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Abstract. Let A = (ai)
∞
i=1 be a weakly increasing sequence of positive in-

tegers and let k be a fixed positive integer. For an arbitrary integer n, the
restricted partition pA(n, k) enumerates all the partitions of n whose parts
belong to the multiset {a1, a2, . . . , ak}. In this paper we investigate some gen-
eralizations of the log-concavity of pA(n, k). We deal with both some basic
extensions like, for instance, the strong log-concavity and a more intriguing
challenge that is the r-log-concavity of both quasi-polynomial-like functions
in general, and the restricted partition function in particular. For each of the
problems, we present an efficient solution.

1. Introduction

Let k be a fixed positive integer and let A = (ai)
∞
i=1 be a non-decreasing

sequence of positive integers (in fact, it is enough to assume that A is a k-tuple).
A restricted partition λ of a non-negative integer n is a sequence of positive integers
λ1, λ2, . . . , λj such that

n = λ1 + λ2 + · · ·+ λj ,

and all of these numbers λi belong to the multiset {a1, a2, . . . , ak}. These elements
λi are further called parts of the partition λ. Moreover, we also assume that two
restricted partitions are considered the same if there is only a difference in the
order of their parts. The restricted partition function pA(n, k) counts all restricted
partitions of n. For example, let A = (2, 3, 3, 5, 5, 5, 7, 7. . . .) be a sequence of
consecutive prime numbers such that the i-th prime number appears in i distinct
colors. If k = 6 and n = 7, then we only take into account those restricted partitions
of 7 whose parts belong to {2, 3, 3, 5, 5, 5}, that are: (5, 2), (5, 2), (5, 2), (3, 2, 2),
and (3, 2, 2). Thus, pA(7, 6) = 5. We may extend the definition of pA(n, k) to all
integers simply by setting pA(n, k) = 0 if n is negative. It is also worth noting that
pA(0, k) = 1 for every k ∈ N+, because of the empty sequence λ = (). Moreover,
if we consider the sequence of consecutive positive integers A1 = (1, 2, 3, 4, . . .) and
allow ‘k =∞’, then we obtain the well-known partition function p(n) = pA1

(n,∞).
In 1748 Euler discovered the generating function for p(n), that is

∞∑
n=0

p(n)xn =

∞∏
i=1

1

1− xi
.

For the function pA(n, k), the corresponding generating function takes the form

(1.1)
∞∑
n=0

pA(n, k)xn =

k∏
i=1

1

1− xai
.
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2 KRYSTIAN GAJDZICA

There is an abundance of literature devoted to the restricted partition func-
tion. For arithmetic properties of pA(n, k), we refer the reader to [15, 31, 38]. On
the other hand, for some information about the asymptotic behavior we encourage
to see [1, 8, 12].

The main goal of this manuscript is to generalize some results recently ob-
tained by the author in [16]. There is an efficient criterion for the log-concavity
of the restricted partition function. Let us recall that a sequence (wi)

∞
i=0 of real

numbers is log-concave, if the inequality

w2
n > wn+1wn−1

holds for all n > 1. The main result of the aforementioned paper is the following.

Theorem 1.1. Let A = (ai)
∞
i=1 be a weakly increasing sequence of positive integers,

and let k ∈ N>4 be fixed. Suppose further that gcdA = 1 for all (k−2)-multisubsets
A of {a1, a2, . . . , ak}. If we have that k > 4, then both

p2A(n, k) >

(
1 +

1

n2

)
pA(n+ 1, k)pA(n− 1, k)(1.2)

and

p2A(n, k) > pA(n+ 1, k)pA(n− 1, k)(1.3)

hold for all n > 2
k

∏k
i=1(1 + iDk), where D = lcm(a1, a2, . . . , ak). For k = 4, (1.3)

remains valid for all such n while (1.2) is true for each n > 3
k

∏k
i=1(1 + iDk).

Additionally, for the constant sequence A = (1, 1, 1, . . .), we have that (1.3) is
satisfied for all positive integers n and k > 2; and (1.2) is true for any integers
k > 3 and n > k

k−2 .

The above criterion is optimal in a sense that it can not be extended for any
other sequence A and parameter k. That is a consequence of [16, Corollary 5.8]:

Corollary 1.2. Let A = (ai)
∞
i=1 be an arbitrary non-decreasing sequence of positive

integers. The sequence (pA(n, k))
∞
n=1 is eventually log-concave if and only if we have

k > 2 and a1 = · · · = ak = 1 or k > 4 and gcdA = 1 for all (k − 2)-multisubsets A
of {a1, a2, . . . , ak}.

Now, we investigate some generalizations of Theorem 1.1. Similar to DeSalvo
and Pak [11] (in the case of p(n)), we discuss the so-called strong log-concavity of
pA(n, k), that are inequalities of the form

p2A(n, k) > pA(n+m, k)pA(n−m, k),

for all fixed positive integers m. The authors prove the following.

Theorem 1.3. For all n > m > 1, we have

p2(n) > p(n+m)p(n−m).

It is worth noting that the above statement was firstly conjectured by Chen
[6] as well as the next one.

Conjecture 1.4. For all positive integers a and b such that a > b, we have

p2(an) > p(an+ bn)p(an− bn).

Therefore, we also examine under what conditions on a sequence A = (ai)
∞
i=1 and

k > 0, the inequality

p2A(an, k) > pA(an+ bn, k)pA(an− bn, k)

is valid for all sufficiently large values of n, where a and b are fixed positive integers
such that a > b.
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Furthermore, DeSalvo and Pak [11] resolve Sun’s conjecture [37], namely,
they prove that the sequence p(n)/n is log-concave for n > 31. On the other hand,
we deal with the log-concavity of pA(n, k)/nα, where α is an arbitrary positive real
number: (

pA(n, k)

nα

)2

>

(
pA(n+ 1, k)

(n+ 1)α

)
·
(
pA(n− 1, k)

(n− 1)α

)
.

It should be pointed out that research related to log-behavior is not only art
for art’s sake, but it plays a crucial role in many subjects, and there is a wealth of
literature devoted to its applications, see [2, 4, 13, 14, 23, 24, 27, 30, 34, 36, 41]. For
example, log-concave sequences appear in mathematical biology, where they enu-
merate secondary structures of some biopolymers [14, 34]. Also, the log-concavity
plays an important role in signal processing in the so-called white noise theory, see
[2]. Moreover, Huh [23] discovered an interesting interplay between log-concavity
and purely chromatic graph theory. On the other hand, log-convex sequences
(w2

n < wn−1wn+1) are used in quantum physics for constructing generalized co-
herent states in models with discrete non-linear spectra, see [24]. In probability
theory, Warde and Katti [41] showed that there is also a simple sufficient condi-
tion for a discrete random variable X to be infinitely divisible which is directly
connected with the log-convexity of the sequence (P{X = n})∞n=1.

We also discuss a bit more involved challenge related to the restricted parti-
tion function — that is the r-log-concavity of pA(n, k). A sequence ω = (wi)

∞
i=0 is

said to be (asymptotically) r-log-concave, if there is a positive integer N such that(
L̂ω
)
i
,
(
L̂2ω

)
i
, . . . ,

(
L̂rω

)
i

are positive for each i > N , where

L̂ω =
(
w2
i+1 − wiwi+2

)∞
i=0

and L̂kω = L̂
(
L̂k−1ω

)
for k ∈ {2, 3, . . . , r}. It is clear that 1-log-concavity of (wi)

∞
i=0 corresponds to

w2
n+1 − wnwn+2 > 0; the 2-log-concavity additionally requires that the inequality

w4
n+2 − 2wn+1w

2
n+2wn+3 + w2

n+1wn+2wn+4 + wnwn+2w
2
n+3 − wnw2

n+2wn+4 > 0

is satisfied for all n > N . Clearly, as r grows, the required conditions become more
and more intricate.

Despite the fact that the r-log-concavity problem for a given sequence is
a highly non-trivial task in general, Hou and Zhang [21] discovered an effective
criterion for its solution (see, Theorem 4.3 below). Moreover, these authors used
that result and proved that the partition function p(n) is (asymptotically) r-log-
concave for each r ∈ N+, for more details see [22]. Afterwards, Mukherjee, Zhang
and Zhong [28] applied the aforementioned criterion and showed that the overpar-
tition function is (asymptotically) r-log-concave for any r ∈ N+. Recall that an
overpartition [9] of an integer n is a partition of n where the first occurrence of
every distinct part may be overlined. The overpartition function p(n) denotes the
number of all overpartitions of n. There is a rich and vast literature dealing with
the analogous problems for other sequences, we encourage the reader to see, for
instance, [5, 7, 10, 18, 19, 20, 25, 26, 29, 32, 33, 39, 40].

