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Abstract Let % be the operator given by j{an}nzo = {afl+1 — apap4+2}n=0- A

sequence {a,},>o is called asymptotically r-log-concave if D?k{an}nzN are non-
negative sequences for 1 < k < r and some integer N. Let p(n) be the number
of integer partitions of n. We prove that the sequence {p(n)},>1 is asymptotically
r-log-concave for any positive integer . Moreover, we give a method to compute the
explicit N such that {p(n)},>n is r-log-concave.

Keywords r-log-concavity - Partition function - Hardy—Ramanujan—Rademacher
formula

Mathematics Subject Classification 05A17 - 11N37 - 65G99

1 Introduction

Let p(n) denote the number of integer partitions of n, i.e., the number of ways of writing
n as the sum of positive integers where the order is irrelevant. Among the various
interesting combinatorial properties, the following inequalities were conjectured by
Chen [1] and solved by DeSalvo and Pak [5].
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Proposition 1.1 Foralln > 1, we have

pin—1) ( 1) p(n)
— 1+ =) > —.
p(n) n pin+1)
Proposition 1.2 Foralln > m > 1, we have

p)* — p(n —m)p(n +m) > 0.

In the same paper, DeSalvo and Pak also proved Sun’s conjecture [11] of the log-
concavity of {g(n)},>31, where g(n) is the number of ways writing n as the sum
of distinct positive integers. Based on Lehmer’s error bound and modified Bessel
function, Chen et al. [4] proved the positivity of (=D 1A log p(n) forr > 1 and n
sufficiently large, where A is the difference operator. Chen and Zheng [3] improved
DeSalvo and Pak’s bound for —A2log p(n — 1) and proved the log-convexity of
{W}nzﬂ and {W}nzﬂ-

In this paper, we focus on the asymptotic r-log-concavity of {p(n)}. A sequence
{an}n>0 is said to be asymptotically r-log-concave if there exists N such that

Playn=n, LHankwsn, - L an)n=n (1.1)

are all non-negative sequences, where
Y, 2 ok > cok—1
g{an }nzo = {an+1 - anan+2}n20 and & {an }nzO = f(g {a, }nzO)-

Chen and Xia [2] gave a criterion for the 2-log-convexity of a sequence. We present a
method of proving the asymptotic r-log-convexity and the asymptotic r-log-concavity
of a sequence in [7]. More precisely, we have the following criterion for the asymptotic
r-log-concavity.

2

Theorem 1.3 Let {an}n>0 be a positive sequence such that R*a, = a,la,1+2/an+1

has the following asymptotic expression

1
%zan=1+i+~-~+0<—>, n— 0o, (1.2)
n® nb
where 0 < o < B. If c < 0and a < 2, then {an}n>0 is asymptotically | B/o]-log-

concave.

To apply the criterion to p(n), we firstly utilize the Hardy—Ramanujan—Rademacher
formula [10] and the error estimation given by Lehmer [8] which are given below (2.1)
(2.2) to derive an estimation for p(n): for any m there is an n large enough such that

2

1 2m+l —m’
" ‘ < p(n)
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where

d 1
T — 1 — w(mn)
"= ( M(n)) ¢

and d = %, un) = %\/ 24n — 1. Then by considering the Taylor expansion in
terms of w(n), we give an algorithm to establish the upper and lower bounds of
T(n+ 1)/ T (n) up to an arbitrary accuracy. Finally, combining these bounds and the
criterion for asymptotic r-log-concavity, we are able to find an explicit N such that
{p(n)}n>n is r-log-concave.

2 Error estimation of p(n)

In this section, we utilize the Hardy—Ramanujan—Rademacher formula and the error
estimation given by Lehmer to derive an estimation for p(n).

