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Let p(n) denote the partition function. In this paper, we will prove that for n > 222,

p(n) p(n+1) pn+2)
p(n—1)  p(n)  pn+1)>0.
p(n—2) p(n—1) p(n)

As a corollary, we deduce that p(n) satisfies the double Turén inequalities, that is,
for n > 222,

(p(n)? — p(n — D)p(n + 1)) — (p(n — 1)? — p(n — 2)p(n))(p(n + 1)* — p(n)p(n + 2)) > 0.
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1. Introduction

The subject of this paper is concerned with the positivity of certain matrices having
partition function entries. First, let us recall some background.

Let {ay}}_, be a sequence of nonnegative real numbers. It is said that {ax}}7_,
is log-concave (log-convez, resp.) if aiﬂ > Ao (a%_H < apagy2, resp.) for all
k > 0. For a finite sequence {ax}}_, it is also called log-concave (log-convex, resp.)
if aiH > apagro (ai_H < apagya, resp.) for all 0 < k < n — 2. If there exists an
index 0 < j < n such that ay < agqq forall k=0,...,7 — 1 and ay > ap41 for k =
Js...,n—1, we call {a,}}_, a unimodal sequence and if there are not three indices
0 <k <j<i<nsuchthat a;, ap # 0 and a; = 0, the sequence is said to have no
internal zeros.

We say that a real polynomial P(z) = Y"}'_, arz® is log-concave (unimodal, with
no internal zeros, resp.) if its the coefficient sequence has the corresponding prop-
erty. There are many log-concave sequences or unimodal sequences in combinatorics.
It has been proved that the coefficients of a real polynomial are log-concave if this
polynomial has only real zeros, see [2].
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THEOREM 1.1. Let P(x) = ZZ:O apz® be a real polynomial with nonnegative coeffi-
cients and with only real zeros. Then the coefficient sequence {ay}}_, is log-concave
with no internal zeros; in particular, it is unimodal.

Clearly, the above theorem gives a necessary condition for a real polynomial to
have only real zeros.
Given a sequence {ay}72 ,, we define its Toeplitz matrix T" and Hankel matrix H

by
_ao
ay; Qo
T—|a a ao (1.1)
az a2 aip Qo
and

apg aip az as
ap a2 a3 G4

H=| @ a3 a4 as - (1.2)
as a4 as dag -

Recall that a real matrix A is totally positive (TP for short) if all its minors are
positive. Let r be a positive integer. It is called TP, if all minors of order < r are
nonnegative. We say that a real infinite sequence {ay}72  is called a totally positive
sequence (T P-sequence for short) or Pdlya frequency sequence (PF-sequence for
short) if its Toeplitz matrix is totally positive. A sequence {ay}7° , as above is called
a totally positive sequence of order r (T P,-sequence for short) or a Pélya frequency
sequence of order r (PF,-sequence for short) if its Toeplitz matrix is a T'P, matrix.
We also call a real finite sequence ag, ai,...,a, a PF-sequence (PF,-sequence,
resp.) if the infinite sequence ag, a1, ..., a,, 0, 0,... has the corresponding property.
Furthermore, it is easy to see that a sequence of positive numbers is log-concave
(log-convex, resp.) if and only if the corresponding Toeplitz matrix (Hankle matrix,
resp.) is T'Ps.

Aissen, Edrei, Schoenberg and Whitney [1] proved the following result.

THEOREM 1.2. Let P(z) =Y, _, axz® be a real polynomial with nonnegative coef-
ficients. Then P(z) has only real zeros if and only if its coefficient sequence is a
PF-sequence.

