r-log-concavity of partition functions

Qing-Hu Hou ${ }^{1} \cdot \mathbf{Z u o - R u}$ Zhang ${ }^{2}$ (D)

Received: 14 May 2017 / Accepted: 30 November 2017 / Published online: 15 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Let $\hat{\mathscr{L}}$ be the operator given by $\hat{\mathscr{L}}\left\{a_{n}\right\}_{n \geq 0}=\left\{a_{n+1}^{2}-a_{n} a_{n+2}\right\}_{n \geq 0}$. A sequence $\left\{a_{n}\right\}_{n \geq 0}$ is called asymptotically r-log-concave if $\hat{\mathscr{L}}^{k}\left\{a_{n}\right\}_{n \geq N}$ are nonnegative sequences for $1 \leq k \leq r$ and some integer N. Let $p(n)$ be the number of integer partitions of n. We prove that the sequence $\{p(n)\}_{n \geq 1}$ is asymptotically r-log-concave for any positive integer r. Moreover, we give a method to compute the explicit N such that $\{p(n)\}_{n \geq N}$ is r-log-concave.

Keywords r-log-concavity • Partition function • Hardy-Ramanujan-Rademacher formula

Mathematics Subject Classification 05A17 • 11N37 • 65G99

1 Introduction

Let $p(n)$ denote the number of integer partitions of n, i.e., the number of ways of writing n as the sum of positive integers where the order is irrelevant. Among the various interesting combinatorial properties, the following inequalities were conjectured by Chen [1] and solved by DeSalvo and Pak [5].

[^0]Proposition 1.1 For all $n \geq 1$, we have

$$
\frac{p(n-1)}{p(n)}\left(1+\frac{1}{n}\right)>\frac{p(n)}{p(n+1)}
$$

Proposition 1.2 For all $n>m>1$, we have

$$
p(n)^{2}-p(n-m) p(n+m) \geq 0
$$

In the same paper, DeSalvo and Pak also proved Sun's conjecture [11] of the logconcavity of $\{q(n)\}_{n \geq 31}$, where $q(n)$ is the number of ways writing n as the sum of distinct positive integers. Based on Lehmer's error bound and modified Bessel function, Chen et al. [4] proved the positivity of $(-1)^{r-1} \Delta \log p(n)$ for $r \geq 1$ and n sufficiently large, where Δ is the difference operator. Chen and Zheng [3] improved DeSalvo and Pak's bound for $-\Delta^{2} \log p(n-1)$ and proved the log-convexity of $\{\sqrt[n]{p(n)}\}_{n \geq 27}$ and $\{\sqrt[n]{p(n) / n}\}_{n \geq 61}$.

In this paper, we focus on the asymptotic r-log-concavity of $\{p(n)\}$. A sequence $\left\{a_{n}\right\}_{n \geq 0}$ is said to be asymptotically r-log-concave if there exists N such that

$$
\begin{equation*}
\hat{\mathscr{L}}\left\{a_{n}\right\}_{n \geq N}, \hat{\mathscr{L}}^{2}\left\{a_{n}\right\}_{n \geq N}, \ldots, \hat{\mathscr{L}}^{r}\left\{a_{n}\right\}_{n \geq N} \tag{1.1}
\end{equation*}
$$

are all non-negative sequences, where

$$
\hat{\mathscr{L}}\left\{a_{n}\right\}_{n \geq 0}=\left\{a_{n+1}^{2}-a_{n} a_{n+2}\right\}_{n \geq 0} \quad \text { and } \quad \hat{\mathscr{L}}^{k}\left\{a_{n}\right\}_{n \geq 0}=\hat{\mathscr{L}}\left(\hat{\mathscr{L}}^{k-1}\left\{a_{n}\right\}_{n \geq 0}\right)
$$

Chen and Xia [2] gave a criterion for the 2-log-convexity of a sequence. We present a method of proving the asymptotic r-log-convexity and the asymptotic r-log-concavity of a sequence in [7]. More precisely, we have the following criterion for the asymptotic r-log-concavity.