For any positive integers n and N, the Hardy—Ramanujan—Rademacher formula
reads

N

d Ar(n) k k _
= 1 — wuin)/k <1 > M(n)/k]
PO = o L [( u(n))e U aw )

1
+ Ra(n, N), 2.1

where

2

b T
d=——, (n) = —+/24n — 1,
N

@)}

and Ry(n, N) is the remainder, see Hardy and Ramanujan [6], Rademacher [10].
Lehmer [8,9] gave an upper bound for R (n, N):

2 n—2/3 3 2
Ra(n, N)| < 2 [( N ) sinh'u(n)+é—< N )} 2.2)

NERANID) N ()

It is known that Aj(n) = 1 and Ay (n) = (—1)" for all positive n. Therefore, by
setting N = 2, we derive that

p(n) =T )+ R(n),

where

d 1
T(n) = 1— pm) 2.3
= o ( M(”)) ‘ 23
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is the main term and R(n) is the remainder term. By dropping off the terms with
negative sign in (2.2), we derive that

n2272/3 2 \? 1
Ry(n,?2 wm/2 L~ )
a1 < () 7+

Therefore,
‘% < e MW2(Ty 5(n) + T, 1 (n) + Ton(n) + Ra,1(n) + Ran(n)),
where
Ty o) = PO 3w
’ p(n) —1
() = %% Tr2(n) = %%e—mm’
Ryi(n) =12 21/3m, Rya2(n) = 22%—“’(*;)”)_3 e,

It is straightforward to see that 71 2(n), T2,2(n), and R; | (n) are decreasing functions
of n. For Ry >(n), one may check that xx—jle_x/ 2 is decreasing for x > 3 and thus
Ry 2(n) is decreasing for n > 2 (in fact, for n > 1). T2 1(n) is increasing and its
limit is 1/+/2 when n tends to infinity. The other four terms tend to O when n tends to

infinity. One can compute that

1
T12(30) + — + T5.2(30) + R2.1(30) 4+ R2.2(30) ~ 1.986 < 2

V2

and

1
T12(421) + — + T22(421) + R2,1(421) 4+ Ry 2(421) ~ 0.99995 < 1.

V2
Therefore,
R\ _ppmnmr v, = 30, (2.4)
T(n)
and
RO _ punr gy s 401, (2.5)
T(n) -

Noting that lim,,_, », ;(n) = 400, for any given m, the error can be bounded by
(u(n)/2)~™ for n sufficiently large.

Lemma 2.1 For any integer m > 1, there exists a real number

N < max{l, 2m logm}
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such that
x"e™ <1 Vx> N.

Proof We see that x™e ™" is decreasing for x > m by taking the derivative with respect
to x.

If m = 1or2, we have m" /e < 1 and we may take N = m.

If m > 3, we have

(2m logm)me—2m logm __ em(log(2 logm/m))‘

Once again by taking the derivative with respect to m, we see that 2logm < m and
hence

em(log(Z logm/m)) <1,
completing the proof. O
Given m, the integer N such that
e M2 < (u)/2)™ VYn =N

can be computed by finding the first N such that

w(N)/2 "
log(u(N)/2) —

We give Table 1 of N form = 1,2, ..., 10 as follows.
Finally, we consider p(n) ™. We have

. \/3 - 1\ "2
un) " = 571 (n—ﬂ) .

Since

Table 1 The integer N such
that e=#0D/2 < 2 )y~ for M 1 2 3 4 5 6 7 8 9 10

n>N N 1 3 13 46 99 176 281 414 580 778
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is a decreasing function of n, we derive that

—m m/2
pnn)™" < (n\g> (N N : ) -n™?% V¥Yn>N. (2.6)

T2

In summary, we obtain the following estimation on the ratio R(n)/ T (n).

Theorem 2.2 Let p(n) be the number of integer partitions of n and T (n) is given by
(2.3). Then for any integer m > 2, there exists an integer N with

N < max {30, 2.56 - mzlogzm}
such that
lp()/T(m) =11 < 2" )™ ¥Yn=N.
Proof Let R(n) = p(n) — T (n). We have seen that for n > 30,
[R(n)/T ()| < 2e 1™/
and there exists No < max{l, 4m logm} such that
e M2 M) Y u(n) > No.
By (2.6), we have
n'/? <04u(n) Vn > 30.
Therefore, when
n > max{30, 2.56 - m*log® m},
we have
w(n) > max{l, 4mlogm},

and hence e H#M/2 < 2™ (n)™™. O

3 Bounds for the ratio p(n + 1)/ p(n)

In this section, we show how to derive lower and upper bounds for 7 (n + 1)/ T (n) so
that we obtain an estimation of p(n + 1)/p(n).
Recall that

