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1 Introduction

The objective of this paper is to study the log-behavior of the sequences </ p(n) and
/ p(n)/n, where p(n) denotes the number of partitions of a nonnegative integer n. A
positive sequence {an},>0 is called log-convex if forn > 1,

2
a, — ap—1ap4+1 <0,
and it is called log-concave if forn > 1,
2
a, — ap—10p4+1 = 0.

Let r(n) = Ypm)/n and let A be the difference operator with respect to n.
Sun [11] conjectured that the sequence {r(n)},>60 is log-convex. Desalvo and Pak
[5] noticed that the log-convexity of {r(n)},>60 can be derived from an estimate for
A?logr(n — 1), see [5, Final Remark 7.7]. They also remarked that their approach to
bounding —A? log p(n — 1) does not seem to apply to A?logr(n — 1). In this paper,
we obtain a lower bound for A?logr(n — 1), leading to a proof of the log-convexity
of {r(n)}n=>60-

Theorem 1.1 The sequence {r(n)},>60 is log-convex.

The log-convexity of {r (1) },>e0 implies the log-convexity of { &/ p(1)},>26, because
the sequence {/n},>4 is log-convex [11]. It is known that nEToo Ypn) = 1.Fora
combinatorial proof of this fact, see Andrews [1]. Sun [11] proposed the conjecture
that {/p(n)},>¢ is strictly decreasing, which has been proved by Wang and Zhu [12].
The log-convexity of {/p(n)},>26 was also conjectured by Sun [11]. It is easy to see
that the log-convexity of {/p(n)},>26 implies the decreasing property.

It should be noted that there is an alternative way to prove the log-convexity of
{&/p(n)}n>26. Chen, Guo, and Wang [3] introduced the notion of a ratio log-convex
sequence and showed that the ratio log-convexity implies the log-convexity under a
certain initial condition. A sequence {a, },> is called ratio log-convex if {a,+1/an }n>k
is log-convex, or, equivalently, forn > k + 1,

logan+y — 3loga,+1 + 3loga, —loga,—1 > 0.
Chen et al. [4] showed that for any » > 1, one can determine a number n(r) such that
forn > n(r), (=) 'A" log p(n) is positive. For r = 3, it can be shown that for
n>116,
Alog p(n—1) > 0.
Since

A3 logp(n — 1) =logp(n+2) —3logp(n+ 1)+ 3log p(n) —logpn — 1),

we see {p(n)},>115 is ratio log-convex. So we are led to the following assertion.
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Theorem 1.2 The sequence {3/ p(n)},>26 is log-convex.

Moreover, as pointed out by the referee, we may consider the log-behavior of
Y p(n)/n® for any real number «. To this end, we obtain the following generalization
of Theorems 1.1 and 1.2.

Theorem 1.3 Let o be a real number. There exists a positive integer n(a) such that
the sequence {/p(n)/n%},>n(a) is log-convex.

We also establish the following inequality on the ratio Z/p=h lj,l;)((’:l;l).
Theorem 1.4 Forn > 2, we have
v p(n) (1 n 37 ) - "V pn —T)
“pn+ 1) V24n5/2 Yp@)

(1.1

Desalvo and Pak [5] have shown that the limit of —n3 A2 log p(n) is w/+/24. By
bounding A? log {/p(n), we derive the following limit of n3 A2 log </ p(n):

lim n3 A2 log+/ p(n) =

n——+00

(1.2)

gl
-lk‘ =

From the above relation (1.2), it can be seen that the coefficient 377/4/24 in (1.1) is
the best possible.