Theorem 1.3 Let $\left\{a_{n}\right\}_{n \geq 0}$ be a positive sequence such that $\mathscr{R}^{2} a_{n}=a_{n} a_{n+2} / a_{n+1}^{2}$ has the following asymptotic expression

$$
\begin{equation*}
\mathscr{R}^{2} a_{n}=1+\frac{c}{n^{\alpha}}+\cdots+o\left(\frac{1}{n^{\beta}}\right), \quad n \rightarrow \infty \tag{1.2}
\end{equation*}
$$

where $0<\alpha \leq \beta$. If $c<0$ and $\alpha<2$, then $\left\{a_{n}\right\}_{n \geq 0}$ is asymptotically $\lfloor\beta / \alpha\rfloor-\log$ concave.

To apply the criterion to $p(n)$, we firstly utilize the Hardy-Ramanujan-Rademacher formula [10] and the error estimation given by Lehmer [8] which are given below (2.1) (2.2) to derive an estimation for $p(n)$: for any m there is an n large enough such that

$$
\left|\frac{p(n)}{T(n)}-1\right|<2^{m+1} \mu(n)^{-m}
$$

where

$$
T(n)=\frac{d}{\mu(n)^{2}}\left(1-\frac{1}{\mu(n)}\right) e^{\mu(n)}
$$

and $d=\frac{\pi^{2}}{6 \sqrt{3}}, \mu(n)=\frac{\pi}{6} \sqrt{24 n-1}$. Then by considering the Taylor expansion in terms of $\mu(n)$, we give an algorithm to establish the upper and lower bounds of $T(n+1) / T(n)$ up to an arbitrary accuracy. Finally, combining these bounds and the criterion for asymptotic r-log-concavity, we are able to find an explicit N such that $\{p(n)\}_{n \geq N}$ is r-log-concave.

2 Error estimation of $\boldsymbol{p}(n)$

In this section, we utilize the Hardy-Ramanujan-Rademacher formula and the error estimation given by Lehmer to derive an estimation for $p(n)$.

For any positive integers n and N, the Hardy-Ramanujan-Rademacher formula reads

$$
\begin{align*}
p(n)= & \frac{d}{\mu(n)^{2}} \sum_{k=1}^{N} \frac{A_{k}(n)}{\sqrt{k}}\left[\left(1-\frac{k}{\mu(n)}\right) e^{\mu(n) / k}+\left(1+\frac{k}{\mu(n)}\right) e^{-\mu(n) / k}\right] \\
& +R_{2}(n, N) \tag{2.1}
\end{align*}
$$

where

$$
d=\frac{\pi^{2}}{6 \sqrt{3}}, \quad \mu(n)=\frac{\pi}{6} \sqrt{24 n-1},
$$

and $R_{2}(n, N)$ is the remainder, see Hardy and Ramanujan [6], Rademacher [10]. Lehmer [8,9] gave an upper bound for $R_{2}(n, N)$:

$$
\begin{equation*}
\left|R_{2}(n, N)\right|<\frac{\pi^{2} N^{-2 / 3}}{\sqrt{3}}\left[\left(\frac{N}{\mu(n)}\right)^{3} \sinh \frac{\mu(n)}{N}+\frac{1}{6}-\left(\frac{N}{\mu(n)}\right)^{2}\right] . \tag{2.2}
\end{equation*}
$$

It is known that $A_{1}(n)=1$ and $A_{2}(n)=(-1)^{n}$ for all positive n. Therefore, by setting $N=2$, we derive that

$$
p(n)=T(n)+R(n)
$$

where

$$
\begin{equation*}
T(n)=\frac{d}{\mu(n)^{2}}\left(1-\frac{1}{\mu(n)}\right) e^{\mu(n)} \tag{2.3}
\end{equation*}
$$

is the main term and $R(n)$ is the remainder term. By dropping off the terms with negative sign in (2.2), we derive that

$$
\left|R_{2}(n, 2)\right|<\frac{\pi^{2} 2^{-2 / 3}}{2 \sqrt{3}}\left(\left(\frac{2}{\mu(n)}\right)^{3} e^{\mu(n) / 2}+\frac{1}{3}\right)
$$