A sequence I' = {1 }32, of real numbers is called a multiplier sequence if, wher-
ever the real polynomial P(z) =Y )_,axz® has only real zeros, the polynomial
L(P(x)) = > p_o vkaxz” also has only real zeros. This theory commenced with the
work of Laguerre [12] and was solidified in the seminal work of Pélya and Schur [14].
Multiplier sequences have been extensively studied in the theory of total positivity
[11] and in combinatorics [2].
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Recall that a real entire function
) =S (13)
k=0

is said to be in the Laguerre-Pdlya class, denoted ¢ (x) € LP, if it can be represented
in the form

o0
Y(x) = cxMe—ox’+0x H (1+x/xy) eif”/z’“,
k=1

where ¢, 3, zj, are real numbers, a > 0, m is a nonnegative integer and » | x,f < 0.
These functions are the only ones which are uniform limits of polynomials whose
zeros are real. If 7, >0 (or (=1)*y, >0 or 7, <0) for all k=0, 1,2,..., then
Y(x) € LP issaid to be of type I in the Laguerre-Pélya class written as ¢ (z) € LPI.
It is well-known that a sequence {vi}72, is a multiplier sequence if and only if its
exponential generating function P(x) = Y7, v /k!z" belongs to LPI. We refer to
[13,15] for the background on the theory of the LP class.

It is easy to find an intimate connection between multiplier sequences and PF-
sequences from the following theorem.

THEOREM 1.3 (Aissen et al. [1]). Let ¢(z) = > po axz®, ag =1, ay € RT, be an
entire function. Then {ag}2, is a PF-sequence if and only if ¢(x) € LPI.

Concerning multiplier sequences, Craven and Csordas [6] obtained the following
theorem.

THEOREM 1.4 (Theorem 2.13, [6]). If {v}32q, v >0, is a multiplier sequence,
then

Tk Ve+1  Vk+2
Ye—1 Yk Ve+1 | =0, fork=23,4,.... (1.4)
V-2  Yk—1 V&

Notice that the left-hand side of (1.4) is equivalent to

1
% ((7;% - 'kal'YkJrl)Q - (71371 - 7k72'7k)('713+1 - ’Yk’Yk+2)) .

Thus theorem 1.4 gives us

(Ve = e ve41)? = (Vi1 — Ye—276) (Vi1 — Wrt2) = 0,

which is called a double Turdn inequality, see [6-8].

Let us now turn to the partition function. A partition of a positive integer n is
a nonincreasing sequence (A1, Ao, ..., \.) of positive integers such that Ay + \g +
-4+ A =n. Let p(n) denote the number of partitions of n. DeSalvo and Pak [9]
proved the log-concavity of the partition function for n > 26 as well as the following
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inequality as conjectured in [3]:
p(n—1) ( 1) p(n)
— |1+ =) > ——, n=2 1.5
o ') 7 s ()

DaSalvo and Pak also conjectured that for n > 45,

p(n - 1) ™ p(n)
p(n) (1 - \/ﬂnw) Zpnt 1) (1.6)

Chen, Wang and Xie [5] gave an affirmative answer to this conjecture.
Recently, Chen and Jia and Wang [4] showed that for n > 95, p(n) satisfies a
high order Turan inequality, that is,

4(p(n)* — p(n — Dp(n+1))(p(n + 1)* = p(n)p(n + 2))
— (p(n)p(n +1) = p(n — p(n+2))* > 0 (1.7)

holds for n > 95.
In the remaining of this paper, we shall prove the following result.

THEOREM 1.5. Let p(n) denote the partition function and

p(n)  pn+1) pn+2)
Ms(p(n)) = | p(n—=1)  p(n)  p(n+1) (1.8)
p(n—=2) pin—1)  p(n)
Then for n > 222, we have
det M3(p(n)) > 0. (1.9)
Note that 222 is best possible since det M3(p(221)) < 0. In fact, det M3(p(n)) is

negative for all odd n with 3 < n < 221.
From the above theorem, we immediately get the following result.