2 The log-convexity of r(n)

In this section, we obtain a lower bound for A% log 7 (n — 1) and prove the log-convexity
of {r(n)},>e60. First, we follow the approach of Desalvo and Pak to give an expression
of A? logr(n—1) asasum of AZE(n —1)and AZE(n — 1), where AZE(n — 1) makes
a major contribution to A? logr(n — 1) with A’E (n — 1) being the error term, that is,
AZB (n — 1) converges to A? logr(n — 1). The expressions for B(n) and E(n) will
be given later. In this setting, we derive a lower bound for A2B(n —1). By Lehmer’s
error bound, we give an upper bound for |A2~E (n — 1)|. Combining the lower bound
for A?B(n — 1) and the upper bound for A>E (n — 1), we are led to a lower bound for
A%logr(n — 1). By proving the positivity of this lower bound for A% log r(n — 1), we
reach the log-convexity of {r(n)},>e0-

The strict log-convexity of {r(n)},>60 can be restated as the following relation for
n>6l:

logr(n+ 1) +logr(n — 1) —2logr(n) > 0,
that is, for n > 61,

A’logr(n —1) > 0.
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Forn > 1 and any positive integer N, the Hardy—Ramanujan—-Rademacher formula
(see [2,6,7,10]) reads

N
p(n) = 4 ZA;(n) [(1 — f) et + (1 + 5) e"/f} + Ra(n, N), (2.1)
n = % n

where d = % w(n) = LJ2n —1, A(n) = k™2 Ag(n), Ag(n) is a sum of the
24th roots of unity with initial values Aj(n) = 1 and A>(n) = (—1)"*, Ra(n, N) is the
remainder. Lehmer’s error bound (see [8,9]) for Ry(n, N) is given by

277—2/3 3 2
Ron. Ny < N (ﬁ) sinh 24 1 (ﬁ) . 2.2)
V3 2 N 6 w

Let us give an outline of Desalvo and Pak’s approach to proving the log-concavity of
{p(n)},=25. Setting N = 2 in (2.1), they expressed p(n) as

p(n) =T(n)+ R(n), (2.3)
where
d 1 =1
T — 1— un) & 77 i|7 2.4
"= [( M(n))e VR e
d 1 _ -D"* 2 (=D" 2 )
e (o) S )]
= [( +M(n))e 2w a2 UTam)e
+ Ry(n.2). 2.5)

They have shown that

R — 1 _i/E
)Azlogp(n —1)—A2log T(n — 1)’ _a21og (14 B0 = DY _ TR
Tn—1)
(2.6)
and
d 1 _xn
‘Az logT(n — 1) — A’ log 5 (1 — )e“("l) <e 0V3 (27)
un—1) um—1)

It follows that A% log u(nd—l)Z (1 — M(nl—l)) e =1 converges to A2log p(n — 1).

Finally, they use —AZ log M(nil)z (1 — M(nl—l)) e =D o estimate — A2 log p(n—1),
leading to the log-concavity of {p(n)},25.
We shall use an alternative decomposition of p(n). Setting N = 2 in (2.1), we can
express p(n) as B B
pn) =T(n)+ Rn), (2.8)
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where

- d 1
T(n) = 1— un) 2.9
m)ﬁmﬂ( uw)e @
~ d 1 _ (=nr 2 ()
R - 1 u(n) _(1 _ )
" umﬂ[(*ﬁum>e A \Tuw)e

L et (1 + L) e_ﬂgl):| + Ry(n.2). (2.10)
V2 p(n)

Based on the decomposition (2.8) for p(n), one can express A2 logr(n—1) as follows:

A’logr(n—1) =A’B(n— 1)+ A’E(n — 1), (2.11)
where
- 1~ 1
B(n) = —logT(n) — —logn, (2.12)
li _ n
u=Rm)/T (n), (2.13)
E(n) = %log(l + V). (2.14)

The following lemma will be used to derive a lower bound and an upper bound for
AZB(n —1).

Lemma 2.1 Suppose f(x) has a continuous second derivative for x € [n—1,n+1].
Then there exists c € (n — 1, n + 1) such that

Afn—1)=fn+ D+ fn—1)=2f(n) = f (). (2.15)
If f(x) has an increasing second derivative, then
=1 <A fn—1) < f"(n+1). (2.16)
Conversely, if f(x) has a decreasing second derivative, then
ffn+1) <A’ fn—1) < f"(n—1). (2.17)

Proof Setg(x) = f(x+1)— f(x). By the mean value theorem, there exists a number
& € (n — 1, n) such that

f+ D)+ fn—1)=2f(n) = o) —p(n—1) = ¢ (&)

Again, applying the mean value theorem to (p/(g ), there exists a number 6 € (0, 1)
such that

OE = E+D)—FE =F E+0).
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Let ¢ = & + 6. Then we get (2.15), which yields (2.16) and (2.17). O

In order to find a lower bound for A2 logr(n — 1) and obtain the limit of

n3 A2 log </ p(n), we need the following lower and upper bounds for Azﬁ log T
(n—1).

