
Ramanujan J (2019) 48:117–129
https://doi.org/10.1007/s11139-017-9975-5

r-log-concavity of partition functions

Qing-Hu Hou1 · Zuo-Ru Zhang2

Received: 14 May 2017 / Accepted: 30 November 2017 / Published online: 15 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Let L̂ be the operator given by L̂ {an}n≥0 = {a2n+1 − anan+2}n≥0. A

sequence {an}n≥0 is called asymptotically r -log-concave if L̂ k{an}n≥N are non-
negative sequences for 1 ≤ k ≤ r and some integer N . Let p(n) be the number
of integer partitions of n. We prove that the sequence {p(n)}n≥1 is asymptotically
r -log-concave for any positive integer r . Moreover, we give a method to compute the
explicit N such that {p(n)}n≥N is r -log-concave.

Keywords r -log-concavity · Partition function · Hardy–Ramanujan–Rademacher
formula

Mathematics Subject Classification 05A17 · 11N37 · 65G99

1 Introduction

Let p(n)denote the number of integer partitions ofn, i.e., the number ofways ofwriting
n as the sum of positive integers where the order is irrelevant. Among the various
interesting combinatorial properties, the following inequalities were conjectured by
Chen [1] and solved by DeSalvo and Pak [5].
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Proposition 1.1 For all n ≥ 1, we have

p(n − 1)

p(n)

(
1 + 1

n

)
>

p(n)

p(n + 1)
.

Proposition 1.2 For all n > m > 1, we have

p(n)2 − p(n − m)p(n + m) ≥ 0.

In the same paper, DeSalvo and Pak also proved Sun’s conjecture [11] of the log-
concavity of {q(n)}n≥31, where q(n) is the number of ways writing n as the sum
of distinct positive integers. Based on Lehmer’s error bound and modified Bessel
function, Chen et al. [4] proved the positivity of (−1)r−1� log p(n) for r ≥ 1 and n
sufficiently large, where � is the difference operator. Chen and Zheng [3] improved
DeSalvo and Pak’s bound for −�2 log p(n − 1) and proved the log-convexity of
{ n
√
p(n)}n≥27 and { n

√
p(n)/n}n≥61.

In this paper, we focus on the asymptotic r -log-concavity of {p(n)}. A sequence
{an}n≥0 is said to be asymptotically r-log-concave if there exists N such that

L̂ {an}n≥N , L̂ 2{an}n≥N , . . . , L̂ r {an}n≥N (1.1)

are all non-negative sequences, where

L̂ {an}n≥0 = {a2n+1 − anan+2}n≥0 and L̂ k{an}n≥0 = L̂
(
L̂ k−1{an}n≥0

)
.

Chen and Xia [2] gave a criterion for the 2-log-convexity of a sequence. We present a
method of proving the asymptotic r -log-convexity and the asymptotic r -log-concavity
of a sequence in [7].More precisely, we have the following criterion for the asymptotic
r -log-concavity.

Theorem 1.3 Let {an}n≥0 be a positive sequence such that R2an = anan+2/a2n+1
has the following asymptotic expression

R2an = 1 + c

nα
+ · · · + o

(
1

nβ

)
, n → ∞, (1.2)

where 0 < α ≤ β. If c < 0 and α < 2, then {an}n≥0 is asymptotically �β/α�-log-
concave.

To apply the criterion to p(n), we firstly utilize theHardy–Ramanujan–Rademacher
formula [10] and the error estimation given by Lehmer [8] which are given below (2.1)
(2.2) to derive an estimation for p(n): for any m there is an n large enough such that

∣∣∣∣ p(n)

T (n)
− 1

∣∣∣∣ < 2m+1μ(n)−m,
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where

T (n) = d

μ(n)2

(
1 − 1

μ(n)

)
eμ(n)

and d = π2

6
√
3
, μ(n) = π

6

√
24n − 1. Then by considering the Taylor expansion in

terms of μ(n), we give an algorithm to establish the upper and lower bounds of
T (n + 1)/T (n) up to an arbitrary accuracy. Finally, combining these bounds and the
criterion for asymptotic r -log-concavity, we are able to find an explicit N such that
{p(n)}n≥N is r -log-concave.