2
T(n) = T —u(n) _ le“(”).

C 63 )’
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Instead of considering the Taylor expansion in n, we consider the Taylor expansion in
w(n). For brevity, we denote p(n) and w(n + 1) by n and p 4, respectively.
Noting that

3 1

2
n=_—x +_7
272t

we have

27_[2 1/2
= l —_— .
=R < " 3u2)

For any integer m, let m’ = |m/2]. By Taylor’s Theorem, we have
12w o\ k
2 1/2\ (2n ok
1 = —_—
<+32> X)) -
k=0
172\ /222\" ! o
o) Ga) ot

2
where 0 < & < 5”7 Denote

k

£

and

/+1
o = 1/2 27%\" ym =2,
m' + 1 3

"
,u1—81<7+<u1+81. 3.1

We have

Now we consider the ratio

T(”+1)_“+_1.“_3.eu+—ﬂ
T (n) w—1 3

term by term.
For the first factor, we have
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124 Q.-H. Hou, Z.-R. Zhang

Since
m 1 —1 m
Z/,L_k < <1 — —) < Zu_k +2pum
k=0 ® k=0
we have
1 — wy —1
<u1—81——>2u_"< a <m+81——> Zu +2op !
n =0 n—1

Expanding the left-hand side of the above inequality, we obtain a polynomial in ;!

Zcm + Z ek

k=m+1
Let
- —ci ifcep <O,
Ck = .
0 if ¢ > 0.
We then have

!

m
! > chﬂ_k - Z e
k=0

k=m+1

Noting further that u > wo = wn(ng) for n > ng, we thus derive a lower bound for
(g =D/ —1:

m 1
—k —m—1 ~—kme]
§cm —u " E Crpg ™" Y = ng.
= k=m+1

An upper bound for (uy — 1)/(;t — 1) can be obtained in a similar way.
For the second factor, we have

3 22 -3/2
= =1+ .
75 3u?

By a discussion similar to the discussion for 4/, we obtain
3

"
M2 — &2 < —35 < U2 + &2,
+
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where

m' 2\ k o\ m'+1
-3/2 2 _ -3/2 2 o —
“2:Z< k/><3>“2k’ 52:‘(//)‘< ) K
= m’ + 1 3

and m’' = |m/2].
For the last factor, we firstly substitute m by m 4 1 in (3.1) to get a better estimation.
We still use the notation 1 and e of the estimation of m + 1. Then

etlmi=l=en) _ pe—p _ ulpr—I+er)

Noting that
_ 1
e ¥>1—x, ¢ <1+4+2x, V0<x<§,
and
m m ym+l
ZX— Zx— A yxso,
k! RN

k=0

we thus derive that

m

_ k
(1 . ,UA91) . (M(Ml 1)) < eMJr_M’

k!

I
[}

and

— _ m+1
e < (1 +2“€1)'<Z (M(mk’ DY - 1>.<u(;:;l+1l))>' )
k=0 ’

To get an upper bound for e*“1=1 we use the inequality

Lom+1)/2] N
1/2\ [ 2m _
MTEI VD (i)(T) o Y =,

k=1

where X = x if x > 0 and X = 0 otherwise.
Combining all the three factors together, we will get an estimation of the ratio
T(n+ 1)/ T (n) and thus an estimation of the ratio p(n + 1)/p(n).

Theorem 3.1 Let p(n) be the partition function. Then for any positive integer m, there
exist integer N, real numbers ay and C1, Co> > 0 such that

1 m
Zakpfk —Ccip < % < Zak,ufk +Cop ™™ v N
p(n
k=0
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126 Q.-H. Hou, Z.-R. Zhang

Proof By Theorem 2.2, for any m there exists N such that
lp)/T(m) = 1] < 2" um™ VYn=N.
That is
T(m)(1=2" " um)™) < p) < T)(1 + 2" )™,
Since p(n) is an increasing function of n, we thus derive that