Lemma 2.2 Let

Bim =57 1)(2743: 2332 410(?’;#_(:11); =, (-18)
Ban) —pr oy — I D 2 29
For n > 40, we have
Bi(n) < A2n i . logT(n — 1) < By(n). (2.20)
Proof By the definition (2.9), we may write
log (n) T(n) Z“:
where
fi(n) = @
Jfa(n) = —M,
frm = 2E@ =D
fa(n) = logd
Thus \
nillogf(n—l):gAzfi(n—l). (2.21)
Since

"

£ b4 216 " 864 + 36 1
nN=——|-—+—+=-——),
! n(24n — 1)3/2 n 24n—1 n? n3

we see that forn > 1, flw (n) < 0. Similarly, it can be checked that for n > 4,
f, () >0, f; (n) <0,and £, (n) > 0. Consequently, for n > 4, f, (n) and f; (n)
are decreasing, whereas fz// (n) and f; (n) are increasing. Using Lemma 2.1, for each
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i, we can get a lower bound and an upper bound for AZ f; (n — 1) in terms of fl.” n—1)
and fl.” (n + 1). For example,

fin+1) < A2fiin—1) < f| (n— D).

So, by (2.21) we find that

1 ~ " " " 4
Al———logT(n=1) > f{(n+ D+ o1 =D+ [+ D+ fy(n =1 (2.22)
and
1 ~ " " " "
A logT(1=1) < fi/(n= D4 f (1t D+ f5 (=D fy (1), (223)
where
f”( ) T2 127 n b4 (2.24)
n) = — s .
! n(24n — 132 n224n — 1)3/2 7 3p324n — 1)3/2
” 6log (n) 72 864
= — , 2.25
f2(m) 3 Qan—n2 T nan =12 2.25)
p 4r? 2log(u(n) — 1)
(u(n) — 1)*(24n — n n
4 24w
— — T (2.26)
(u(n) — D/24n — 102 (n(n) — 1)(24n — 1)3/n
” 210 d
£l = nf . (2.27)
According to (2.24), one can check that forn > 2,
” 727T 127T
1 — . 2.28
) > e G 123972~ (it 12 @an 1 23)° 2.28)
An easy computation shows that for n > 3,
2
umn)—1> gu(n —2). (2.29)
Substituting (2.29) into (2.26) yields that
" 21o n+1)—1 540 36
Fons 280D D ) - y
(n+1) 24n —25(n—1) (24n—-25(n—1)
(2.30)
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Using (2.25) and (2.30), we find that

fHr—1+ f(n+1)
_ 2log(un+1) = 1) _ Glog(u(n — 1)

(n+1)3 n—1)3
+ 324 + 36 2.31
n—1Q4n —25)2  (n— 1)2(24n —25)° @.31)
Apparently, forn > 2,
2 2 12
n+1)3 m—13 (-1
so that
2log(u(n+1) = 1) 6log(u(n — 1))
(n+1)3 n—1)3
2log(u(n+1)—1) _ 2log(u(n+1)—1) _ 4log(u(n — 1))
(n+1)3 (n—1)3 (n—1)3
_ _2logun+ 1) —1) _ 4log(u(n — 1) o)
(n— 1* (n—1)3
Since, forn > 2,
324 n 36 2 (2.33)
(n—1)Q4n — 252  (n — 1)2(24n — 25) ~ (n—1>3 ’
utilizing (2.31) and (2.32) yields, for n > 3,
" " 4log(u(n — 1)) 2 12log(u(n+1) — 1)
S =4S+ > =775 n—13 n— 1)
(2.34)
Using (2.27), (2.28), and (2.34), we deduce that
A+ D+ f[o=D+ o+ +f0—1) - Bin
2(1 +logd) _ 127 B 12log(u(n +1) — 1) 235
(n—1)3 (n + 1)2(24n 4 23)3/2 (n— 14 @