We present a similar result to those mentioned above in the case of the
restricted partition function pA(n, k). In fact, we show a bit more general criterion
for r-log-concavity of quasi-polynomial-like functions. By a quasi-polynomial-like
function we mean any expression of the form

f(n) = al(n)nl + al−1(n)nl−1 + · · ·+ al−s(n)nl−s + o
(
nl−s

)
,
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where l and s are fixed positive integers such that l > s, al−s(n), . . . , al(n) are real
coefficients depending on the residue class of n (mod M) for some M > 2, and o
denotes the standard little-o notation. The main result of this paper presents, in
some sense, optimal requirements on the function f(n) to prove that it is r-log-
concave for any r > 1.

This manuscript is organized as follows. Section 2 contains necessary nota-
tions, properties and tools that are used throughout the article. Section 3 is devoted
to some basic generalizations of the log-concavity criterion for the restricted parti-
tion function. We investigate the analogues of both Theorem 1.3 and Conjecture
1.4, as well as the log-concavity of the sequence (pA(n, k)/nα)

∞
n=1. Finally, Section

4 studies the r-log-concavity of both quasi-polynomial-like functions and the re-
stricted partition function pA(n, k). To deal with these problems, we use methods
from Hou and Zhang’s paper [21]. Actually, we also present an alternative more
direct approach which is effective in the case of quasi-polynomial-like functions.

2. Preliminaries

At the beginning, let us fix some notations. The set of non-negative integers
is denoted by N, while N+ and R+ correspond to the sets of positive integers and
positive real numbers, respectively. Additionally, we put N>k = N\{0, 1, . . . , k−1}.

Henceforth, A = (ai)
∞
i=1 denotes a weakly increasing sequence of positive

integers. Let k and n be fixed positive integers. The restricted partition function
pA(n, k) enumerates all partitions of n with parts in the multiset {a1, a2, . . . , ak}.
We additionally set pA(0, k) = 1 and pA(n, k) = 0 if n < 0. From the equality (1.1),
one can easily derive a recurrence relation for the restricted partition function of
the form

pA(n, k) = pA(n− ak, k) + pA(n, k − 1),

where k > 2. For k = 1, we have

pA(n, 1) =

{
0, if a1 - n,
1, if a1 | n.

It turns out that restricted partition function pA(n, k) behaves ‘almost like’ a poly-
nomial of degree k − 1. More precisely, it is a quasi-polynomial of the form

pA(n, k) = ck−1(r)nk−1 + ck−2(r)nk−2 + · · ·+ c0(r),

where every cj(r) depends on the residue class r of n (mod lcm(a1, a2, . . . , ak))
for 0 6 j 6 k − 1 (for additional information about quasi-polynomials, we re-
fer the reader to Stanley’s book [35, Section 4.4]). This result goes back to Bell
[3], who showed it via partial fraction decomposition of the related rational gen-
erating function. However, there are more concrete estimates for the restricted
partition function. For instance, Almkvist [1] obtained a very elegant result re-
lated to the asymptotic behavior of pA(n, k). Let us define symmetric polynomials
σi(x1, x2, . . . , xk) by the power series expansion

k∏
i=1

xit/2

sinh(xit/2)
=

∞∑
m=0

σm(x1, x2, . . . , xk)tm.

Then Almkvist’s characterization of pA(n, k) is the following.

Theorem 2.1. Let A = (ai)
∞
i=1 and k ∈ N>2 be fixed. For a given integer j ∈

{1, 2, . . . , k}, if gcdA = 1 for every j-element multisubset (j-multisubset) A of
{a1, a2, . . . , ak} and σ = a1 + a2 + · · ·+ ak, then

pA(n, k) =
1∏k
i=1 ai

k−j∑
i=0

σi(a1, a2, . . . , ak)
(n+ σ/2)k−1−i

(k − 1− i)!
+O(nj−2)
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as n→∞.

One can verify that σ0 = 1, and σi = 0 if i is odd. Moreover, if we put
si = ai1 + ai2 + · · ·+ aik, then

σ2 = − s2
24

, σ4 =
5s22 + 2s4

5760
, σ6 = −35s32 + 42s2s4 + 16s6

2903040
.

Further, it turns out that converse implication in Theorem 2.1 is also true, because
of the following.

Proposition 2.2. Let A = (ai)
∞
i=1 and k ∈ N+ be fixed. If

pA(n, k) = ck−1n
k−1 + ck−2n

k−2 + · · ·+ cj−1n
j−1 + cj−2(n)nj−2 + · · ·+ c0(n),

where ck−1, . . . , cj−1 are independent of a residue class n (mod lcm(a1, . . . , ak)),
then gcdA = 1 for all j-multisubsets A of {a1, a2, . . . , ak}.

For more details about the aforementioned result, we refer the reader to [16].
It is also worth noting that we have an explicit formula for pA(n, k) — that is
a result due to Cimpoeaş and Nicolae [8] with a small modification. Before we
present their theorem, let us recall that the unsigned Stirling number of the first
kind

[
n
m

]
is the number of permutations of n elements with exactly m cycles. It

might be defined equivalently as the coefficient of the rising factorial (Pochhammer
function), namely

xn := x(x+ 1) · · · (x+ n− 1) =

n∑
i=0

[
n

i

]
xi.

We encourage the reader to see [17, Chapter 6] for more information about Stirling
numbers.

Theorem 2.3. For any A = (ai)
∞
i=1 and k > 1, we have

pA(n, k) =
1

(k − 1)!

k−1∑
m=0

∑
06j16 D

a1
−1...

06jk6 D
ak
−1

S≡n (mod D)

k−1∑
i=m

[
k

i+ 1

]
(−1)i−m

(
i

m

)
D−iSi−mnm,

where D = lcm(a1, a2, . . . , ak) and S = a1j1 + · · ·+ akjk.

Remark 2.4. One can notice that there is a difference between the statement
in Theorem 2.3 and the original formula from Cimpoeaş and Nicolae’s paper [8,
Theorem 2.8] which states that

pA(n, k) =
1

(k − 1)!

n−1∑
m=0

∑
06j16 D

a1
−1...

06jk6 D
ak
−1

S≡n (mod D)

k−1∑
i=m

[
k

i

]
(−1)i−m

(
i

m

)
D−iSi−mnm

with the same notation as before. At first, there is a typographical error over the
first sum, namely, there has to be k − 1 instead of n− 1. Furthermore, we need to
replace

[
k
i

]
by
[
k
i+1

]
— that is a consequence of the equality(

n+ k − 1

k − 1

)
=

1

(k − 1)!

k−1∑
i=0

[
k

i+ 1

]
ni,

which is accidentally misspelled at the beginning of Section 2 in [8].
For the sake of clarity, it should be also pointed out that in Theorem 2.3, we

may have that S = 0. If this is the case, we assume that 00 = 1.



6 KRYSTIAN GAJDZICA

From the above-mentioned properties, the author [16] deduced the following
lower and upper bounds for the restricted partition function.

Proposition 2.5. Let A = (ai)
∞
i=1 and k ∈ N>2 be fixed. For a given integer

j ∈ {2, 3, . . . , k}, if gcdA = 1 for all j-multisubsets A of {a1, a2, . . . , ak}, then

ck−1n
k−1+ · · ·+cj−1nj−1−Fnj−2 < pA(n, k) < ck−1n

k−1+ · · ·+cj−1nj−1+Fnj−2

holds for every n > 0, where all the coefficients ci are uniquely determined by
Theorem 2.1, and F =

∏k
i=1(1+iDk)

k!
∏k
i=1 ai

with D = lcm(a1, a2, . . . , ak).

It is worth mentioning that the constant F appearing in Proposition 2.5 is
not optimal, nevertheless we will soon observe the usefulness of the result.

3. Some basic extensions of the log-concavity criterion for pA(n, k)

Our first goal is to resolve a few of the problems presented in Introduction,
that are

p2A(n, k) > pA(n+m, k)pA(n−m, k),(3.1)

p2A(an, k) > pA(an+ bn, k)pA(an− bn, k),(3.2) (
pA(n, k)

nα

)2

>

(
pA(n+ 1, k)

(n+ 1)α

)
·
(
pA(n− 1, k)

(n− 1)α

)
,(3.3)

where a, b,m are fixed positive integers such that a > b while α is an arbitrary
positive real number. Essentially, all of them are very similar to Theorem 1.1 in
the proof. Let us present a heuristic reasoning for the inequality (3.1). The idea is
quite easy, we apply Proposition 2.5 in order to bound both p2A(n, k) from below
and pA(n + m, k)pA(n − m, k) from above. Subsequently, we just compare these
bounds and examine when the relevant inequality between them holds.