2 Error estimation of p(n)

In this section, we utilize the Hardy–Ramanujan–Rademacher formula and the error
estimation given by Lehmer to derive an estimation for p(n).

For any positive integers n and N , the Hardy–Ramanujan–Rademacher formula
reads

p(n) = d

μ(n)2

N∑
k=1

Ak(n)√
k

[(
1 − k

μ(n)

)
eμ(n)/k +

(
1 + k

μ(n)

)
e−μ(n)/k

]

+ R2(n, N ), (2.1)

where

d = π2

6
√
3
, μ(n) = π

6

√
24n − 1,

and R2(n, N ) is the remainder, see Hardy and Ramanujan [6], Rademacher [10].
Lehmer [8,9] gave an upper bound for R2(n, N ):

|R2(n, N )| <
π2N−2/3

√
3

[(
N

μ(n)

)3

sinh
μ(n)

N
+ 1

6
−

(
N

μ(n)

)2
]

. (2.2)

It is known that A1(n) = 1 and A2(n) = (−1)n for all positive n. Therefore, by
setting N = 2, we derive that

p(n) = T (n) + R(n),

where

T (n) = d

μ(n)2

(
1 − 1

μ(n)

)
eμ(n) (2.3)
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is the main term and R(n) is the remainder term. By dropping off the terms with
negative sign in (2.2), we derive that

|R2(n, 2)| <
π22−2/3

2
√
3

((
2

μ(n)

)3

eμ(n)/2 + 1

3

)
.

Therefore,

∣∣∣∣ R(n)

T (n)

∣∣∣∣ < e−μ(n)/2(T1,2(n) + T2,1(n) + T2,2(n) + R2,1(n) + R2,2(n)
)
,

where

T1,2(n) = μ(n) + 1

μ(n) − 1
e−3μ(n)/2,

T2,1(n) = 1√
2

μ(n) − 2

μ(n) − 1
, T2,2(n) = 1√

2

μ(n) + 2

μ(n) − 1
e−μ(n),

R2,1(n) = 12 · 21/3 1

μ(n) − 1
, R2,2(n) = 1

22/3
μ(n)3

μ(n) − 1
e−μ(n)/2.

It is straightforward to see that T1,2(n), T2,2(n), and R2,1(n) are decreasing functions

of n. For R2,2(n), one may check that x3
x−1e

−x/2 is decreasing for x > 3 and thus
R2,2(n) is decreasing for n ≥ 2 (in fact, for n ≥ 1). T2,1(n) is increasing and its
limit is 1/

√
2 when n tends to infinity. The other four terms tend to 0 when n tends to

infinity. One can compute that

T1,2(30) + 1√
2

+ T2,2(30) + R2,1(30) + R2,2(30) ≈ 1.986 < 2

and

T1,2(421) + 1√
2

+ T2,2(421) + R2,1(421) + R2,2(421) ≈ 0.99995 < 1.

Therefore, ∣∣∣∣ R(n)

T (n)

∣∣∣∣ < 2e−μ(n)/2 ∀ n ≥ 30, (2.4)

and ∣∣∣∣ R(n)

T (n)

∣∣∣∣ < e−μ(n)/2 ∀ n ≥ 421. (2.5)

Noting that limn→∞ μ(n) = +∞, for any given m, the error can be bounded by
(μ(n)/2)−m for n sufficiently large.

Lemma 2.1 For any integer m ≥ 1, there exists a real number

N ≤ max{1, 2m logm}
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r -log-concavity of partition functions 121

such that

xme−x < 1 ∀ x ≥ N .

Proof We see that xme−x is decreasing for x > m by taking the derivative with respect
to x .

If m = 1 or 2, we have mm/em < 1 and we may take N = m.
If m ≥ 3, we have

(2m logm)me−2m logm = em(log(2 logm/m)).

Once again by taking the derivative with respect to m, we see that 2 logm < m and
hence

em(log(2 logm/m)) < 1,

completing the proof. ��

Given m, the integer N such that

e−μ(n)/2 ≤ (μ(n)/2)−m ∀ n ≥ N

can be computed by finding the first N such that

μ(N )/2

log(μ(N )/2)
≥ m.

We give Table 1 of N for m = 1, 2, . . . , 10 as follows.
Finally, we consider μ(n)−m . We have

μ(n)−m =
(√

2

3
π

)−m (
n − 1

24

)−m/2

.