Let C(n) be the right-hand side of (2.35). By (2.22), to prove B(n) < Azanl log T
(n — 1), it is enough to show that C(n) > 0 when n > 40. Since logx < x forx > 0
and, for n > 3,

Mmuy4<%mM—m, (2.36)
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we get
Rlog(un+1) —1)  12(um+1) —1) 3247 .
- n— 1)t Tt T aope @3

Note that for n > 2,

127 24w
_ > — . (2.38)
(n + 1)2(24n 4 23)3/2 48(n — 1)7/2
Combining (2.37) and (2.38), we see that for n > 2,
2(1 +logd 34+ 1/48)/24
Cny > 20 T1ogd) G+ 1/48)vadn (2.39)

(n—1)3 (n—1)7/2
It is straightforward to show that the right-hand side of (2.39) is positive if n > 490.

For 40 < n < 489, it is routine to check that C(n) > 0, and so C(n) > 0 for n > 40.
It follows from (2.35) that for n > 40,

AZ

1 ~
1 logT(n — 1) > By(n).

To derive the upper bound for A2—log T(n — 1), we obtain the following upper

n—1
bounds which can be verified directly. The proofs are omitted. For n > 2,

-1 < T2 ,
(n — 1)[24n —25]3/2
" 6logun+1) 9
LoD === T T
Fao1)<— 472 2log(pu(n — 1))
3 (n(n —1)%(24n —25)(n — 1) (n—1)3
B 4 _ 247
un— D240 —25(n — )2 pn — 1D)(24n —25)32(n — 1)’
" ” 3 12log(u(n+ 1)) 4log(u(n + 1))
LOADF RO <O Gt T o T ek

fi(n+1) <o0.

Combining the above upper bounds, we conclude that for n > 40,

=D+ fHa+D)+f500— D+ f (n+1) < Ba(n).
This completes the proof. O

The following lemma gives an upper bound for IAZE(n — 1)|.
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290 W. Y. C. Chen, K. Y. Zheng

Lemma 2.3 Forn > 40,

5 T n—
e TR 2l (2.40)
-

IA2E(n — 1)| <
Proof By (2.14), we find that for n > 2,

A*E(n—1) =

log(1 + y,—
p— og(1+ 7y, 1)+n_|_1

~ 2 ~
log(1 + Yp41) — - log(1 + yn),
(2.41)

where
Yo = R()/T (n).

To bound |AQE (n —1)|, itis necessary to bound ;. For this purpose, we first consider
R(n), as defined by (2.10). Since d < 1 and u(n) > 2, forn > 1 we have

d 1\ (1) 2\ ww (=) 2\ _um
e ) )
()2 [( U(n))e A UTwm) T T A Uum )

(1+e“(z") +1) .

= )2

For N =2 and n > 1, Lehmer’s bound (2.2) reduces to

4w
IRy (n.2)| <4(1+—)3e ; )

u(n
By the definition of R (n),
~ 1 () () ()
\Rn)| < (1+e2 +1)+4(1+ ez)<5+ e
n(n)? m(n)? (n)?
(2.42)
Recalling the definition (2.9) of T(n), it follows from (2.42) that for n > 1,
5,] < — 1 (S/L(n)2e_w +9e_%) e (2.43)
Ay -1 ' '
Observe that forn > 2,
(su(n)%—@ + 9e—%) <0, (2.44)
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and

’

(—d(”“(") — 1)) =0 (2.45)
u(n) ' '

Since

 2u040) _ueo)  d(u(40) — 1)
SUP@E0)e™ T3 49 6 < ————
14(40)

using (2.44) and (2.45), we deduce that for n > 40,

n n d - 1
su2(nye= 42 4 gt AW -1 (2.46)
wu(n)

Now, it is clear from (2.43) and (2.46) that for n > 40,

5] < e~ 5. (2.47)
In view of (2.47), for n > 40,
L 1

5l < e “57 < - (2.48)