THEOREM 1.6. The partition function p(n) satisfies the double Turdn inequalities
form > 222, that is, for n > 222,
2
(p(n)* = p(n — Dp(n +1))" = (p(n — 1)* = p(n — 2)p(n))
x (p(n +1)* — p(n)p(n +2)) > 0.
Remark that recently, Hou and Zhang [10] independently proved theorem 1.6 by

a different approach.
Let

My (p(n)) = (p(n — i+ j))i<ij<k-

Numerical evidences show that for all 656 < n < 10000, det(M4(p(n))) > 0 and for
all 1372 < n < 10000 det(Ms(p(n))) > 0. These facts encourage us to propose the
following conjecture.
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CONJECTURE 1.7. For any given k, there exists a positive integer n(k) such that
for n > n(k),

det(My(p(n))) > 0.

2. Upper bound for s(n)

Let
-1 1
p(n)
It can be checked that
det M3(p(n)) = p(n)® (u3 (Un—1 + Unt1 — Up—1Unt1) — 2uy + 1) (2.2)
For convenience, we denote
s(n) =Up—1+ Up4+1 — Un—-1Un+1, (23)

and hence, theorem 1.5 can be restated as follows.
THEOREM 2.1. Let u,, be defined as in (2.1) and s(n) be denoted as in (2.3). Then
forn > 221, we have
s(n)u? — 2u, +1> 0. (2.4)
In this section, we shall give an upper and a lower bound for s(n), which plays

an important role in (2.4).
To this aim, we denote

m/24n — 1
) = T

Let r = p(n — 2) and adopt the following notation as used in [4]:
r=pn—-1), y=pn), z=pn+1), w=pn+2), (2.5)

and
(:1310 9 1) y24 (210 _ 9 1)

f n) = ew72y+z
(n) 212 (y10 — 49 4 1) 212

, (2.6)

(xlO — 94 1) y2 (210 _ 94 1)
212 (ylo —y9 — 1)2 212 ’

Employing Rademacher’s convergent series and Lehmer’s error bound, Chen, Jia
and Wang [4] proved the following inequality.

ex—2y+z

g(n) = (2.7)

THEOREM 2.2. Forn > 1207,

f(n) <un <g(n). (2.8)
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Set
sin)=fn—1)+ f(n+1)—g(n—1)g(n+1), (2.9)
and
so(n) =gn—1)+gn+1)— f(n—1)f(n+1). (2.10)
By the above theorem, we get the following bounds for s(n).

COROLLARY 2.3. Forn > 1207, we have
s1(n) < s(n) < sa2(n). (2.11)

The upper bound s3(n) for s(n) is very precise and to make our proof easy, we
claim that s(n) < 1 for n > 1207. In fact, we have the following theorem.

THEOREM 2.4. Let so(n) be defined as in (2.10). Then for n > 3, we have
s2(n) < 1. (2.12)
Proof. Recall that
so(n) =g(n—1)+gn+1)— f(n—1)f(n+1), (2.13)

and hence, to verify (2.12), we estimate to g(n — 1), g(n + 1), f(n — 1) and f(n + 1)
first. For this aim, we prefer to give the estimates of r, z, z and w by the following
equalities: For n > 3,

A2 272 272 472
TH’ z:,/yzf%, Z:,/yu%, wm. (2.14)

Following Chen, Jia and Wang [4], we obtain the following expansions easily:

by 2t 2mt ar® d0n® 28ml® 98rl? sswlt 1
TYT 3y T 9y T 27y5  81yT  243y° 243yl 729413 y15
v — 12 B o _ 6 B 578 B 7710 B 7rl2 B 11714 1
TYT 3y T 18°  54y5  648y7T  1944y°  3888yl1 11664y 3T y15
syt 12 B t " 70 B 578 n 7710 B 7rl2 n 11714 410 1
TY T3y T 188 T 54y5  648yT | 1944y° 3888yl | 11664y13 y15
and
272 2t n 476 1078 n 28710 287T12 —|—O 1
w— L AT _ _ L
Y3y T 0y Tomy5  BlyT | 243y°  243yll 729y13 15