Tn+1)1=2"ym)y—m Tn+ 1)1+ 2" )=
T 142"t um=— " " Tm 1-=2mpum=—""

where r, = p(n 4+ 1)/p(n).
One can check that for 0 < ¢ < 1/3 we have

1 1—
+8<1+35 and 8<1—28.
—¢ + ¢
Noting that 0 < % < 1/3 for any m > 0, we obtain

T(n+1) - I'n+1) -
W(l —4-2"pu(n) m) <Ip < W(1+6-2m,u(n) m), n>N.
(3.2)
3
Now we consider the three factors of the ratio Z+D — =1 K. el+~H Each

T = w=1 3
of these factors is bounded by a pair of polynomials in z(n)~! as shown in previous
paragraphs. Moreover, the difference of the pair of polynomials is a polynomial in
y,(n)_l of degree at least m + 1. Hence T'(n + 1)/ T (n) and r;, are bounded by a pair
of polynomials in (n)~! whose difference is a polynomials in (n)~! with degree
at least m + 1. Since lim,,_, oo 4 (n) = 400, the difference is bounded by Cpu(n) "1
for some constant C > 0, completing the proof. O

We have implemented a Mathematica package pn .m which is accessible at the
first named author’s homepage to compute these parameters. For example, we compute
that

151 p(n+1) 419
fa) — = < B2 < fiw + == Vi =99,
iz p(n) m
where
2 272 i 2 S# 7 n? 5mt 70 78
4 2 - 42— L4 — - 4 2=
f4(M)=1+£— 3M21 __3 M138 162 4 3 9M41 1944
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4 Asymptotic r-log-concavity of p(n)

In this section, we will show the asymptotic r-log-concavity of p(n) and present a
method to find the explicit N such that {p(n)},>n is r-log-concave.

By Theorem 3.1, we see that to get an estimation of Z#*p(n) = p(n) p(n+2)/p(n+
1)2, we need to consider the bounds of ,ujr’ and 1/f(u~"), where f(x) is a polynomial
in x with constant term 1.

Noting that

—r 2 2 7}‘/2
o1+ S)
wr 3u?

we have an estimation of ©}" up to =" for any positive integer m in a way similar
to the estimation of . To get the bounds of 1/f (™), we consider the coefficient
c of the tail term of f(x) — 1. If ¢ > 0, we will compute an integer N such that

fuw™H—=1>0 Vn>N.

Then

l—e+4e?— 4 (=)™ —gmt! <l—g4e>—--.

S
fu=h
(=DM 4"t

where ¢ = f(u~") — 1is a polynomial in =", If ¢ < 0, we will compute an integer
N such that

1
E>1—f(;f1)>0 Vn > N.

Then

1
1+8+82+-~-+6‘m<m<l+8+82+~-~+8m+28m+1,

where e =1 — f(u_l).

Based on the above estimations, we can find the upper and lower bounds of s, =
2* p(n) and further s,(,r) = 3P p(n) forr > 2. All these computations have been
implemented in a Mathematica package pn . m which can be downloaded from the
homepage of the first named author.

For example, we have

4 4
557 512
= 2 e =) < | — o +

Vn > 46.
oud  ut Y3 u
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Noting that for n > 341, it holds that

we thus derive that {p(n)},>341 is log-concavity. By checking the initial values, we
reproved the log-concavity of {p(n)},>26.
Notice that for any positive integer m,

TP S (.
sp=1-—4+---+0|— ).
" 2/6n3/2 nm

By Theorem 1.3, we are led to the asymptotic r-log-concavity of p(n).

Theorem 4.1 Forany positive integer r, there exists an integer N such that { p(n)},>n
is r-log-concave.

To find the explicit N such that {p(n)},>n is r-log-concave, we need to check
many initial values. For example, we need the estimation of s, up to 2~ to derive the
2-log-concavity.

Denote s,(lH_l) = jian, for n > 281 we have
4 6 4 6 8
W, Tt Ry g -eE
s _ - 4 _
no— 9M3 9M4 MS l/«6 M7
and
Sposl—gEtogat— 5+ 6 7
ou’  9u 2 u 2
which leads to
27% 6303 272 11897
1____537(12)51———1——, Vn > 281.
9.3 ut 9u3 e
To ensure that s® < 1, we need
272 11897
- >
9M3 - I'L4

which holds for n > 24860. By checking the first 24860 terms, we finally derive that
{p(n)}n>221 is 2-log-concave.
To prove the 3-log-concavity, we need to check about 1.31 x 107 terms.
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