Therefore,

$$
\left|\frac{R(n)}{T(n)}\right|<e^{-\mu(n) / 2}\left(T_{1,2}(n)+T_{2,1}(n)+T_{2,2}(n)+R_{2,1}(n)+R_{2,2}(n)\right)
$$

where

$$
\begin{aligned}
& T_{1,2}(n)=\frac{\mu(n)+1}{\mu(n)-1} e^{-3 \mu(n) / 2}, \\
& T_{2,1}(n)=\frac{1}{\sqrt{2}} \frac{\mu(n)-2}{\mu(n)-1}, \quad T_{2,2}(n)=\frac{1}{\sqrt{2}} \frac{\mu(n)+2}{\mu(n)-1} e^{-\mu(n)}, \\
& R_{2,1}(n)=12 \cdot 2^{1 / 3} \frac{1}{\mu(n)-1}, \quad R_{2,2}(n)=\frac{1}{2^{2 / 3}} \frac{\mu(n)^{3}}{\mu(n)-1} e^{-\mu(n) / 2} .
\end{aligned}
$$

It is straightforward to see that $T_{1,2}(n), T_{2,2}(n)$, and $R_{2,1}(n)$ are decreasing functions of n. For $R_{2,2}(n)$, one may check that $\frac{x^{3}}{x-1} e^{-x / 2}$ is decreasing for $x>3$ and thus $R_{2,2}(n)$ is decreasing for $n \geq 2$ (in fact, for $n \geq 1$). $T_{2,1}(n)$ is increasing and its limit is $1 / \sqrt{2}$ when n tends to infinity. The other four terms tend to 0 when n tends to infinity. One can compute that

$$
T_{1,2}(30)+\frac{1}{\sqrt{2}}+T_{2,2}(30)+R_{2,1}(30)+R_{2,2}(30) \approx 1.986<2
$$

and

$$
T_{1,2}(421)+\frac{1}{\sqrt{2}}+T_{2,2}(421)+R_{2,1}(421)+R_{2,2}(421) \approx 0.99995<1
$$

Therefore,

$$
\begin{equation*}
\left|\frac{R(n)}{T(n)}\right|<2 e^{-\mu(n) / 2} \quad \forall n \geq 30 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{R(n)}{T(n)}\right|<e^{-\mu(n) / 2} \quad \forall n \geq 421 \tag{2.5}
\end{equation*}
$$

Noting that $\lim _{n \rightarrow \infty} \mu(n)=+\infty$, for any given m, the error can be bounded by $(\mu(n) / 2)^{-m}$ for n sufficiently large.

Lemma 2.1 For any integer $m \geq 1$, there exists a real number

$$
N \leq \max \{1,2 m \log m\}
$$

such that

$$
x^{m} e^{-x}<1 \quad \forall x \geq N
$$

Proof We see that $x^{m} e^{-x}$ is decreasing for $x>m$ by taking the derivative with respect to x.

If $m=1$ or 2 , we have $m^{m} / e^{m}<1$ and we may take $N=m$.
If $m \geq 3$, we have

$$
(2 m \log m)^{m} e^{-2 m \log m}=e^{m(\log (2 \log m / m))} .
$$

Once again by taking the derivative with respect to m, we see that $2 \log m<m$ and hence

$$
e^{m(\log (2 \log m / m))}<1,
$$

completing the proof.
Given m, the integer N such that

$$
e^{-\mu(n) / 2} \leq(\mu(n) / 2)^{-m} \quad \forall n \geq N
$$

can be computed by finding the first N such that

$$
\frac{\mu(N) / 2}{\log (\mu(N) / 2)} \geq m
$$

We give Table 1 of N for $m=1,2, \ldots, 10$ as follows.
Finally, we consider $\mu(n)^{-m}$. We have

$$
\mu(n)^{-m}=\left(\sqrt{\frac{2}{3}} \pi\right)^{-m}\left(n-\frac{1}{24}\right)^{-m / 2} .
$$

Since

$$
\left(\frac{n}{n-\frac{1}{24}}\right)^{m / 2}
$$

Table 1 The integer N such that $e^{-\mu(n) / 2}<2^{m} \mu(n)^{-m}$ for $n \geq N$

m	1	2	3	4	5	6	7	8	9	10
N	1	3	13	46	99	176	281	414	580	778

is a decreasing function of n, we derive that

$$
\begin{equation*}
\mu(n)^{-m}<\left(\pi \sqrt{\frac{2}{3}}\right)^{-m}\left(\frac{N}{N-\frac{1}{24}}\right)^{m / 2} \cdot n^{-m / 2} \quad \forall n \geq N . \tag{2.6}
\end{equation*}
$$