It is readily checked that for n > 145,

e <r <rg, (2.15)
1 < x < To, (2.16)
21 < z < 29, (2.17)
wy < w < wa, (2.18)
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o2 27t 4xS 1048 28x10  287!2 89714
"n=Yy— —— — —5 — — — - -
VYT R T 98 T 215 8lyT 2430 243y 729413
o2 27t 4xS 1078 28x10  287!2 8814

TV R T 98 T 21y 8lyT 243y° 243yt 720413

_ w2 d 76 578 710 T2 12714
YT 3, T 18yR 54y 648y7  1044y9 3888yl 11664y13’
N 2 7 76 58 710 T2 117t
P27V T30 T 18y 5dyd 648yT  1944y® 3888yl 11664yl3’

w2 d 76 58 710 T2
A=Vt g T 188 T 54 648y7 | 1044y7  3888y11

2 7l 76 58 710 T2 1174
2=Vt g T 18 T 545 648y7 | 10440 3888yll | 11664515

n 272 ot n 476 1078 n 28710 28712
wy = _— — _
VoY gy T 08 T omys T B1yT | 2430 243510
o2 27t 4xS 1078 28x10  287!2 8814

W2 =Yt S T 9 T o T8Iy | 2437 243yt | 720418

Applying these bounds for r, z, z and w, we now estimate g(n —1), g(n + 1),
f(n—1) and f(n+ 1). For convenience, set

(mm _ .1?9 _ 1) y24 (210 _ 259 _ 1)

hin) = 212 (y10 — 49 + 1)2 212 (2.19)
and
o) = (10 — 29 + 1)y (2102_ 2 41) | (2.20)
212 (y10 — 49 — 1) 212
Then,
f(n) =e"" 2 h(n),  g(n) =" q(n), (2:21)

which suggest that we should bound f(n —1), f(n+1), g(n — 1) and g(n + 1) by
estimating e"~2¢TY  e¥=22Ftw h(n — 1), h(n + 1), ¢(n — 1) and g(n + 1) separately.

We first consider the exponential factors e”~2%*¥ and e¥=2*T%_ It is easily seen
that for n > 145

T —2x+y<r—2x+y<re,—2r +vy, (2.22)
y—2z 4w <y—2z+w<y— 2z +ws, (2.23)
which implies that
e AT QP AHY g2 m 2ty (2.24)
e¥—2mtwL o py=22Fw o py—2aitws (2.25)
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In order to give a feasible bound for e”~2**¥ and e¥~2***  we define
2 43 45 +6

Bt)=1+t+ 5+ =+ 5+ 155+ 7og (2.26)

and

2 t3 t4 t5 t6 t7

t
:1 —_— —_— —_— — — .
o(t) +t+2+6+24+120+720+5040

(2.27)
It can be checked that for ¢t < 0,
B(t) < e’ < B(2). (2.28)

To apply this result to (2.24) and (2.25), we have to show that both ro — 2z1 +y

and y — 221 + wo are negative. By straightforward calculation, it is easy to obtain

that

m* (648y"0 + 64872y® + 6307*y" + 6307°y* + 65172 + 69270
5832y 13 ’

ro —2x1 +y=—

which is clearly negative. As for y — 2z1 + w9, we find that

7 (648y'0 — 6487%y® + 63071y’ — 63075y* + 65175y + 11710)
583213 ’

Yy —221 Fwy = —

which is also negative for n > 2. This fact can be confirmed by noting that for
n =2,

648712y® — 648y'° < 0,
630m%y* — 6307%y°® < 0,
704710 — 6517%y% < 0.