Since

(
n

n − 1
24

)m/2

Table 1 The integer N such
that e−μ(n)/2 < 2mμ(n)−m for
n ≥ N

m 1 2 3 4 5 6 7 8 9 10

N 1 3 13 46 99 176 281 414 580 778
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is a decreasing function of n, we derive that

μ(n)−m <

(
π

√
2

3

)−m (
N

N − 1
24

)m/2

· n−m/2 ∀ n ≥ N . (2.6)

In summary, we obtain the following estimation on the ratio R(n)/T (n).

Theorem 2.2 Let p(n) be the number of integer partitions of n and T (n) is given by
(2.3). Then for any integer m ≥ 2, there exists an integer N with

N ≤ max
{
30, 2.56 · m2 log2 m

}

such that

|p(n)/T (n) − 1| < 2m+1μ(n)−m ∀ n ≥ N .

Proof Let R(n) = p(n) − T (n). We have seen that for n ≥ 30,

|R(n)/T (n)| < 2e−μ(n)/2

and there exists N0 ≤ max{1, 4m logm} such that

e−μ(n)/2 < 2mμ(n)−m ∀μ(n) ≥ N0.

By (2.6), we have

n1/2 < 0.4μ(n) ∀ n ≥ 30.

Therefore, when

n ≥ max{30, 2.56 · m2 log2 m},

we have

μ(n) > max{1, 4m logm},

and hence e−μ(n)/2 < 2mμ(n)−m . ��

3 Bounds for the ratio p(n+ 1)/ p(n)

In this section, we show how to derive lower and upper bounds for T (n + 1)/T (n) so
that we obtain an estimation of p(n + 1)/p(n).

Recall that

T (n) = π2

6
√
3

μ(n) − 1

μ(n)3
eμ(n).
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Instead of considering the Taylor expansion in n, we consider the Taylor expansion in
μ(n). For brevity, we denote μ(n) and μ(n + 1) by μ and μ+, respectively.

Noting that

n = 3

2π2μ2 + 1

24
,

we have

μ+ = μ

(
1 + 2π2

3μ2

)1/2

.

For any integer m, let m′ = �m/2�. By Taylor’s Theorem, we have

(
1 + 2π2

3μ2

)1/2

=
m′∑
k=0

(
1/2

k

)(
2π2

3

)k

μ−2k

+
(

1/2

m′ + 1

) (
2π2

3μ2

)m′+1

(1 + ξ)
1
2−m′−1,

where 0 < ξ < 2π2

3μ2 . Denote

μ1 =
m′∑
k=0

(
1/2

k

) (
2π2

3

)k

μ−2k .

and

ε1 =
∣∣∣∣
(

1/2

m′ + 1

)∣∣∣∣
(
2π2

3

)m′+1

μ−2m′−2.

We have
μ1 − ε1 <

μ+
μ

< μ1 + ε1. (3.1)

Now we consider the ratio

T (n + 1)

T (n)
= μ+ − 1

μ − 1
· μ3

μ3+
· eμ+−μ

term by term.
For the first factor, we have

μ+ − 1

μ − 1
=

μ+
μ

− 1
μ

1 − 1
μ

.
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Since

m∑
k=0

μ−k <

(
1 − 1

μ

)−1

<

m∑
k=0

μ−k + 2μ−m−1,

we have

(
μ1 − ε1 − 1

μ

) m∑
k=0

μ−k <
μ+ − 1

μ − 1
<

(
μ1 + ε1 − 1

μ

)(
m∑

k=0

μ−k + 2μ−m−1

)
.

Expanding the left-hand side of the above inequality, we obtain a polynomial in μ−1:

m∑
k=0

ckμ
−k +

l∑
k=m+1

ckμ
−k .

Let

c̃k =
{

−ck if ck < 0,

0 if ck ≥ 0.

We then have

μ+ − 1

μ − 1
>

m∑
k=0

ckμ
−k −

l∑
k=m+1

c̃kμ
−k .

Noting further that μ ≥ μ0 = μ(n0) for n ≥ n0, we thus derive a lower bound for
(μ+ − 1)/(μ − 1):

m∑
k=0

ckμ
−k − μ−m−1

l∑
k=m+1

c̃kμ
−k+m+1
0 ∀ n ≥ n0.