In summary, we obtain the following estimation on the ratio $R(n) / T(n)$.
Theorem 2.2 Let $p(n)$ be the number of integer partitions of n and $T(n)$ is given by (2.3). Then for any integer $m \geq 2$, there exists an integer N with

$$
N \leq \max \left\{30,2.56 \cdot m^{2} \log ^{2} m\right\}
$$

such that

$$
|p(n) / T(n)-1|<2^{m+1} \mu(n)^{-m} \quad \forall n \geq N
$$

Proof Let $R(n)=p(n)-T(n)$. We have seen that for $n \geq 30$,

$$
|R(n) / T(n)|<2 e^{-\mu(n) / 2}
$$

and there exists $N_{0} \leq \max \{1,4 m \log m\}$ such that

$$
e^{-\mu(n) / 2}<2^{m} \mu(n)^{-m} \quad \forall \mu(n) \geq N_{0}
$$

By (2.6), we have

$$
n^{1 / 2}<0.4 \mu(n) \quad \forall n \geq 30 .
$$

Therefore, when

$$
n \geq \max \left\{30,2.56 \cdot m^{2} \log ^{2} m\right\}
$$

we have

$$
\mu(n)>\max \{1,4 m \log m\}
$$

and hence $e^{-\mu(n) / 2}<2^{m} \mu(n)^{-m}$.

3 Bounds for the ratio $p(n+1) / p(n)$

In this section, we show how to derive lower and upper bounds for $T(n+1) / T(n)$ so that we obtain an estimation of $p(n+1) / p(n)$.

Recall that

$$
T(n)=\frac{\pi^{2}}{6 \sqrt{3}} \frac{\mu(n)-1}{\mu(n)^{3}} e^{\mu(n)}
$$

Instead of considering the Taylor expansion in n, we consider the Taylor expansion in $\mu(n)$. For brevity, we denote $\mu(n)$ and $\mu(n+1)$ by μ and μ_{+}, respectively.

Noting that

$$
n=\frac{3}{2 \pi^{2}} \mu^{2}+\frac{1}{24},
$$

we have

$$
\mu_{+}=\mu\left(1+\frac{2 \pi^{2}}{3 \mu^{2}}\right)^{1 / 2}
$$

For any integer m, let $m^{\prime}=\lfloor m / 2\rfloor$. By Taylor's Theorem, we have

$$
\begin{aligned}
\left(1+\frac{2 \pi^{2}}{3 \mu^{2}}\right)^{1 / 2}= & \sum_{k=0}^{m^{\prime}}\binom{1 / 2}{k}\left(\frac{2 \pi^{2}}{3}\right)^{k} \mu^{-2 k} \\
& +\binom{1 / 2}{m^{\prime}+1}\left(\frac{2 \pi^{2}}{3 \mu^{2}}\right)^{m^{\prime}+1}(1+\xi)^{\frac{1}{2}-m^{\prime}-1}
\end{aligned}
$$

where $0<\xi<\frac{2 \pi^{2}}{3 \mu^{2}}$. Denote

$$
\mu_{1}=\sum_{k=0}^{m^{\prime}}\binom{1 / 2}{k}\left(\frac{2 \pi^{2}}{3}\right)^{k} \mu^{-2 k}
$$

and

$$
\varepsilon_{1}=\left|\binom{1 / 2}{m^{\prime}+1}\right|\left(\frac{2 \pi^{2}}{3}\right)^{m^{\prime}+1} \mu^{-2 m^{\prime}-2}
$$

We have

$$
\begin{equation*}
\mu_{1}-\varepsilon_{1}<\frac{\mu_{+}}{\mu}<\mu_{1}+\varepsilon_{1} \tag{3.1}
\end{equation*}
$$

Now we consider the ratio

$$
\frac{T(n+1)}{T(n)}=\frac{\mu_{+}-1}{\mu-1} \cdot \frac{\mu^{3}}{\mu_{+}^{3}} \cdot e^{\mu_{+}-\mu}
$$

term by term.
For the first factor, we have

$$
\frac{\mu_{+}-1}{\mu-1}=\frac{\frac{\mu_{+}}{\mu}-\frac{1}{\mu}}{1-\frac{1}{\mu}} .
$$