Theorem 3.1. Let A = (ai)
∞
i=1 and m ∈ N>2 be fixed. Suppose farther that k > 4

and gcdA = 1 for every (k − 2)-multisubset A ⊂ {a1, a2, . . . , ak}. If 2d̂ > 3m3,
then the inequality

p2A(n, k) > pA(n+m, k)pA(n−m, k)

holds for all n > d̂, where d̂ = k−1
∏k
i=1(1 + iDk) with D = lcm(a1, a2, . . . , ak);

otherwise it is valid for any n > 3m. Additionally, for the constant sequence A =
(1, 1, 1, . . .), the above inequality is satisfied for all positive integers n and k > 2.

Proof. First, let A = (1, 1, 1, . . .) be a constant sequence. Observe that Theorem
2.3 maintains that

pA(n, k) =

(
n+ k − 1

k − 1

)
.(3.4)

Thus, the second part of the statement can be directly verified. For the first one,
let k, m and {a1, a2, . . . , ak} satisfy the assumptions in the theorem. It follows from
Proposition 2.5 that the inequalities

ank−1 + bnk−2 + cnk−3 − dnk−4 < pA(n, k) < ank−1 + bnk−2 + cnk−3 + dnk−4
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hold for all n, where the coefficients a, b, c and d are given by

a =
1

(k − 1)!
∏k
i=1 ai

,

b =
σ

2(k − 2)!
∏k
i=1 ai

,

c =
3σ2 − s2

24(k − 3)!
∏k
i=1 ai

,

d =

∏k
i=1(1 + iDk)

k!
∏k
i=1 ai

with σ = a1 + a2 + · · · + ak, s2 = a21 + a22 + · · · + a2k and D = lcm(a1, a2, . . . , ak).
Now, it is enough to check when the following inequality[

ank−1 + bnk−2 + cnk−3 − dnk−4
]2

>
[
a(n+m)k−1 + b(n+m)k−2 + c(n+m)k−3 + d(n+m)k−4

]
×
[
a(n−m)k−1 + b(n−m)k−2 + c(n−m)k−3 + d(n−m)k−4

]
is true. The above might be simplified to

3m2n4 + 4(b̂m2 − d̂)n3 + (2b̂2m2 − 3m4 − 4b̂d̂)n2 + 2(b̂ĉm2 − b̂m4 − 3d̂m2 − 2ĉd̂)n

+ ĉ2m2 − 2b̂d̂m2 − b̂2m4 + 2ĉm4 +m6 > 0,

where b̂ = b/a, ĉ = c/a and d̂ = d/a. Next, let f(n) denote the polynomial on the
left hand side. Both real roots of the second derivative of f(n) are given by

n1 =
2d̂− 2b̂m2 −

√
2
√

2d̂2 + 3m6

6m2
,

n2 =
2d̂− 2b̂m2 +

√
2
√

2d̂2 + 3m6

6m2
.

Now, it is convenient to investigate two separately cases. Either we have that
2d̂2 > 3m6 or 2d̂2 < 3m6.

Case 1: If the inequality 2d̂2 > 3m6 holds, then n2 6 d̂. But, this implies that f ′(n)

is increasing for all n > d̂. One can also easy verify that f ′(d̂) > 0 and f(d̂) > 0,
so we get that both f ′(n) and f(n) are positive for every n > d̂.

Case 2: Since we assume that 2d̂2 < 3m6, it is straightforward to see that n2 6 m.
Thus f ′(n) grows for n > m. Furthermore, one may check that f ′(3m) > 0 as well
as f(3m) > 0. Hence, f(n) is positive for all n > 3m, which finishes the proof.

�

Let us note that the case of m = 1 is omitted in the above, because it is
contained in Theorem 1.1. It is also worth pointing out that the demands for
parameter n in Theorem 3.1 are not optimal. Nevertheless, the result may be
applied for a wide class of integer sequences. Furthermore, by virtue of Corollary
1.2 and Theorem 3.1, we obtain the following characterization.

Corollary 3.2. The sequence (pA(n, k))
∞
n=1 is eventually strong log-concave (the

inequality (3.1) is satisfied for any positive integer m and sufficiently large values
of n) if and only if we have k > 2 and a1 = · · · = ak = 1 or k > 4 and gcdA = 1
for all (k − 2)-multisubsets A of {a1, a2, . . . , ak}.

Proof. It follows directly from Corollary 1.2 and Theorem 3.1. �
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Now, it is time to deal with the next task of this section. Surprisingly, the
following is true.

Corollary 3.3. Let A = (ai)
∞
i=1 and u, v ∈ R+ be fixed such that u > v. If k > 2

and gcd(a1, a2, . . . , ak) = 1, then the inequality

p2A(un, k) > pA(un+ vn, k)pA(un− vn, k)

is true for every n > 4u
kv2

∏k
i=1(1 + iDk) with D = lcm(a1, a2, . . . , ak) whenever

un, un+ vn and un− vn are integers.

Since the proof of Corollary 3.3 is very easy and analogous to that one of
Theorem 3.1, we leave it as an exercise for the reader. It is worth pointing out
that even though the inequalities (3.1) and (3.2) look very similar, the criteria
for their solutions are significantly different. In addition, even if we assume that
gcd(a1, a2, . . . , ak) > 1, then (3.2) might be still valid for all sufficiently large values
of n, as it is shown in the following instance.

Example 3.4. Let A = (2, 2, 2, . . .) be a constant sequence and let k ∈ N+ be
fixed. Suppose further that u = 4 and v = 2. Thus we deal with the inequality of
the form

p2A(4n, k) > pA(6n, k)pA(2n, k).(3.5)

Now, observe that the equality pA(2n, k) = pB(n, k) holds for every integer n, where
B = (1, 1, 1, . . .). Therefore, as a consequence of the equality (3.4), we may reduce
the problem to (

2n+ k − 1

k − 1

)2

>

(
3n+ k − 1

k − 1

)(
n+ k − 1

k − 1

)
.

Finally, it might be easily checked that the leading coefficient on the left hand side
is 4k−1/ ((k − 1)!)

2, while on the right hand side it is 3k−1/ ((k − 1)!)
2, and both of

them stand next to n2k−2. Hence, for each k > 1, we get that the inequality (3.5)
is satisfied for all but finitely many positive integers n.

The above example shows that the inequality (3.2) is not a really interesting
problem for the restricted partition function, despite the fact that its analogue for
p(n) is (see, [6, 11]).

In the last part of this section, we present a complete solution of the inequal-
ity (3.3). It turns out to be a more fascinating challenge than the previous ones, as
the following result suggests.

Theorem 3.5. Let A = (ai)
∞
i=1 and α ∈ R+ be fixed. The sequence

(
pA(n,k)
nα

)∞
n=1

is eventually log-concave if and only if we have k > α + 1 and either 2 6 k 6 3
and a1 = a2 = a3 = 1 or k > 4 and gcdA = 1 for all (k − 2)-multisubsets A of
{a1, a2, . . . , ak}.

Proof. Let A = (ai)
∞
i=1 and α be as in the statement. At the beginning, we prove

the implication to the left hand side. We just need to solve the inequality

(n2 − 1)αp2A(n, k)− n2αpA(n+ 1, k)pA(n− 1, k) > 0.

Our first goal is to bound the left hand side from below. In order to do that we
apply the generalized binomial theorem which maintains that

(n2 − 1)α =

∞∑
j=0

(−1)j
(
α

j

)
n2(α−j),
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where (
α

j

)
=
α(α− 1) · · · (α− j + 1)

j!
.

Since we must have n > 2, it is clear that the following inequalities

(n2 − 1)α >

bαc+1∑
j=0

(−1)j
(
α

j

)
n2(α−j) −

(
α

bαc

)
n2(α−bαc−2)

∞∑
j=0

n−2j

>

bαc+1∑
j=0

(−1)j
(
α

j

)
n2(α−j) − 2

(
α

bαc

)
n2(α−bαc−2) = f(n)

are valid. We consider two cases depending on both the value of k > α+ 1 and the
multiset {a1, a2, . . . , ak}.

Case 1: First, we assume that k > 4 and gcdA = 1 for all (k − 2)-multisubsets A
of {a1, a2, . . . , ak}. It is enough to deal with

f(n)p2A(n, k)− n2αpA(n+ 1, k)pA(n− 1, k) > 0.