An upper bound for (μ+ − 1)/(μ − 1) can be obtained in a similar way.
For the second factor, we have

μ3

μ3+
=

(
1 + 2π2

3μ2

)−3/2

.

By a discussion similar to the discussion for μ+/μ, we obtain

μ2 − ε2 <
μ3

μ3+
< μ2 + ε2,

123



r -log-concavity of partition functions 125

where

μ2 =
m′∑
k=0

(−3/2

k

)(
2π2

3

)k

μ−2k, ε2 =
∣∣∣∣
( −3/2

m′ + 1

)∣∣∣∣
(
2π2

3

)m′+1

μ−2m′−2,

and m′ = �m/2�.
For the last factor, we firstly substitutem bym+1 in (3.1) to get a better estimation.

We still use the notation μ1 and e1 of the estimation of m + 1. Then

eμ(μ1−1−ε1) < eμ+−μ < eμ(μ1−1+ε1).

Noting that

e−x > 1 − x, ex < 1 + 2x, ∀ 0 < x <
1

2
,

and

m∑
k=0

xk

k! < ex <

m∑
k=0

xk

k! + ex
xm+1

(m + 1)! ∀ x > 0,

we thus derive that

(
1 − με1

) ·
m∑

k=0

(μ(μ1 − 1))k

k! < eμ+−μ,

and

eμ+−μ <
(
1 + 2με1

) ·
(

m∑
k=0

(μ(μ1 − 1))k

k! + eμ(μ1−1) (μ(μ1 − 1))m+1

(m + 1)!

)
.

To get an upper bound for eμ(μ1−1), we use the inequality

μ(μ1 − 1) <

�(m+1)/2�∑
k=1

(̃
1/2

k

) (
2π2

3

)k

μ−2k+1
0 ∀ n ≥ n0,

where x̃ = x if x > 0 and x̃ = 0 otherwise.
Combining all the three factors together, we will get an estimation of the ratio

T (n + 1)/T (n) and thus an estimation of the ratio p(n + 1)/p(n).

Theorem 3.1 Let p(n) be the partition function. Then for any positive integerm, there
exist integer N, real numbers ak and C1,C2 > 0 such that

m∑
k=0

akμ
−k − C1μ

−m−1 <
p(n + 1)

p(n)
<

m∑
k=0

akμ
−k + C2μ

−m−1 ∀ n ≥ N .
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Proof By Theorem 2.2, for any m there exists N such that

|p(n)/T (n) − 1| < 2m+1μ(n)−m ∀ n ≥ N .

That is

T (n)(1 − 2m+1μ(n)−m) < p(n) < T (n)(1 + 2m+1μ(n)−m).

Since μ(n) is an increasing function of n, we thus derive that

T (n + 1)

T (n)

1 − 2m+1μ(n)−m

1 + 2m+1μ(n)−m
< rn <

T (n + 1)

T (n)

1 + 2m+1μ(n)−m

1 − 2m+1μ(n)−m
,

where rn = p(n + 1)/p(n).
One can check that for 0 < ε < 1/3 we have

1 + ε

1 − ε
< 1 + 3ε and

1 − ε

1 + ε
< 1 − 2ε.

Noting that 0 < 2m+1

μ(n)m
< 1/3 for any m ≥ 0, we obtain

T (n + 1)

T (n)

(
1 − 4 · 2mμ(n)−m)

< rn <
T (n + 1)

T (n)

(
1 + 6 · 2mμ(n)−m)

, n ≥ N .

(3.2)

Now we consider the three factors of the ratio T (n+1)
T (n)

