Definition 3.10. For each {s; }1<i<7,
ds, be as in Definition 3.2. For n,T € Z>1, w € Z>2, and n > 2s;, we define

T
N Ty \1
Cy(w;8) == <45Zl(si + %) ot gy e )

and

w+1-‘

[+ T- 1

Lemma 6.3. Let log p(n;5) be as in Definition 3.10, and let g(k) be as in Definition 2.5.
Let M(n;T) and P, 3(U) be as in Definition 6.1. Let g(w;5) be as in Theorem 3.13, and
Cr(w;5), Cy(w; S) be as in Definition 6.2. If n,T € Z>1, w € Z>2, and

n>N1(w;§)1=maX{( 9, (Cetws9) " (cu<w;é>)2/w}7

then

M(n;T) By 5(w — 1) <1 ~ Cr(w 3)(7)1“>
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< p(n;8) < M(n; T) Py s(w — 1) (1 +2 Cy(w; 5‘)(%)”) (6.1)

Proof. Applying the exponential function on both sides of the inequality (3.35), we get
for all n > g(w;§),

M(n;T)P, s(w — 1) Bas®) < p(n;8) < M(n; T) P, (w — 1)ePris), (6.2)

2/w

2/w
Now for all n > max{ (Cl; (w; §)) , Cuy(w; §)) }7 it follows that

0 < EY{(w) <1 and 0 < EY(w) < 1. (6.3)

For all 0 < z < 1, we know that e* < 1+ 2z and e~* > 1 — x. Therefore from (6.3) and
following Definition 3.12, we finally have

1
NG

Equations (6.2) and (6.4) together imply (6.1). O

eBrsw) <149 Cu(w;ﬁ')( )w and e Fns) > 1 — Cg(w;§)( (6.4)

o8

Definition 6.4. For k € Z>q, w > 2, and 7= (l1,...,04_1), define

w—1

X (k) = {Ze z8 Y b= k;}
u=1
Xm(k) = {Fe X(k):0< wiluﬁu <w-— 1},
u=1
and
Xe(k) := {[6 X (k) : M)X_:luéu > w}
u=1

Definition 6.5. Let X (k) and X (k) be as in Definition 6.4 and g, g be as in Defini-
tion 3.11. Then for all w > 2, define

w—1

w—1 Zugu
Pstw-1)=Y = 3 Flwd(2)=

Si-

and
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w—1
Z uly,

nsw—l Zk' Z kwé’)( )“=1 ,

k=0 " feXg(k)

4-

where
k w—1 Lu
F(k;w;s) := (§ ~) ,
o= (, ") (o
: k _ k! . . . .
with (41 5 71) =T 1isa multinomial coefficient.

Definition 6.6. Let X¢(k) be as in Definition 6.4 and F(k;w;8§) be as in Definition 6.5
and g, g be as in Definition 3.11. For w > 2, define

w—1

E(w;8) := Z Z ‘ kw§')‘—|—3(‘glsl+1)

k=0 " fex. (k)

Lemma 6.7. Let ﬁng(U) be as in Definition 6.1 and Xg(k) be as in Definition 6.4. Let
P,s(w —1),P,5(w — 1), and F(k;w;5) be as in Definition 6.5. Let E(w;s) be as in
Definition 6.6. Then for all w > 2 and

n > Na(w;8) := max {((w _ 1)|§u7§’)2/u}7

1<u<w-—1

we have

Bstw —1) = By slw — 1)] < Blw; g)(%)w (6.5)

Proof. Expanding ﬁng(w — 1) and splitting it as follows:

Pos(w—1) = Pyg(w—1) + By s(w — 1) +Z Zkagj(T)

k=w " Fe X (k)

w—1
Z wly,

Therefore,

Pn,§(w_1)_ﬁn§<w_1)
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B —1) +( (\glsHZ \gu+1s> g ]Hw (g %sj);@

< |Busw—1) +( ) @ |+1> ,ikﬂv) (since n > Na(w;9))
I A R

< |Bustw - 1) Ogl’if ) ()" o

Now,

< wz:l% Z ‘ (k; w; @’(T) (since le Xg(k)). (6.8)

Combining (6.7) and (6.8), we get (6.5). O

Definition 6.8. Let Cy(w;8) and Cr(w;8) be as in Definition 6.2. Let F(w;S) be as in
Definition 6.6. Then for all w > 2, define