From the assumptions on the multiset {a1, . . . , ak} and Theorem 2.1, we get that

f(n)p2A(n, k)− n2αpA(n+ 1, k)pA(n− 1, k) = (k − 1− α)a2n2k+2α−4 + f̃(n),

where

a =
1

(k − 1)!
∏k
i=1 ai

and f̃(n) is a generalized quasi-polynomial of degree 2k+2α−5, that is an expression
of the form

f̃(n) = n2(α−bαc−2)
2k+2bαc−1∑

j=0

tj(n)nj ,

where each tm(n) is some real number depending on the residue class of
n (mod lcm(a1, a2, . . . , ak)). Since k > α + 1, the leading coefficient (k − 1− α)a2

is positive. Therefore, we obtain that the sequence pA(n, k)/nα is log-concave for
all but finitely many positive integers n.

Case 2: Now, let us assume that 2 6 k 6 3 and a1 = a2 = a3 = 1. These two
alternatives might be investigated separately by repeating the reasoning from Case
1 and employing the formula (3.4). We encourage the reader to check all the details
on their own.

To prove the implication to the right hand side let us fix k ∈ N+. It is clear
that the sequence (pA(n, 1)/nα)

∞
n=1 can not be log-concave. Therefore, let k > 2

and suppose, for contradiction, that the assumptions on the numbers a1, a2, . . . , ak
and k do not hold. Before we go into the main part of the proof, let us observe
that we may also determine an upper bound for (n2 − 1)α. Analogously to the
computations from the beginning, one can easily get that

(n2 − 1)α <

bαc+1∑
j=0

(−1)j
(
α

j

)
n2(α−j) + 2

(
α

bαc

)
n2(α−bαc−2) = g(n).

Once again we have a few possibilities to examine. In order to make the text more
transparent, we label each of the cases by its general assumptions.
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Case 1 (4 6 k < α + 1): At first, we also assume that gcdA = 1 for all (k − 2)-
multisubsets A of {a1, a2, . . . , ak}. In order to show that pA(n, k)/nα can not be
log-concave, it suffices to note that the leading coefficient of

g(n)p2A(n, k)− n2αpA(n+ 1, k)pA(n− 1, k) = (k − 1− α)a2n2k+2α−4 + g̃(n),

where a is as before and g̃(n) is some generalized quasi-polynomial of degree 2k −
2α− 5, is negative.

On the other hand, if the assumptions on the multiset {a1, a2, . . . , ak} do not
hold, then Proposition 2.2 asserts that

pA(n, k) = ck−1(n)nk−1 + ck−2(n)nk−2 + ck−3(n)nk−3 + · · ·+ c0(n),

where at least one of ck−1(n), ck−2(n), or ck−3(n) depends on a residue class of
n (mod lcm(a1, . . . , ak)). Let t ∈ {k− 3, k− 2, k− 1} be the largest index with this
property. Now, it is enough to take any n (mod lcm(a1, . . . , ak)) such that ct(n) is
the smallest, and at least one of ct(n+ 1) or ct(n− 1) is strictly larger than ct(n).
If we do so, then the leading coefficient of the generalized quasi-polynomial

g(n)p2A(n, k)− n2αpA(n+ 1, k)pA(n− 1, k)

is negative, and, in particular, the sequence (pA(n, k)/nα)
∞
n=1 can not be log-

concave for infinitely many values of n.

Case 2 (4 6 k = α + 1): In contrast to Case 1, if we assume that gcdA = 1 for all
(k − 2)-multisubsets A of {a1, a2, . . . , ak}, then we obtain that

g(n)p2A(n, k)− n2αpA(n+ 1, k)pA(n− 1, k) = g̃(n),

where g̃(n) is as before. Hence, we need to say something about the leading coeffi-
cient of g̃(n). There are two possibilities: either the coefficient ck−4(n) of

pA(n, k) = ck−1(n)nk−1 + ck−2(n)nk−2 + ck−3(n)nk−3 + · · ·+ c0(n)

is independent of the residue class of n (mod lcm(a1, . . . , ak)) or not. If ck−4(n)
does not depend on the residue class of n (mod lcm(a1, . . . , ak)), then Proposition
2.2 points out that gcdA = 1 for any (k− 3)-multisubset A of {a1, a2, . . . , ak}, and
we get that

g̃(n) = −2abn2k+2α−5 +O(n2k+2α−6),

where a is as before and
b =

a1 + a2 + · · ·+ ak

2(k − 2)!
∏k
i=1 ai

.

Thus, the leading coefficient of g̃(n) is negative, as required. Let us note here
that the case of k = 4 is also included above. In that situation we must have
a1 = a2 = a3 = a4 = 1 (gcd(m) = m for any m ∈ N+), and pA(n, k) is given by
(3.4).

On the other hand, if at least one of the coefficients ci(n) for i ∈ {k −
4, k− 3, k− 2, k− 1} depends on the residue class of n (mod lcm(a1, . . . , ak)), then
we present analogous reasoning to that one from the second part of Case 1, and
obtain that the sequence (pA(n, k)/nα)

∞
n=1 can not be log-concave for infinitely

many values of n.

Case 3 (2 6 k 6 3 & k 6 α+ 1): Applying preceding methods, it is not difficult to
deduce the required result. We leave this case as an exercise for the reader.

�

At the end of this section, we illustrate how the above criterion works in
practice. But, before we do so let us introduce an additional notation which allows
us to make the text more clear.
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Definition 3.6. For given parameters A = (ai)
∞
i=1, k > 1 and α ∈ R+, we set

∆α
A,k(n) = (n2 − 1)αp2A(n, k)− n2αpA(n+ 1, k)pA(n− 1, k).

It is clear that the sequence (pA(n, k)/nα)
∞
n=1 is log-concave if and only if

the corresponding function ∆α
A,k(n) is positive for every n > 1.

Example 3.7. Let A1 = (1, 2, 3, 4, 5, 6, . . .) be a sequence of consecutive positive
integers, and let α1 = 4.99. Computations carried out in Wolfram Mathematica
[42] exhibit us the behavior of ∆α1

A1,k
(n) for 4 6 k 6 7.

Figure 1. Values of
∆α1

A1,4
(n) for 2 6 n 6

105

Figure 2. Values of
∆α1

A1,5
(n) for 2 6 n 6

105

Figure 3. Values of
∆α1

A1,6
(n) for 2 6 n 6

105

Figure 4. Values of
∆α1

A1,7
(n) for 2 6 n 6

105

These figures agree with Theorem 3.5. Moreover, for every k > 6 one can explicitly
determine when the inequality ∆α1

A1,k
(n) > 0 is true. Now, it is also interesting to

illustrate the behavior of ∆α2

A1,k
(n), where α2 = 5 for some small numbers k.

Figure 5. Values of
∆α2

A1,5
(n) for 2 6 n 6

105

Figure 6. Values of
∆α2

A1,6
(n) for 2 6 n 6

105

Once again we observe that all the figures concur with our criterion. Furthermore,
it follows from the proof of Theorem 3.5 that there are infinitely many positive
integers n such that ∆α2

A1,6
(n) 6 0.
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Figure 7. Values of
∆α2

A1,7
(n) for 2 6 n 6

105

Figure 8. Values of
∆α2

A1,8
(n) for 2 6 n 6

105

4. The r-log-concavity of quasi-polynomials like functions

In this section, we explore a bit more complex problem — the so-called r-
log-concavity of pA(n, k). Let us recall that a sequence of real numbers ω = (wi)

∞
i=1

is said to be (asymptotically) r-log-concave for r ∈ N+, if for some N all terms of
the sequences (

L̂ω
)
i
,
(
L̂2ω

)
i
, . . . ,

(
L̂rω

)
i

are positive for every i > N , where

L̂ω =
(
w2
i+1 − wiwi+2

)∞
i=0

and L̂kω = L̂
(
L̂k−1ω

)
for k ∈ {2, 3, . . . , r}. As it was mentioned in Introduction, the 1-log-concavity of
(wi)

∞
i=0 corresponds to the inequality w2

n+1 − wnwn+2 > 0; the 2-log-concavity in
addition demands that the following inequality

w4
n+2 − 2wn+1w

2
n+2wn+3 + w2

n+1wn+2wn+4 + wnwn+2w
2
n+3 − wnw2

n+2wn+4 > 0

is satisfied for all n > N . We resign from demonstrating other inequalities for r > 3.
The question arises whether we can successfully apply the methods from

Section 2 to find out a convenient criterion for the r-log-concavity of the restricted
partition function pA(n, k). In fact, it is not the best idea to bound the left hand
side of each of the inequalities from above and below. It is sill possible to do so
for the 2-log-concavity problem, but what about the 100-log-concavity of pA(n, k)?
Nota bene, if we take advantage of the aforementioned approach to resolve the
2-log-concave case, then we immediately get the following.