Since

$$
\sum_{k=0}^{m} \mu^{-k}<\left(1-\frac{1}{\mu}\right)^{-1}<\sum_{k=0}^{m} \mu^{-k}+2 \mu^{-m-1}
$$

we have

$$
\left(\mu_{1}-\varepsilon_{1}-\frac{1}{\mu}\right) \sum_{k=0}^{m} \mu^{-k}<\frac{\mu_{+}-1}{\mu-1}<\left(\mu_{1}+\varepsilon_{1}-\frac{1}{\mu}\right)\left(\sum_{k=0}^{m} \mu^{-k}+2 \mu^{-m-1}\right)
$$

Expanding the left-hand side of the above inequality, we obtain a polynomial in μ^{-1} :

$$
\sum_{k=0}^{m} c_{k} \mu^{-k}+\sum_{k=m+1}^{l} c_{k} \mu^{-k}
$$

Let

$$
\tilde{c}_{k}= \begin{cases}-c_{k} & \text { if } c_{k}<0 \\ 0 & \text { if } c_{k} \geq 0\end{cases}
$$

We then have

$$
\frac{\mu_{+}-1}{\mu-1}>\sum_{k=0}^{m} c_{k} \mu^{-k}-\sum_{k=m+1}^{l} \tilde{c}_{k} \mu^{-k}
$$

Noting further that $\mu \geq \mu_{0}=\mu\left(n_{0}\right)$ for $n \geq n_{0}$, we thus derive a lower bound for $\left(\mu_{+}-1\right) /(\mu-1)$:

$$
\sum_{k=0}^{m} c_{k} \mu^{-k}-\mu^{-m-1} \sum_{k=m+1}^{l} \tilde{c}_{k} \mu_{0}^{-k+m+1} \quad \forall n \geq n_{0}
$$

An upper bound for $\left(\mu_{+}-1\right) /(\mu-1)$ can be obtained in a similar way.
For the second factor, we have

$$
\frac{\mu^{3}}{\mu_{+}^{3}}=\left(1+\frac{2 \pi^{2}}{3 \mu^{2}}\right)^{-3 / 2}
$$

By a discussion similar to the discussion for μ_{+} / μ, we obtain

$$
\mu_{2}-\varepsilon_{2}<\frac{\mu^{3}}{\mu_{+}^{3}}<\mu_{2}+\varepsilon_{2}
$$

where

$$
\mu_{2}=\sum_{k=0}^{m^{\prime}}\binom{-3 / 2}{k}\left(\frac{2 \pi^{2}}{3}\right)^{k} \mu^{-2 k}, \quad \varepsilon_{2}=\left|\binom{-3 / 2}{m^{\prime}+1}\right|\left(\frac{2 \pi^{2}}{3}\right)^{m^{\prime}+1} \mu^{-2 m^{\prime}-2}
$$

and $m^{\prime}=\lfloor m / 2\rfloor$.
For the last factor, we firstly substitute m by $m+1$ in (3.1) to get a better estimation. We still use the notation μ_{1} and e_{1} of the estimation of $m+1$. Then

$$
e^{\mu\left(\mu_{1}-1-\varepsilon_{1}\right)}<e^{\mu_{+}-\mu}<e^{\mu\left(\mu_{1}-1+\varepsilon_{1}\right)} .
$$

Noting that

$$
e^{-x}>1-x, \quad e^{x}<1+2 x, \quad \forall 0<x<\frac{1}{2},
$$

and

$$
\sum_{k=0}^{m} \frac{x^{k}}{k!}<e^{x}<\sum_{k=0}^{m} \frac{x^{k}}{k!}+e^{x} \frac{x^{m+1}}{(m+1)!} \quad \forall x>0
$$

we thus derive that

$$
\left(1-\mu \varepsilon_{1}\right) \cdot \sum_{k=0}^{m} \frac{\left(\mu\left(\mu_{1}-1\right)\right)^{k}}{k!}<e^{\mu_{+}-\mu},
$$

and

$$
e^{\mu_{+}-\mu}<\left(1+2 \mu \varepsilon_{1}\right) \cdot\left(\sum_{k=0}^{m} \frac{\left(\mu\left(\mu_{1}-1\right)\right)^{k}}{k!}+e^{\mu\left(\mu_{1}-1\right)} \frac{\left(\mu\left(\mu_{1}-1\right)\right)^{m+1}}{(m+1)!}\right) .
$$