Ep(w;8) := 3 Cr(w;8) + E(w;8§),
and
Ey(w;8) == 6 Cyy(w;s) + E(w;§)(2 Oy (w3 8) + 1).
Theorem 6.9. Let M(n;T) be as in Definition 6.1 and ﬁng(w— 1) be as in Definition 6.5.
Let EX (w) and EY(w) be as in Definition 6.8. Let Ni(w;5) and No(w;5s) be as in
Lemmas 6.3 and 6.7. Then for all w > 2 and

N > N(w;3) := maX{Nl(w;E)aN2(w;§)}v

we have
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M(n;T) (ﬁns(w —1) — Er(w;5) (%)w>

< p(n:8) < M(n;T) (ﬁn,gm — 1) + Ey(w;3) (%)w) (6.9)

Proof. From Lemmas 6.3 and 6.7, for n > N(w;§), it follows that

p(n:8) < M(n: T) (ﬁn,gm —1)+ E(w;a(%)“’) (1 +2 cu(w;sn(%)”), (6.10)

and

Bl

n

p(n:8) > M(n; T) <13n5(w 1) - E(w;g’)(i)w> (1 - cﬁ(w;g')( ! )“’) (6.11)

Now

ﬁn,§(w_1)’ = Z% Z F(k;w;g)(—)u:l

IN
N
|
(]
=
-
kS
K
/N
S
~—
i

I
= g
™
| =
N
e g
Il |
= =
SQ)
31|18
s ®l
N———
ol

(as n > No(w; §)) < 3. (6.12)

Applying (6.12) to (6.10), we arrive at the upper bound of (6.9). We get the lower bound
of (6.9) by applying (6.12) to (6.11) and from the fact that Cz(w;5) - E(w;8) > 0 for all
w>2. 0O

7. Conclusion

We conclude this paper by pointing out the following aspects in which Theorem 6.9
remains incomplete.
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Suppose we are given the following two functions defined by shifts of p(n):

M T M T
=Y [Ipn+si;) and SPn:R) =" ] p(n+ri;),

j=1i=1 j=1i=1

where S = (SiJ)lS’iST,lSjSM and R = (TiJ)lSiST,lSjSM' Now in order to decide

T
whether SP(n;S) > SP(n; R) for all n > N(S, R), we need to estimate Hp(n—i—si,j)

i=1
T

and Hp(n + r; ;) individually for each 1 < j < M. In view of Theorem (6.9),
i=1

estimations of the two factors come into the prominence: computation of the term

M

Z(Pn,gj (w—1)= P, (w— 1)) with §; == (s1.4,...,57,):Fj = (r1,...,r7;), and
j=1
approximation of the error term.
M
Depending on the truncation point w, one can compute the main term Z ( ﬁngj (w—
j=1
1) — ]3,17;1 (w— 1)) But computational complexity will arise in the estimation of the
error term because in order to approximate E‘(w, §;) for each j, one needs to have a
good control over X¢(k) for 0 < k < w — 1. This seems to be difficult as w tends to
infinity, growth of | Xg (k)| is exponential.
For example, in order to prove the higher order Turdn inequality for p(n), the minimal
choice for w is 10 and consequently, by Theorem 6.9 with appropriate choices for §,
it follows that

3

2 0 1 1
4(]— - unfl)(]- - un) - (]- - ununfl) = T\/ém + O(ﬁ)

This concludes that p(n) satisfies the higher order Turén inequality for sufficiently
large n although due to Chen, Jia, and Wang [6], we know that the inequality holds
for all n > 95. So, from the aspect of error bound computation in order to confirm
such inequalities from a certain explicit point onward, our method is inaccessible.
Last, but not the least, the above discussions naively suggest that for making a de-
cision whether a given inequality for the partition function (of the above type) holds
or not, we need to have a full asymptotic expansion for shifted value of the partition
function and an explicit computation of the error bound after truncation the expan-
sion at any positive integer w. Recently, Paule, Radu, Schneider, and the author [2]
provided an explicit estimation of the error term for the asymptotic expansion of
p(n) and following a similar approach, full asymptotic expansion of p(n — j) (with
j > 0) along with an estimation of the error term has been computed in [1].
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