Proposition 4.1. Let A = (ai)
∞
i=1 and k > 7 be fixed. If gcdA = 1 for every

(k−6)-multisubset A ⊂ {a1, a2, . . . , ak}, then (pA(n, k))
∞
n=0 is asymptotically 2-log-

concave.

Proof. The assumptions from the statement together with Proposition 2.5 assert
that pA(n, k) might be bounded from above and below by

f(n) < pA(n, k) < g(n),

where f(n) = ck−1n
k−1 + · · · + ck−7n

k−7 − Fnk−8 and g(n) = ck−1n
k−1 + · · · +

ck−7n
k−7+Fnk−8, where all the coefficients ci are uniquely determined by Theorem

2.1, while

F =

∏k
i=1(1 + iDk)

k!
∏k
i=1 ai



BEYOND THE LOG-CONCAVITY OF THE RESTRICTED PARTITION FUNCTION 13

with D = lcm(a1, a2, . . . , ak). Next, it is enough to examine the inequality of the
form

f4(n+ 2)− 2g(n+ 1)g2(n+ 2)g(n+ 3) + f2(n+ 1)f(n+ 2)f(n+ 4)

+ f(n)f(n+ 2)f2(n+ 3)− g(n)g2(n+ 2)g(n+ 4) > 0.

After some tiresome calculations one can determine that the leading coefficient of
the left hand side is equal to 588ck−1, where

ck−1 =
1

(k − 1)!
∏k
i=1 ai

.

Hence, the sequence (pA(n, k))
∞
n=0 must be 2-log-concave for all but finitely many

values of n, as required. �

Theorem 1.1 and Proposition 4.1 can mislead us to believe that in order to
receive the asymptotic r-log-concavity of pA(n, k) (for some r), we need to require
that gcdA = 1 for every (k − (r + 1)!)-multisubset A ⊂ {a1, a2, . . . , ak}. But, it is
not true as we see in the following.

Example 4.2. Let A1 = (1, 2, 3, 4, 5, 6, . . .) be a sequence of consecutive positive
integers, as before. Numerical calculations made in Mathematica [42] illustrate
how the sequence L̂2

A1,k
=
(
L̂2 (pA1(n, k))n

)∞
n=0

behaves for 7 6 k 6 10 and

2 6 n 6 105.

Figure 9. Values of(
L̂2
A1,7

)
n
for 2 6 n 6

105

Figure 10. Values of(
L̂2
A1,8

)
n
for 2 6 n 6

105

Figure 11. Values of(
L̂2
A1,9

)
n
for 2 6 n 6

105

Figure 12. Values of(
L̂2
A1,10

)
n
for 2 6 n 6

105

By looking at both Figure 9 and Figure 10, we can not be completely certain
that their corresponding restricted partitions functions are not 2-log-concave for
sufficiently large values of n. On the other hand, Figure 11 as well as Figure 12
suggest that the sequence L̂2

A1,k
(n) is (asymptotically) 2-log-concave for all k > 9,
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while Proposition 4.1 only maintains that the property holds for all k > 13 in this
case.

Indeed, there is a bit more efficient criterion for the r-log concavity than
Proposition 4.1. In order to find it, we apply a small modification of a very useful
theorem obtained by Hou and Zhang [21]. To state their result, we need a little
preparation.

Let ω = (wi)
∞
i=0 be a sequence of positive real numbers. We set

(Rω)i =
wi+1

wi
and

(
R2ω

)
i

=
(Rω)i+1

(Rω)i
=
wiwi+2

w2
i+1

.

In particular, observe that the 1-log-concavity of (wi)
∞
i=0 is equivalent to the state-

ment
(
R2w

)
i
< 1. Actually, it is also true for such a sequence of real numbers

(wi)
∞
i=0 that both (wiwi+2)

∞
i=0 and

(
w2
i+1

)∞
i=0

are positive.
Next, we assume that (xi)

∞
i=0 is a sequence of real numbers. Further, suppose

that there are numbers dj and a (m+ 1)-tuple α = (α0, α1, . . . , αm) such that

α0 < α1 < · · · < αm

and

lim
n→∞

nαm

xn − m∑
j=0

dj
nαj

 = 0.

The value

yn,α =

m∑
j=0

dj
nαj

is called the Puiseux-type approximation of xn (of degree αm) and is denoted by
xn ≈ yn,α. When it is clear from the context, we will write yn instead of yn,α. It
turns out that only the first few summands of yn and αm are important from our
perspective. Therefore, we use the standard little-o notation to write

xn = yn + o

(
1

nαm

)
=

d0
nα0

+
d1
nα1

+ · · ·+ dm
nαm

+ o

(
1

nαm

)
.

Now, we are able to recall Hou and Zhang’s criterion [21].

Theorem 4.3. Let ω = (wi)
∞
i=0 be a sequence of positive real numbers such that(

R2ω
)
n
has a Puiseux-type approximation yn of the form

yn = 1 +
d1
nα1

+ · · ·+ dm
nαm

,

where m > 1, 0 < α1 6 αm. If d1 < 0 and α1 < 2, then (wi)
∞
i=0 is asymptotically

bαm/α1c-log-concave.

For the sake of clarity, let us further write pA,k(n) = pA(n, k) whenever we
apply an operator (R or L̂) to pA(n, k) in order to emphasize that we consider it as
a sequence in n. Unfortunately, we can not explicitly employ Theorem 4.3 to
pA(n, k), because for the restricted partition function we usually have that α1 =
2. More precisely, if k > 4 and gcdA = 1 for all (k − 2)-multisubsets A of
{a1, a2, . . . , ak}, then Theorem 2.1 implies that

pA(n, k) = ank−1 + bnk−2 + cnk−3 + ck−4(n)nk−4 + · · ·+ c0(n),
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where c0(n), . . . , ck−4(n) depend on the residue class of n (mod lcm(a1, a2, . . . , ak))
and

a =
1

(k − 1)!
∏k
i=1 ai

,

b =
σ

2(k − 2)!
∏k
i=1 ai

,

c =
3σ2 − s2

24(k − 3)!
∏k
i=1 ai

with σ = a1 + a2 + · · ·+ ak and s2 = a21 + a22 + · · ·+ a2k. Now, it is straightforward
to compute that

pA(n, k)pA(n+ 2, k) = β2k−2n
2k−2 + β2k−3n

2k−3 + β2k−4n
2k−4 + β(n)

and

p2A(n+ 1, k) = γ2k−2n
2k−2 + γ2k−3n

2k−3 + γ2k−4n
2k−4 + γ(n),

where

β2k−2 = γ2k−2 = a2,

β2k−3 = γ2k−3 = 2a(a(k − 1) + b),

β2k−4 = γ2k−4 − a2(k − 1) = 2a2(k − 1)(k − 2) + 2ab(2k − 3) + 2ac+ b2,

and β(n), together with γ(n), is some quasi-polynomial of degree 2k − 5. Hence,
the Puiseux-type approximation of

(
R2pA,k

)
(n) of degree 2 might be calculated as

follows:(
R2pA,k

)
(n) =

pA(n+ 2, k)pA(n, k)

p2A(n+ 1, k)

=
β2k−2n

2k−2 + β2k−3n
2k−3 + β2k−4n

2k−4 + β(n)

γ2k−2n2k−2 + γ2k−3n2k−3 + γ2k−4n2k−4 + γ(n)

= 1 +
−a2(k − 1)n2k−4 + β(n)− γ(n)

γ2k−2n2k−2 + γ2k−3n2k−3 + γ2k−4n2k−4 + γ(n)

= 1 +
1− k
n2

+ o

(
1

n2

)
,

where the last equality is a consequence of the following equality

−a2(k − 1)n2k−4 + β(n)− γ(n)

γ2k−2n2k−2 + γ2k−3n2k−3 + γ2k−4n2k−4 + γ(n)
− 1− k

n2

=
n2(β(n)− γ(n)) + (k − 1)(γ2k−3n

2k−3 + γ2k−4n
2k−4 + γ(n))

n2(γ2k−2n2k−2 + γ2k−3n2k−3 + γ2k−4n2k−4 + γ(n))
.

It should be pointed out that without any additional assumptions on the multiset
{a1, a2, . . . , ak}, we can not simply present a bit more precise Puiseux-type approx-
imation of

(
R2pA,k

)
(n) — mainly because if we try to do so, then we obtain that

the nominator over n3 depends on the residue class of n (mod lcm(a1, a2, . . . , ak)).
Let us now slightly modify Theorem 4.3 to get a relevant criterion in the

case of the restricted partition function pA(n, k). To achieve this goal we use two
auxiliary lemmas. The first of them is due to Hou and Zhang [21].