To get an upper bound for $e^{\mu\left(\mu_{1}-1\right)}$, we use the inequality

$$
\mu\left(\mu_{1}-1\right)<\sum_{k=1}^{\lfloor(m+1) / 2\rfloor} \widetilde{\binom{1 / 2}{k}}\left(\frac{2 \pi^{2}}{3}\right)^{k} \mu_{0}^{-2 k+1} \quad \forall n \geq n_{0}
$$

where $\tilde{x}=x$ if $x>0$ and $\tilde{x}=0$ otherwise.
Combining all the three factors together, we will get an estimation of the ratio $T(n+1) / T(n)$ and thus an estimation of the ratio $p(n+1) / p(n)$.
Theorem 3.1 Let $p(n)$ be the partition function. Then for any positive integer m, there exist integer N, real numbers a_{k} and $C_{1}, C_{2}>0$ such that

$$
\sum_{k=0}^{m} a_{k} \mu^{-k}-C_{1} \mu^{-m-1}<\frac{p(n+1)}{p(n)}<\sum_{k=0}^{m} a_{k} \mu^{-k}+C_{2} \mu^{-m-1} \quad \forall n \geq N .
$$

Proof By Theorem 2.2, for any m there exists N such that

$$
|p(n) / T(n)-1|<2^{m+1} \mu(n)^{-m} \quad \forall n \geq N .
$$

That is

$$
T(n)\left(1-2^{m+1} \mu(n)^{-m}\right)<p(n)<T(n)\left(1+2^{m+1} \mu(n)^{-m}\right) .
$$

Since $\mu(n)$ is an increasing function of n, we thus derive that

$$
\frac{T(n+1)}{T(n)} \frac{1-2^{m+1} \mu(n)^{-m}}{1+2^{m+1} \mu(n)^{-m}}<r_{n}<\frac{T(n+1)}{T(n)} \frac{1+2^{m+1} \mu(n)^{-m}}{1-2^{m+1} \mu(n)^{-m}},
$$

where $r_{n}=p(n+1) / p(n)$.
One can check that for $0<\varepsilon<1 / 3$ we have

$$
\frac{1+\varepsilon}{1-\varepsilon}<1+3 \varepsilon \quad \text { and } \quad \frac{1-\varepsilon}{1+\varepsilon}<1-2 \varepsilon
$$

Noting that $0<\frac{2^{m+1}}{\mu(n)^{m}}<1 / 3$ for any $m \geq 0$, we obtain

$$
\begin{equation*}
\frac{T(n+1)}{T(n)}\left(1-4 \cdot 2^{m} \mu(n)^{-m}\right)<r_{n}<\frac{T(n+1)}{T(n)}\left(1+6 \cdot 2^{m} \mu(n)^{-m}\right), \quad n \geq N \tag{3.2}
\end{equation*}
$$

Now we consider the three factors of the ratio $\frac{T(n+1)}{T(n)}=\frac{\mu_{+}-1}{\mu-1} \cdot \frac{\mu^{3}}{\mu_{+}^{3}} \cdot e^{\mu_{+}-\mu}$. Each of these factors is bounded by a pair of polynomials in $\mu(n)^{-1}$ as shown in previous paragraphs. Moreover, the difference of the pair of polynomials is a polynomial in $\mu(n)^{-1}$ of degree at least $m+1$. Hence $T(n+1) / T(n)$ and r_{n} are bounded by a pair of polynomials in $\mu(n)^{-1}$ whose difference is a polynomials in $\mu(n)^{-1}$ with degree at least $m+1$. Since $\lim _{n \rightarrow \infty} \mu(n)=+\infty$, the difference is bounded by $C \mu(n)^{-m-1}$ for some constant $C>0$, completing the proof.