= μ+−1
μ−1 · μ3

μ3+
· eμ+−μ. Each

of these factors is bounded by a pair of polynomials in μ(n)−1 as shown in previous
paragraphs. Moreover, the difference of the pair of polynomials is a polynomial in
μ(n)−1 of degree at least m + 1. Hence T (n + 1)/T (n) and rn are bounded by a pair
of polynomials in μ(n)−1 whose difference is a polynomials in μ(n)−1 with degree
at least m + 1. Since limn→∞ μ(n) = +∞, the difference is bounded by Cμ(n)−m−1

for some constant C > 0, completing the proof. ��

We have implemented a Mathematica package pn.m which is accessible at the
first named author’s homepage to compute these parameters. For example, we compute
that

f4(μ) − 151

μ5
<

p(n + 1)

p(n)
< f4(μ) + 419

μ5
∀ n ≥ 99,

where

f4(μ) = 1 + π2

3μ
−

2π2

3 − π4

18

μ2 − −π2

3 + 5π4

18 − π6

162

μ3 +
π2

3 + 5π4

9 − π6

18 + π8

1944

μ4 .
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4 Asymptotic r-log-concavity of p(n)

In this section, we will show the asymptotic r -log-concavity of p(n) and present a
method to find the explicit N such that {p(n)}n≥N is r -log-concave.

ByTheorem3.1, we see that to get an estimation ofR2 p(n) = p(n)p(n+2)/p(n+
1)2, we need to consider the bounds ofμ−r+ and 1/ f (μ−1), where f (x) is a polynomial
in x with constant term 1.

Noting that

μ−r+
μ−r

=
(
1 + 2π2

3μ2

)−r/2

,

we have an estimation of μ−r+ up to μ−m for any positive integer m in a way similar
to the estimation of μ+. To get the bounds of 1/ f (μ−1), we consider the coefficient
c of the tail term of f (x) − 1. If c > 0, we will compute an integer N such that

f (μ−1) − 1 > 0 ∀ n ≥ N .

Then

1 − ε + ε2 − · · · + (−1)mεm − εm+1 <
1

f (μ−1)
< 1 − ε + ε2 − · · ·

+ (−1)mεm + εm+1,

where ε = f (μ−1) − 1 is a polynomial in μ−1. If c < 0, we will compute an integer
N such that

1

2
> 1 − f (μ−1) > 0 ∀ n ≥ N .

Then

1 + ε + ε2 + · · · + εm <
1

f (μ−1)
< 1 + ε + ε2 + · · · + εm + 2εm+1,

where ε = 1 − f (μ−1).
Based on the above estimations, we can find the upper and lower bounds of sn =

R2 p(n) and further s(r)
n = R2L̂ r−1 p(n) for r ≥ 2. All these computations have been

implemented in a Mathematica package pn.mwhich can be downloaded from the
homepage of the first named author.

For example, we have

1 − π4

9μ3 − 557

μ4 < sn = R2 p(n) < 1 − π4

9μ3 + 512

μ4 ∀ n ≥ 46.
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Noting that for n ≥ 341, it holds that

π4

9μ3 >
512

μ4 ,

we thus derive that {p(n)}n≥341 is log-concavity. By checking the initial values, we
reproved the log-concavity of {p(n)}n≥26.

Notice that for any positive integer m,

sn = 1 − π

2
√
6n3/2

+ · · · + o

(
1

nm

)
.

By Theorem 1.3, we are led to the asymptotic r -log-concavity of p(n).

Theorem 4.1 For any positive integer r , there exists an integer N such that {p(n)}n≥N

is r-log-concave.

To find the explicit N such that {p(n)}n≥N is r -log-concave, we need to check
many initial values. For example, we need the estimation of sn up to μ−6 to derive the
2-log-concavity.

Denote s(i+1)
n = L̂ i an , for n ≥ 281 we have

s(1)
n ≥ 1 − π4

9μ3 + 4π4

9μ4 + −π4

3 + π6

9

μ5
+ − 4π4

9 − 16π6

27 + π8

162

μ6 − 2275

μ7

and

s(1)
n ≤ 1 − π4

9μ3 + 4π4

9μ4 + −π4

3 + π6

9

μ5
+ − 4π4

9 − 16π6

27 + π8

162

μ6 + 11897

μ7 ,

which leads to

1 − 2π2

9μ3 − 6303

μ4 ≤ s(2)
n ≤ 1 − 2π2

9μ3 + 11897

μ4 , ∀ n ≥ 281.

To ensure that s(2) ≤ 1, we need

2π2

9μ3 ≥ 11897

μ4

which holds for n ≥ 24860. By checking the first 24860 terms, we finally derive that
{p(n)}n≥221 is 2-log-concave.

To prove the 3-log-concavity, we need to check about 1.31 × 107 terms.
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