Lemma 4.4. Let ω = (wi)
∞
i=0 be a sequence of real numbers. We have that

R2L̂ω =

(
t2n+1

(tn − 1)(tn+2 − 1)

(tn+1 − 1)2

)∞
n=0

,

where (ti)
∞
i=0 = R2ω.
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On the other hand, the second one gives us information about the Puiseux-
type approximation of those functions which grow as fast as polynomials.

Lemma 4.5. Let s ∈ N>2 and al, al−1, . . . , al−s ∈ R be arbitrary. Suppose further
that there is a function f(n) = aln

l+al−1n
l−1+· · ·+al−snl−s+o

(
nl−s

)
. Moreover,

let us put f(n)f(n+ 2)− f2(n+ 1) = d2l−2,1n
2l−2 + · · ·+ d2l−s,1n

2l−s + o
(
n2l−s

)
(in fact, d2l,1 = d2l−1,1 = 0) and f2(n+ 1) = b2ln

2l + · · ·+ b2l−sn
2l−s + o

(
n2l−s

)
.

Then the equality(
R2f

)
(n) = 1 +

d2
n2

+ · · ·+ dj
nj

+

∑s−j
i=1 d2l−j−i,jn

2l−j−i + o
(
n2l−s

)
b2ln2l + · · ·+ b2l−sn2l−s + o (n2l−s)

holds for every 2 6 j 6 s with di = d2l−i,i−1/b2l, where

du,v = du,v−1 − d2l−v,v−1bu+v/b2l
for 2 6 v 6 s − 1 and 2l − s 6 u 6 2l − v − 1. In particular, the Puiseux-type
approximation yn of f(n)f(n+ 2)/f2(n+ 1) takes the form

yn = 1 +
−l
n2

+
d3
n3

+ · · ·+ ds
ns

+ o

(
1

ns

)
.

Proof. Let s > 2 and f(n) be fixed. Employing the same method as in the discussion
before Lemma 4.4, we get that(

R2f
)

(n) =
c2ln

2l + c2l−1n
2l−1 + · · ·+ c2l−sn

2l−s + o
(
n2l−s

)
b2ln2l + b2l−1n2l−1 + · · ·+ b2l−sn2l−s + o (n2l−s)

,(4.1)

where

c2l = b2l = a2l

c2l−1 = b2l−1 = 2al(lal + al−1)

c2l−2 = b2l−2 − la2l = 2l(l − 1)a2l + 2(2l − 1)alal−1 + 2alal−2 + a2l−1,

and all the remaining terms bi and cj can be explicitly determined. Hence, it is
clear that(

R2f
)

(n) = 1 +
d2l−2,1n

2l−2 + · · ·+ d2l−s,1n
2l−s + o

(
n2l−s

)
b2ln2l + b2l−1n2l−1 + · · ·+ b2l−2rn2l−2r + o (n2l−s)

= 1 +
d2
n2

+
d2l−3,2n

2l−3 + · · ·+ d2l−s,2n
2l−s + o

(
n2l−s

)
b2ln2l + b2l−1n2l−1 + · · ·+ b2l−2rn2l−2r + o (n2l−s)

= 1 +
−l
n2

+ o

(
1

n2

)
,

as required. In particular, we proved the lemma for j = 2. Now, we assume that
for a fixed s the claim holds for every 2 6 m 6 j − 1, and it suffices to verify its
correctness for m = j. The induction hypothesis maintains that(
R2f

)
(n) = 1 +

d2
n2

+ · · ·+ dj−1
nj−1

+

∑s−j+1
i=1 d2l−j+1−i,j−1n

2l−j+1−i + o
(
n2l−s

)
b2ln2l + · · ·+ b2l−sn2l−s + o (n2l−s)

.

Since j 6 s, we may also write(
R2f

)
(n) = 1 +

d2
n2

+ · · ·+ dj−1
nj−1

+
d2l−j,j−1/b2l

nj

+

∑s
i=j+1 (d2l−i,j−1 − d2l−j,j−1b2l−i+j/b2l)n2l−i + o

(
n2l−s

)
b2ln2l + · · ·+ b2l−sn2l−s + o (n2l−s)

= 1 +
d2
n2

+ · · ·+ dj−1
nj−1

+
dj
nj

+

∑s−j
i=1 d2l−j−i,jn

2l−j−i + o
(
n2l−s

)
b2ln2l + · · ·+ b2l−sn2l−s + o (n2l−s)

.

This completes the proof by the law of induction. �
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The upcoming result is a key to resolve the r-log-concavity problem of both
some functions ‘similar’ to polynomials in general, and the restricted partition func-
tion in particular.

Theorem 4.6. Let l and r be arbitrary positive integers such that l > 2r. Suppose
further that f(n) = aln

l + al−1n
l−1 + · · ·+ al−2rn

l−2r + o
(
nl−2r

)
. Then(

R2L̂j−1f
)

(n) = 1 +
2j − 2j−1l − 2

n2
+ qj(n) + o

(
1

n2(r−j+1)

)
for any 1 6 j 6 r, where qj(n) is an expression of the form

qj(n) =
z3,j
n3

+ · · ·+
z2(r−j+1),j

n2(r−j+1)

for some real numbers z3,j , z4,j , . . . , z2(r−j+1),j.

Proof. Let us fix parameters l, r and a function f(n). Applying Lemma 4.5 with
s = 2r maintains that(

R2f
)

(n) =
f(n)f(n+ 2)

f2(n+ 1)
= 1 +

−l
n2

+
d3
n3

+ · · ·+ d2r
n2r

+ o

(
1

n2r

)
with some real numbers d3, d4, . . . , d2r. This completes the proof in the case of
j = 1. Now, let us assume that the statement is valid for all 1 6 i 6 j − 1, and let
us verify its correctness for i = j. It follows from the induction hypothesis that(

R2L̂j−2f
)

(n) = 1 +
2j−1 − 2j−2l − 2

n2
+ qj−1(n) + o

(
1

n2(r−j+2)

)
,

where qj−1(n) is an expression of the form

qj(n) =
z3,j−1
n3

+ · · ·+
z2(r−j+2),j−1

n2(r−j+2)

for some real numbers z3,j−1, z4,j−1, . . . , z2(r−j+2),j−1. To simplify the notation put

tn = 1 +
m

n2
+ qj−1(n) + o

(
1

n2(r−j+2)

)
with m = 2j−1 − 2j−2l − 2. Then, we have(

R2L̂j−2f
)

(n) = tn.

Our goal is to determine Puiseux-type approximation of
(
R2L̂j−1f

)
(n) (of degree

2(r − j + 1)). From the generalized binomial theorem, we get that

1

(n+ u)v
=

∞∑
i=0

(
−v
i

)
n−v−iui =

∞∑
i=0

(−1)i
(
v + i− 1

i

)
ui

nv+i

=

2(r−j+2)−v∑
i=0

(−1)i
(
v + i− 1

i

)
ui

nv+i
+ o

(
1

n2(r−j+2)

)
(4.2)

holds for all positive integers u and v such that v 6 2(r − j + 2). Therefore, it is
straightforward to see that

t2n+1 =

(
1 +

m

(n+ 1)2
+ qj−1(n+ 1) + o

(
1

(n+ 1)2(r−j+2)

))2

= 1 +
2m

n2
+ q̃j−1(n) + o

(
1

n2(r−j+2)

)
,(4.3)

where

q̃j−1(n) =
z̃3,j−1
n3

+ · · ·+
z̃2(r−j+2),j−1

n2(r−j+2)
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for some real numbers z̃3,j−1, z̃4,j−1, . . . , z̃2(r−j+2),j−1. For the sake of brevity, we
put

wn =
n2

m
(tn − 1).(4.4)

Thus, it is clear that

wn = 1 +
n2

m
· qj−1(n) + o

(
1

n2(r−j+1)

)
= 1 +

z3,j−1/m

n
+ · · ·+

z2(r−j+2),j−1/m

n2(r−j+1)
+ o

(
1

n2(r−j+1)

)
= 1 +

ẑ1
n

+ · · ·+
ẑ2(r−j+1)

n2(r−j+1)
+ o

(
1

n2(r−j+1)

)
,

where ẑi = zi+2,j−1/m for 1 6 i 6 2(r − j + 1). We apply Taylor expansion of the
logarithm function in order to estimate wnwn+2/w