We have implemented a Mathematica package pn.m which is accessible at the first named author's homepage to compute these parameters. For example, we compute that

$$
f_{4}(\mu)-\frac{151}{\mu^{5}}<\frac{p(n+1)}{p(n)}<f_{4}(\mu)+\frac{419}{\mu^{5}} \quad \forall n \geq 99
$$

where

$$
f_{4}(\mu)=1+\frac{\pi^{2}}{3 \mu}-\frac{\frac{2 \pi^{2}}{3}-\frac{\pi^{4}}{18}}{\mu^{2}}-\frac{-\frac{\pi^{2}}{3}+\frac{5 \pi^{4}}{18}-\frac{\pi^{6}}{162}}{\mu^{3}}+\frac{\frac{\pi^{2}}{3}+\frac{5 \pi^{4}}{9}-\frac{\pi^{6}}{18}+\frac{\pi^{8}}{1944}}{\mu^{4}}
$$

4 Asymptotic r-log-concavity of $p(n)$

In this section, we will show the asymptotic r-log-concavity of $p(n)$ and present a method to find the explicit N such that $\{p(n)\}_{n \geq N}$ is r-log-concave.

By Theorem 3.1, we see that to get an estimation of $\mathscr{R}^{2} p(n)=p(n) p(n+2) / p(n+$ $1)^{2}$, we need to consider the bounds of μ_{+}^{-r} and $1 / f\left(\mu^{-1}\right)$, where $f(x)$ is a polynomial in x with constant term 1 .

Noting that

$$
\frac{\mu_{+}^{-r}}{\mu^{-r}}=\left(1+\frac{2 \pi^{2}}{3 \mu^{2}}\right)^{-r / 2}
$$

we have an estimation of μ_{+}^{-r} up to μ^{-m} for any positive integer m in a way similar to the estimation of μ_{+}. To get the bounds of $1 / f\left(\mu^{-1}\right)$, we consider the coefficient c of the tail term of $f(x)-1$. If $c>0$, we will compute an integer N such that

$$
f\left(\mu^{-1}\right)-1>0 \quad \forall n \geq N .
$$

Then

$$
\begin{aligned}
1-\varepsilon+\varepsilon^{2}-\cdots+(-1)^{m} \varepsilon^{m}-\varepsilon^{m+1}< & \frac{1}{f\left(\mu^{-1}\right)}<1-\varepsilon+\varepsilon^{2}-\cdots \\
& +(-1)^{m} \varepsilon^{m}+\varepsilon^{m+1}
\end{aligned}
$$

where $\varepsilon=f\left(\mu^{-1}\right)-1$ is a polynomial in μ^{-1}. If $c<0$, we will compute an integer N such that

$$
\frac{1}{2}>1-f\left(\mu^{-1}\right)>0 \quad \forall n \geq N
$$

Then

$$
1+\varepsilon+\varepsilon^{2}+\cdots+\varepsilon^{m}<\frac{1}{f\left(\mu^{-1}\right)}<1+\varepsilon+\varepsilon^{2}+\cdots+\varepsilon^{m}+2 \varepsilon^{m+1}
$$

where $\varepsilon=1-f\left(\mu^{-1}\right)$.
Based on the above estimations, we can find the upper and lower bounds of $s_{n}=$ $\mathscr{R}^{2} p(n)$ and further $s_{n}^{(r)}=\mathscr{R}^{2} \hat{\mathscr{L}}^{r-1} p(n)$ for $r \geq 2$. All these computations have been implemented in a Mathematica package pn.m which can be downloaded from the homepage of the first named author.

For example, we have

$$
1-\frac{\pi^{4}}{9 \mu^{3}}-\frac{557}{\mu^{4}}<s_{n}=\mathscr{R}^{2} p(n)<1-\frac{\pi^{4}}{9 \mu^{3}}+\frac{512}{\mu^{4}} \quad \forall n \geq 46
$$

Noting that for $n \geq 341$, it holds that

$$
\frac{\pi^{4}}{9 \mu^{3}}>\frac{512}{\mu^{4}}
$$

we thus derive that $\{p(n)\}_{n \geq 341}$ is log-concavity. By checking the initial values, we reproved the log-concavity of $\{p(n)\}_{n \geq 26}$.

Notice that for any positive integer m,

$$
s_{n}=1-\frac{\pi}{2 \sqrt{6} n^{3 / 2}}+\cdots+o\left(\frac{1}{n^{m}}\right)
$$

By Theorem 1.3, we are led to the asymptotic r-log-concavity of $p(n)$.
Theorem 4.1 For any positive integer r, there exists an integer N such that $\{p(n)\}_{n \geq N}$ is r-log-concave.