It is known that log(1 + x) < x for0 < x < 1 and —log(1 + x) < —x/(1 + x) for
—1 < x < 0. Thus, for |x]| < 1,

x|

llog(1 + x)| < : (2.49)
L — x|
see also [5], and so it follows from (2.48) and (2.49) that for n > 40,
~ [V | 5 .
og(1 4+ )| < —2— < 2[5, (2.50)
L— 1|yl — 4

Because of (2.41), we see that forn > 2,

~ 1 - 1 ~ 2 ~
|A2E (- 1)| = — log(1+F,-1) |+ —— llog(1+T1)|+ > llog(1+5,)].
n—1 n+1 n

(2.51)
Applying (2.50) to (2.51), we obtain that for n > 40,
= 5 (1yn=1l | [Yns1l | 213l
NEm-1| =2 . 2.52
‘ (=D} = 4 (n -1 n+1 + n (252)
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Plugging (2.47) into (2.52), we infer that for n > 40,

_ pm=1 _ ptl) _ un)
‘Azg(n—l)’<§ AR B (2.53)
4\ n—1 n+1 n ’
But %e‘uan) is decreasing for n > 1. It follows from (2.53) that for n > 40,
-~ 5 (n—
‘AZE(n - 1)‘ < e
n—1

This proves (2.40). m|

With the aid of Lemmas 2.2 and 2.3, we are ready to prove the log-convexity of
{r(m)}n=60-

Proof of Theorem 1.1. To prove the strict log-convexity of {r(n)},>60, we proceed to
show that for n > 61,

A’logr(n —1) > 0.

( logn)///
— ) >0.
n

_Azlog(n -1 N (_ log(n — 1))”’

n—1 n—1

Evidently, for n > 40,

By Lemma 2.1,

that is,
_ Azlog(n —1) _210g(n —1) 3

> .
n—1 (n—1)3 (n—1)3
It follows from (2.12) that

(2.54)

_ A2log(n -1
n—1

A’B(n—1) = A? logT(n — 1)

n—1
Applying Lemma 2.2 and (2.54) to the above relation, we deduce that for n > 40,

2log(n — 1) 3
(n—1)3 (n—1)>%

A’B(n—1) > Bi(n) —

that is,

12 4log[u(m —1)]  2log(n — 1) 3
> — — .
(n + 1)(24n +23)3/2 (n—1)>3 (n—1)3 n—1)3
(2.55)

A*B(n—1)
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By (2.11) and Lemma 2.3, we find that for n > 40,

5 xJ2E—35

A’logr(n—1) > A’B(n — 1) — e (2.56)
n—
It follows from (2.55) and (2.56) that for n > 40,
72 41 —1 21 -1
A2logr(n — 1) = 7T _ 4log[pu(n — 1] 2log(n — 1)
(n + 1)(24n + 23)3/2 (n—1)>3 (n—1)>3
3 5 _n\/214§17—25
e .

+(n—1)3_n—1

Let D(n) denote the right-hand side of the above relation. Clearly, for n > 5505,

12 3 1 2.57)
> > . .
(n+1DQ4n+23)32 " 24+ 1)52 ~ (n—1)3/2
To prove that D(n) > 0 for n > 5505, we wish to show that for n > 5505,
4log[pu(n — 1] 2log(n — 1) 3
(n—1)3 (n—1)3 (n—1)3
5 72425 1
— T - 2.58
n—1° TR (2.58)
Using the fact that for x > 5504, logx < x4, we deduce that for n > 5505,
Aloglun — )] 4¥um—1) 4/7V24n—24 6
< < < , (2.59)
(n—1)3 (n—1)3 (n—1)>3 (n—1)23/3
and
21 -1 2mn-Dn* 2
ogln — D _2m=D 7 _ . (2.60)
(n—1)3 (n—1)3 (n — 1)t1/4
Since ¢* > x6/720 for x > 0, we see that forn > 2,
1 2202 1 vz 2094 2094
e 18 < e B < < . (2.61)
n—1 n—1 nh-1  n-1*
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Combining (2.59), (2.60), and (2.61), we find that for n > 5505,

4loglu(m — )]  2log(n — 1) 3 5 _m/zitg—zs
- — — e
(n—1)3 (n—1)3 n-—03 n-1
6 2 3 10470
> — —~ + —~
n—10288 m-DW4* m-13 @n-1*
6 2
> —_— p—
(n—1)23/8 (n_1)11/4
1
>
(n —1)5/2

This proves the inequality (2.58). By (2.58) and (2.57), we obtain that D(n) > 0 for
n > 5505. Verifying that A2logr(n — 1) > 0 for 61 < n < 5504 completes the
proof. O

Clearly, Theorem 1.3 is a generalization as well as a unification of Theorems 1.1
and 1.2. In fact, it can be proved in the same manner as the proof of Theorem 1.1.