2
n+1. It follows that

logwn =

∞∑
i=1

(−1)i+1

i
(wn − 1)i

=
e1
n

+
e2
n2

+ · · ·+
e2(r−j+1)

n2(r−j+1)
+ o

(
1

n2(r−j+1)

)
,

with e1 = ẑ1, e2 = ẑ2 − ẑ21/2 and all the remaining values e3, e4, . . . , e2(r−j+1)

are uniquely determined in terms of ẑ1, ẑ2, . . . , ẑ2(r−j+1). After some tiresome but
elementary calculations, we obtain that

log
wnwn+2

w2
n+1

= logwn + logwn+2 − 2 logwn+1

=
e1
n

+ · · ·+
e2(r−j+1)

n2(r−j+1)
+

e1
n+ 2

+ · · ·+
e2(r−j+1)

(n+ 2)2(r−j+1)

− 2

(
e1

n+ 1
+ · · ·+

e2(r−j+1)

(n+ 1)2(r−j+1)

)
+ o

(
1

n2(r−j+1)

)
=
ê3
n3

+ · · ·+
ê2(r−j+1)

n2(r−j+1)
+ o

(
1

n2(r−j+1)

)
,

where ê3 = 2e1, ê4 = 6(e2 − e1), and each of the numbers ê5, ê6, . . . , ê2(r−j+1) is
uniquely determined in terms of e1, e2, . . . , e2(r−j+1). In particular, it means that

wnwn+2

w2
n+1

= 1 +
ě3
n3

+
ě4
n4

+ · · ·+
ě2(r−j+1)

n2(r−j+1)
+ o

(
1

n2(r−j+1)

)
,(4.5)

where all the numbers ě3, ě4, . . . , ě2(r−j+1) can be explicitly presented in terms of
ê3, ê4, . . . , ê2(r−j+1), for example, we have ě3 = ê3 and ě4 = ê4. Hence, by (4.2),
(4.4) and (4.5) we have that

(tn − 1)(tn+2 − 1)

(tn+1 − 1)2
=

(n+ 1)4

n2(n+ 2)2
· wnwn+2

w2
n+1

=
(n+ 1)4

n2
·

2(r−j+1)∑
i=0

(−1)i
(
i+ 1

i

)
2i

ni+2
+ o

(
1

n2(r−j+2)

)
×
(

1 +
ě3
n3

+ · · ·+
ě2(r−j+1)

n2(r−j+1)
+ o

(
1

n2(r−j+1)

))
= 1 +

2

n2
+
ẽ3
n3

+ · · ·+
ẽ2(r−j+1)

n2(r−j+1)
+ o

(
1

n2(r−j+1)

)
,
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where all the values ẽ3, ẽ4, . . . , ẽ2(r−j+1) can be systematically derived, e.g. ẽ3 =
ě3 − 4. Next, Lemma 4.4 and the equality (4.3) assert that(
R2
(
L̂j−1pA,k

))
(n) =

(
1 +

2m

n2
+ q̃j−1(n) + o

(
1

n2(r−j+2)

))
×
(

1 +
2

n2
+
ẽ3
n3

+ · · ·+
ẽ2(r−j+1)

n2(r−j+1)
+ o

(
1

n2(r−j+1)

))
= 1 +

2m+ 2

n2
+ qj(n) + o

(
1

n2(r−j+1)

)
= 1 +

2j − 2j−1l − 2

n2
+ qj(n) + o

(
1

n2(r−j+1)

)
,

where
qj(n) =

z3,j
n3

+ · · ·+
z2(r−j+1),j

n2(r−j+1)

for some real numbers z3,j , z4,j , . . . , z2(r−j+1),j . This completes the inductive step
and thereby ends the proof. �

We are ready to present the main result of the paper. Surprisingly, we prove
that in two different ways.

Theorem 4.7. Let l and r be arbitrary positive integers such that l > 2r. If
f(n) = aln

l + al−1n
l−1 + · · ·+ al−2rn

l−2r + o
(
nl−2r

)
, then the sequence (f(n))

∞
n=0

is asymptotically r-log-concave.

Proof. For fixed parameters l and r and a function f(n), Theorem 4.6 points out
that (

R2L̂j−1f
)

(n) = 1 +
2j − 2j−1l − 2

n2
+ qj(n) + o

(
1

n2(r−j+1)

)
for any 1 6 j 6 r, where qj(n) is an expression of the form

qj(n) =
z3,j
n3

+ · · ·+
z2(r−j+1),j

n2(r−j+1)

for some real numbers z3,j , z4,j , . . . , z2(r−j+1),j . Since we have that l > 2r, one can
easily deduce that the inequalities

2j − 2j−1l − 2 6 2j − 2jr − 2 < 0

are true for every 1 6 j 6 r. But in particular it means that the sequence (f(n))
∞
n=0

is asymptotically j-log-concave for any such a j, as required. �

Let us also present an alternative, more direct, approach to the problem.

Second proof of Theorem 4.7. Under the assumptions from the statement, we prove
by induction that(

L̂sf
)

(n) = a2
s

l

 s∏
j=1

m2s−j

j

nms+1 + qs(n) + o
(
nms+1−2(r−s)

)
,(4.6)

holds for each 1 6 s 6 r, where mi = 2i−1l + 2− 2i and

qs(n) = δms+1−1n
ms+1−1 + · · ·+ δms+1−2(r−s)n

ms+1−2(r−s)

with some real numbers δi. For s = 1, we have that(
L̂f
)

(n) = f2(n+ 1)− f(n)f(n+ 2)

= a2l ln
2l−2 + d2l−3n

2l−3 + · · ·+ d2l−2rn
2l−2r + o

(
n2l−2r

)
,
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where d2l−2, d2l−3, . . . , d2l−2r are some real numbers, as required. Therefore, let us
assume that the claim is true for every 1 6 i 6 s− 1 < r, and verify its correctness
for i = s. It follows from the induction hypothesis that

(
L̂s−1f

)
(n) = a2

(s−1)

l

s−1∏
j=1

m2s−1−j

j

nms + qs−1(n) + o
(
nms−2(r−s+1)

)
,

where qs−1 is of the required form. Now, we can just write(
L̂sf

)
(n) =

(
L̂s−1f

)2
(n+ 1)−

(
L̂s−1f

)
(n)
(
L̂s−1f

)
(n+ 2)

=

a2(s−1)

l

s−1∏
j=1

m2s−1−j

j

2

msn
2ms−2 + qs(n) + o

(
n2ms−2(r−s)−2

)

= a2
s

 s∏
j=1

m2s−j

j

nms+1 + qs(n) + o
(
nms+1−2(r−s)

)
,

where

qs(n) = δms+1−1n
ms+1−1 + · · ·+ δms+1−2(r−s)n

ms+1−2(r−s)

with some real numbers δi. This ends the proof of (4.6) by the law of induction.
Now, it is enough to see that the leading coefficient of (4.6) is positive for

any 1 6 s 6 r. Thus the sequence (f(n))
∞
n=0 is asymptotically r-log-concave, as

required. �

It is worth noting that despite the fact that the former proof requires more
sophisticated preparation than the latter one, the method which we use there might
be also effectively applied for more complicated functions like the partition function
[22] or the overpartition function [28].

In particular, Theorem 4.7 delivers us the following efficient criterion for the
r-log-concavity of the restricted partition function.

Theorem 4.8. Let A = (ai)
∞
i=1, r ∈ N+ and k > 2r be fixed. Suppose further that

gcdA = 1 for all (k − 2r)-multisubsets A of {a1, a2, . . . , ak}. Then the sequence
(pA(n, k))

∞
n=0 is asymptotically r-log-concave.

Proof. The property is a direct consequence of Theorem 2.1 and Theorem 4.7. �

There appears a natural question whether Theorem 4.8 is optimal in a sense
that it can not be further generalized for any other sequences A. In fact, it is true,
which directly follows from the following more general result.

Theorem 4.9. Let l and r be arbitrary positive integers such that l > 2r. Suppose
further that we have

f(n) = al(n)nl + al−1(n)nl−1 + · · ·+ al−2r(n)nl−2r + o
(
nl−2r

)
,

where the coefficients al−2r(n), . . . , al(n) might depend on the residue class of
n (mod M) for some positive integer M > 2. Then the sequence (f(n))

∞
n=0 is

asymptotically r-log-concave if and only if all the numbers al−2r(n), . . . , al(n) are
independent of the residue class of n (mod M).