To find the explicit N such that $\{p(n)\}_{n \geq N}$ is r-log-concave, we need to check many initial values. For example, we need the estimation of s_{n} up to μ^{-6} to derive the 2-log-concavity.

Denote $s_{n}^{(i+1)}=\hat{\mathscr{L}}^{i} a_{n}$, for $n \geq 281$ we have

$$
s_{n}^{(1)} \geq 1-\frac{\pi^{4}}{9 \mu^{3}}+\frac{4 \pi^{4}}{9 \mu^{4}}+\frac{-\frac{\pi^{4}}{3}+\frac{\pi^{6}}{9}}{\mu^{5}}+\frac{-\frac{4 \pi^{4}}{9}-\frac{16 \pi^{6}}{27}+\frac{\pi^{8}}{162}}{\mu^{6}}-\frac{2275}{\mu^{7}}
$$

and

$$
s_{n}^{(1)} \leq 1-\frac{\pi^{4}}{9 \mu^{3}}+\frac{4 \pi^{4}}{9 \mu^{4}}+\frac{-\frac{\pi^{4}}{3}+\frac{\pi^{6}}{9}}{\mu^{5}}+\frac{-\frac{4 \pi^{4}}{9}-\frac{16 \pi^{6}}{27}+\frac{\pi^{8}}{162}}{\mu^{6}}+\frac{11897}{\mu^{7}}
$$

which leads to

$$
1-\frac{2 \pi^{2}}{9 \mu^{3}}-\frac{6303}{\mu^{4}} \leq s_{n}^{(2)} \leq 1-\frac{2 \pi^{2}}{9 \mu^{3}}+\frac{11897}{\mu^{4}}, \quad \forall n \geq 281
$$

To ensure that $s^{(2)} \leq 1$, we need

$$
\frac{2 \pi^{2}}{9 \mu^{3}} \geq \frac{11897}{\mu^{4}}
$$

which holds for $n \geq 24860$. By checking the first 24860 terms, we finally derive that $\{p(n)\}_{n \geq 221}$ is 2-log-concave.

To prove the 3-log-concavity, we need to check about 1.31×10^{7} terms.
Acknowledgements We would like to thank the referees for valuable comments.

References

1. Chen, W.Y.C.: Recent developments on log-concavity and q-logconcavity of combinatorial polynomials. In: DMTCS Proceeding of 22nd International Conference on Formal Power Series and Algebraic Combinatorics (2010)
2. Chen, W.Y.C., Xia, E.X.W.: The 2-log-convexity of the Apéry numbers. Proc. Am. Math. Soc. 139, 391-400 (2011)
3. Chen, W.Y.C., Zheng, K.Y.: The log-behavior of $\sqrt[n]{p(n)}$ and $\sqrt[n]{p(n) / n}$ (2015, arXiv preprint). arXiv:1511.02558
4. Chen, W.Y.C., Wang, L.X.W., Xie, G.Y.B.: Finite differences of the logarithm of the partition function. Math. Comput. 85(298), 825-847 (2016)
5. DeSalvo, S., Pak, I.: Log-concavity of the partition function. Ramanujan J. 38, 61-73 (2015)
6. Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. 17, 75-175 (1918)
7. Hou, Q.H., Zhang, Z.R.: Asymptotic r-log-convexity and P-recursive sequence. arXiv:1609.07840
8. Lehmer, D.H.: On the series for the partition function. Trans. Am. Math. Soc. 43, 271-292 (1938)
9. Lehmer, D.H.: On the remainders and convergence of the series for the partition function. Trans. Am. Math. Soc. 46, 362-373 (1939)
10. Rademacher, H.: On the partition function $p(n)$. Proc. Lond. Math. Soc. 2(1), 241-254 (1938)
11. Sun, Z.-W.: On a sequence involving sums of primes. Bull. Aust. Math. Soc. 88, 197-205 (2013)

[^0]: This work was supported by the National Science Foundation of China.
 \boxtimes Zuo-Ru Zhang
 zhangzuoru@tju.edu.cn
 Qing-Hu Hou
 qh_hou@tju.edu.cn
 1 School of Mathematics, Tianjin University, Tianjin 300072, People's Republic of China
 2 Center for Applied Mathematics, Tianjin University, Tianjin 300072, People's Republic of China