Proof of Theorem 1.3. Let « be a real number. When o < 0, it is clear that ﬁ is

log-convex. It follows from Theorem 1.2 that \/p(n)/n® is log-convex for n > 26.
We now consider the case « > 0. A similar argument to the proof of Theorem 1.1
shows that for n > 40,

A*log "/p(n—1)/(n — 1)*

1 1 1 -1
= A? log T (n) + A2 log(l + yp_1) — a2 28— D
n—1 n—1 n—1
12 4loglu(n — 1)] 2alog(n — 1)
> — —
(n+ 1)(24n + 23)3/2 (n—1)>3 (n—1)3
3« 5 7+/24n=25
—— ——e B 2.62
Tao1 aoi (2.62)
It is easy to check that for n > max {[%ﬁ] +2,5505},
3a 5 _ /24025 3a 10470
— — ——¢ 18 > — >
n—03 n-1 m—13 ((m—-D4
and that for n > max{[(2« + 3)*] + 2, 5505},
4loglu(n — 1)] 2alog(n — 1) 6 20 1
— — > — — > — .
(n—1)3 (n—1)3 (n—1)23/8  (n— 14 (n —1)3/2

Let

n(a) = max ”:31&} + 2, [Qa + 3)4] +2,5505¢ .
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It can be seen that for n > n(w),

_ 4log[u(n — 1)] _ 2o log(n — 1) 3a
(n—1)3 (n—1)y3 (n—1)3
5 ,ﬂiﬂ;‘;*l‘ 1

n—1° T

(2.63)

Combining (2.57) and (2.63), we deduce that the right-hand side of (2.62) is positive
forn > n(a). So we are led to the log-convexity of the sequence {/p(n)/n%},>pn().0

"\ p(n—=1)

3 An inequality on the ratio —
p(n)

In this section, we employ Lemmas 2.2 and 2.3 to find the limit of n3 A2 log &/ p(n).
Then we give an upper bound for A?log "/p(n — I). This leads to the inequality
(1.1).

Theorem 3.1 Let B = 3w /~/24. We have

lim n2A2log ¥/p(n) = B. 3.1
n——+o0o

Proof Using (2.8), that is, the N = 2 case of the Hardy—Ramanujan—Rademacher
formula for p(n), we find that

1 ~ 1 ~
log /p(n) = —log T (n) + —log(1 + yu),

n n

where T(n) and y, are given by (2.9) and (2.13). By the definition (2.14) of E(n), we

get
1 ~ ~
A?log "Vp(n —1) = A? . logT(n—1)+A’E(n —1). (3.2)
n—
Applying Lemma 2.2, we see that
. 35 .2 1 ~
lim (n—1)2A logT(n—1) = B. (3.3)
n—+00 n—1
From Lemma 2.3, we get
lim (n—1)3A2E(n — 1) =0, (3.4)

n——+00

Using (3.2), (3.3), and (3.4), we deduce that
lim n% A? log v/ p(n) = B,

n—+00

as required. O
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To prove Theorem 1.4, we need the following upper bound for A% log "/p(n — 1).