Proof. The implication to the left hand side is clear by Theorem 4.7. To deal with
the implication to the right hand side let us present the reasoning by induction on r.
First, let us assume that r = 1 and suppose, for contradiction, that at least one of
the coefficients al(n), al−1(n) or al−2(n) depend on the residue class of n (mod M).
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Let us set t = max{j ∈ {l − 2, l − 1, l} : aj(n) is not constant}. It is enough to
consider such residue class of n (mod M) that at(n+ 1) is the smallest and at least
one of at(n) or at(n + 2) is strictly bigger than at(n + 1), and compute L̂f(n).
In that case, we get that the leading coefficient is negative. Hence, the sequence
(f(n))

∞
n=0 can not be asymptotically 1-log-concave, as required.
Now, let us assume that the statement is valid for each 1 6 r̃ < r and let us

examine whether it is also true for r̃ = r. The induction hypothesis asserts that

f(n) =

l∑
i=l−2r+2

ain
i + al−2r+1(n)nl−2r+1 + al−2r(n)nl−2r + o

(
nl−2r

)
,

otherwise f(n) could not be even asymptotically (r − 1)-log-concave. Suppose for
contradiction that at least one of the coefficients al−2r(n) or al−2r+1(n) depend on
the residue class of n (mod M). Let us assume that al−2r+1(n) is not independent
of the residue class of n (mod M) — the alternative reasoning for al−2r(n) is anal-
ogous, and we leave it as an exercise for the reader. The coefficient b2l−2r+1(n)
of

L̂f(n) =

(
2l−2∑

i=2l−2r+2

bin
i

)
+ b2l−2r+1(n)n2l−2r+1 + b2l−2r(n)n2l−2r + o

(
n2l−2r

)
is of the form

b2l−2r+1(n) = (2al−2r+1(n+ 1)− al−2r+1(n)− al−2r+1(n+ 2)) al − q,

where q is a constant depending on al−2r+2, . . . , al. Therefore, if we take such
a residue class of n (mod M) that al−2r+1(n + 1) is the smallest and at least one
of al−2r+1(n) or al−2r+1(n + 2) is strictly bigger than al−2r+1(n + 1), and we do
the opposite (considering the largest possible coefficient al−2r+1(n+ 1) and at least
one of al−2r+1(n) or al−2r+1(n + 2) strictly smaller than al−2r+1(n + 1)), then
we deduce that the coefficient b2l−2r+1(n) of L̂f(n) depends on the residue class
of n (mod M). Thus the induction hypothesis points out that L̂f(n) can not be
asymptotically (r− 1)-log-concave which implies that f(n) is not r-log-concave, as
required. �

Theorem 4.10. Let A = (ai)
∞
i=1, r ∈ N+ and k > 2r be fixed. Then the sequence

(pA(n, k))
∞
n=0 is asymptotically r-log-concave if and only if we have that gcdA = 1

for all (k − 2r)-multisubsets A of {a1, a2, . . . , ak}.

Proof. The implication to the left hand side follows from Theorem 4.8. On the
other hand, the implication to the right hand side is a direct consequence of both
Theorem 4.9 and Proposition 2.2. �

It is worth noting that one can use the above criterion to explicitly calculate
when the r-log-concavity of pA(n, k) holds for given parameters A, k and r.

Until now, we have not discussed the easiest case of the quasi-polynomial-like
function. Therefore, for the sake of completeness, let us present a criterion for the
r-log-concavity of a polynomial.

Corollary 4.11. Let f(n) = akn
k + ak−1n

k−1 + · · ·+ a0 ∈ R[n] be a polynomial of
deg(f) = k. Then the sequence (f(n))

∞
n=0 is

(1) not asymptotically 1-log-concave if and only if k = 0;
(2) at most asymptotically 1-log-concave if and only if k = 1;
(3) asymptotically r-log-concave for any r > 1 if and only if k > 2.
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Proof. The statement can be easily verified for k 6 1. If k > 2, then Theorem 4.7
asserts that the sequence (f(n))

∞
n=0 is asymptotically 1-log-concave. Moreover, we

know that
L̂f(n) = b2k−2n

2k−2 + b2k−3n
2k−3 + · · ·+ b0

for some real numbers b0, b1, . . . , b2k−2 with b2k−2 > 0. Since 2k − 2 > 2, we
obtain that the sequence

(
L̂f(n)

)∞
n=0

is asymptotically 1-log-concave (in particular,

(f(n))
∞
n=0 is asymptotically 2-log-concave). By repeating the above procedure, we

deduce the required property. �

Corollary 4.12. If A = (1, 1, 1, . . .), then the sequence (pA(n, k))
∞
n=0 is

(1) not asymptotically 1-log-concave if and only if k = 1;
(2) at most asymptotically 1-log-concave if and only if k = 2;
(3) asymptotically r-log-concave for any r > 1 if and only if k > 3.

Proof. That is a direct consequence of the formula (3.4) and Corollary 4.11. �

At the end of the manuscript, let us illustrate how Theorem 4.10 works in
practice.

Example 4.13. Let A = (1, 2, 2, 3, 3, 3, . . .) be the sequence of consecutive positive
integers such that every number j appears in j distinct colors. For instance, if
k = 10, then pA(n, k) takes the form

pA(n, 10) =
n9

10032906240
+

n8

74317824
+

65n7

83607552
+

25n6

995328
+ qn (mod 12)(n),

where qn (mod 12)(n) is a quasi-polynomial part of pA(n, 10) depending on the residue
class of n (mod 12). In fact, one can check that

qi(n) =



14863n5

29859840
+ 1555n4

248832
+ 533n3

10752
+ 2909n2

12096
+ 1703n

2520
+ 1, if i = 0,

118661n5

238878720
+ 98305n4

15925248
+ 8143n3

172032
+ 17403629n2

83607552
+ 1475950039n

3344302080
+ 84987001

286654464
, if i = 1,

14863n5

29859840
+ 1555n4

248832
+ 533n3

10752
+ 621449n2

2612736
+ 3838811n

6531840
+ 401951

1119744
, if i = 2,

118661n5

238878720
+ 98305n4

15925248
+ 8171n3

172032
+ 665135n2

3096576
+ 21523559n

41287680
+ 75979

131072
, if i = 3,

14863n5

29859840
+ 1555n4

248832
+ 533n3

10752
+ 78767n2

326592
+ 140323n

204120
+ 2171

2187
, if i = 4,

118661n5

238878720
+ 98305n4

15925248
+ 8143n3

172032
+ 17288941n2

83607552
+ 1338324439n

3344302080
+ 12504185

286654464
, if i = 5,

14863n5

29859840
+ 1555n4

248832
+ 533n3

10752
+ 23083n2

96768
+ 49771n

80640
+ 317

512
, if i = 6,

118661n5

238878720
+ 98305n4

15925248
+ 8171n3

172032
+ 18015989n2

83607552
+ 1782402199n

3344302080
+ 164068921

286654464
, if i = 7,

14863n5

29859840
+ 1555n4

248832
+ 533n3

10752
+ 78319n2

326592
+ 131923n

204120
+ 1618

2187
, if i = 8,

118661n5

238878720
+ 98305n4

15925248
+ 8143n3

172032
+ 642455n2

3096576
+ 17740199n

41287680
+ 39819

131072
, if i = 9,

14863n5

29859840
+ 1555n4

248832
+ 533n3

10752
+ 625033n2

2612736
+ 4107611n

6531840
+ 685087

1119744
, if i = 10,

118661n5

238878720
+ 98305n4

15925248
+ 8171n3

172032
+ 17901301n2

83607552
+ 1644776599n

3344302080
+ 91586105

286654464
, if i = 11.

Now, if we take n ≡ 1 (mod 12), then

L̂2pA,10(n) = − 283n30

3909057129171792215334771260129280000
+ q(n),

where q(n) is some quasi-polynomial of degree 29. Therefore, the sequence
(pA(n, 10))

∞
n=0 can not be asymptotically 2-log-concave. On the other hand, if

we consider pA(n, 11) and make similar computations to those ones above, then
we get that the sequence (pA(n, 11))

∞
n=0 is 2-log-concave for all n > 11320, but

is not asymptotically 3-log-concave. It is worth noting that in this case we need
to consider 60 quasi-polynomials instead of 12. Moreover, Theorem 4.10 asserts
that the sequence (pA(n, k))

∞
n=0 is asymptotically 2-log-concave for every k > 11.

Further, we can also repeat the aforementioned approach and deduce that the
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sequence (pA(n, 12))
∞
n=0 is not asymptotically 3-log-concave. However, if we in-

vestigate (pA(n, 12))
∞
n=0 in that regard, we obtain that it is 3-log-concave for each

n > 607475. Once again, Theorem 4.10 points out that the sequence (pA(n, k))
∞
n=0

is asymptotically 3-log-concave for every k > 13.
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