Theorem 3.2 Forn > 2,

A? log "v/p(n —1)

3.5
«/_n5/2 T G-

Proof By the upper bound for A2 1 7 log Tin—1) given in Lemma 2.2, the upper

bound for A2E (n — 1) given in Lemma 2.3, and the relation (3.2), we obtain the
following upper bound of A% log "/p(n — 1) for n > 40:

72 5
Alog "Vpn—1) < i 7[ +
"

DQ4n —255372 " (n—1)3
410g[u(n + 1)] 5 _71«/2:%1—25
- e .
(n+1)3 n—1

To prove (3.5), we claim that for n > 2095,

T2 + 5 4log[u(n + 1)]
(n—1)(24n —25)3/2 ° (n —1)3 (n+1)3
5 x/2in=25 3
+ eT B < ——\ (3.6)
n—1 /24152 + 37

First, we show that for n > 60,

T2 3 1 3.7)
—_ < . .
(n—1)(24n — 2532 24052 437 (n—1)3
For0 < x < R’ it can be checked that
! L+ 2y g oyl 3.8)
—_— < —x+ =x2. .
(1 —x)3/2 2 8
In the notation 8 = 37 /+/24, we have
72
7 P 3.9)

(n = 1)24n = 2532 " (n — nd32(1 — Z2)3/2°

Setting x = 24 , we have x < R for n > 60. Applying (3.8) to the right-hand side of
(3.9), we find that for n > 60,

P P 22 (2 : (3.10)
< o = . .
(n— Dn3/2(1 — 2532 (n — Dn/? 48n 8 \24n) |’
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so that for n > 60,

T2 3
(n—D[24n — 25132 /24n5/2 + 37

B 37 B 75 3 (252
< - + a2 (=) .
(n—Dn32  24n52 437 (m—Dn3/2 | 48n 8 \24n
3.11)

To prove (3.7), we proceed to show that the right-hand side of (3.11) is bounded by
ﬁ. Noting that for n > 2,

B 3 _ B B
(n—1n32  2an52 437 2+ p)n—1) " (32 + B)(n — n3/2

and using the fact n/? 4+ B> mn-— 1)5/2, together with n3? > (n— 1)3/2, we deduce
that

B o g P
(=D a4 3n =D (1)

(3.12)

Applying (3.12) to (3.11), we obtain that for n > 60,

T2 3
(n — D[24n — 25132 /24n5/2 4 37

p B B 75 325}
D R T Rk [@ T8 (m) } - OB

3
Since 22 < -2 and % ( 25 )2 < m for n > 2, it follows from (3.13) that for

48n n—1 24n
n > 60,
T2 3
(n—D[24n — 25132 /24n5/2 + 37
B B> 28 B

BT R 1 P F Y

Using the fact that 8 < 2, we see that

¥, P © _+ 4
D -1 a-DF -0 -1 (-1

;. (3.14)

Forn > 60, itis easily checked that the right-hand side of (3.14) is bounded by ﬁ
This confirms (3.7).
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To prove the claim (3.6), it is enough to show that for n > 2095,

1 4log[u(n + 1] 5 5 x5
3 < 3 — 3 — e [E I (3.15)
(n—1) n+1) (n—1) n—1

From (2.61), it can be seen that for n > 2095,

= 5
| PR (3.16)
n—1 (n—1)>3

Since 4 log[u(n + 1)] > 18 for n > 2095, it follows from (3.16) that for n > 2095,

4log[u(n + 1)] 5 5 771./2;1;1725
— — e
(n+1)3 n-—03 n-1
18 10 1

T’ —13 m—1?

So we obtain (3.15). Combining (3.15) and (3.7), we arrive at (3.6). For2 < n < 2094,
the inequality (3.5) can be easily checked. This completes the proof. O

We are now in a position to complete the proof of Theorem 1.4.

Proof of Theorem 1.4. 1t is known that for x > 0,
= < log(l +x)
— <o X),
I+x g

so that forn > 1,

37 < lo (1 + 37 )
V24052 4 37 g V24n52 )"

In light of the above relation, Theorem 3.2 implies that for n > 2,

A?log "V/p(n —1) < log (1 + Ner? 5/2)
that is,
"Wp+ D) "Vp—1) < ( i 5/2) (/pm))?,
as required. O

We remark that 8 = 37 /+/24 is the smallest possible number for the inequality in
Theorem 1.4. Suppose that 0 < y < B. By Theorem 3.1, there exists an integer N
such that forn > N,

/2 A? log "V/p(n—1) > y.
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It follows that
A? log "V/p(n—1) > % > log (1 + %) ,
nd/ nd/
which implies that forn > N,

Ypn) (14+-7)) < Ypin— 1
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