Thus, applying (2.28) to (2.24) and (2.25), we obtain that for n > 145,
H(ry — 220 +7y) < "2V < B(ry — 221 + y), (2.29)
and

By — 220 +wy) < ¥"ETY < Dy — 221 + wo). (2.30)

Now we turn to estimate h(n — 1), h(n+ 1), g(n — 1) and ¢(n + 1).
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(2.31)

With these notation, A(n — 1), h(n + 1), ¢(n — 1) and ¢(n + 1) can be rewritten as

o) = S M) = i
222 0(ra 22 a(y)a(w
=) = T ) = S

For our purpose, we recall (2.15), (2.16), (2.17), (2.18) and establish the following

inequalities, which can be directly checked, that is, for n > 145,

10

0 —roar® 41 < a(r) <r'®

— r1r8 +1,

10

2" — 222® +1 < afz) < 2

— a:lwg +1,

2981 < a(z) < 2108 1,

w'’ —wow® +1 < a(w) < w'® —wiw® 41,

PO i 1< B(r) < 10 pgr® = 1,

10

20— z2® -1 < B(x) < 10

—xgxg -1,
20 1< B(z) < 210 — 22y8 -1,

w —ww® -1 < B(w) < w'® — wew® — 1,

220 — 21:23018 + 28 42210 — 2302308 +1< a(m)2 < 2?0 - 2m1x18 + 2t 42210 — Qxla:s +1,

220 = 2292" 4 2" 42210 — 2202 + 1 < a(2)? < 270 — 2202" + 2" 42210 — 22125 4+ 1,

2

220 —2pox®® 1 2 — 220 v 2p28 1 < ﬂ(m)2 < z?

0 _ 2:c1x18 + 28— 210 + 2:1:2178 +1,

220 218 1 218 0210 108 11 < ﬁ(z)2 <220 _0p 8 L 18 0,10 L0 8

(2.32)

Applying these above inequalities to h(n — 1), h(n+1), g¢(n — 1) and g(n + 1)

leads to
. 1 (110 — rgr® — 1) 224 (10 — 4 — 1)
(n=1)> r12 (220 — 2p1 218 + 218 + 2210 — 22128 + 1) y12’
g 1) > @O 1) (50 -y —1) 2
" wl2y12 (220 — 221218 4 218 4 9210 _ 92,28 4 1)’
(n—1) < (10— rir® 4+ 1) 2 (510 —y° +1)
an r12 (220 — 2pox18 4 218 — 2210 4+ 27128 4 1) 4127
w' —wiwd +1) (y'° —y° 4+ 1) 2%
gn+1) < ( = )l ° )

w212 (220 — 225218 4+ 218 — 2210 4 27128 1 1)
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Now, combining (2.21), (2.29) and (2.30), we can bound f(n — 1), f(n + 1), g(n — 1)
and g(n + 1) easily, that is, for n > 145,

(rlo — 8+ 1) x4 (ylo —y? + 1) D(ry — 221 +y)
712 (220 — 200018 + 218 — 2210 4 27,48 + 1) y12
(wlo —wyw® + 1) (ylo - 1) 224 P(y — 221 + wo)
WI2y12 (220 — 95,518 4 218 9,10 1 9, ,8 1 1)

£ 1) > Asy) = (rlo —ror8 — 1) 724 (yl[) _ y9 — 1) d(ry — 229 +9)
n 3\y) = 12 (20 — 231218 + 218 4 2210 — 29928 + 1) y12

(wlo — wow® — 1) (ylo —y? - 1) 224p(y — 229 +wy)
wl2y12 (220 — 229218 4 218 4 2210 — 22128 +1)

gln—1) < \i(y) =

)

g(n+1) < Aa(y) =

)

fln+1) > M(y) =

Since
sa(n)=gn—1)4+gn+1)— f(n—=1)f(n+1),

it is easy to get that for n > 145

s2(n) < Ar(y) + Aa(y) = As(y) A (y). (2.37)
We proceed to prove (2.12). In view of (2.37), we only need to show that for
n > 31072,

A1(y) + A2(y) — As(y)Aaly) — 1 <0. (2.38)
The left-hand side in the above inequalities can be simplified as

M)+ 2al0) = D)) — 1= . (2.39)

where H(y) and G(y) are polynomials in y whose degree are separately 356 and
362.

For the convenience of calculation, we show that for n > 31072,
H(y)G(y) <0. (2.40)

The left-hand side of (2.40) is a polynomial in y of degree 718, and we write

718
H(y)G(y) = ary”. (2.41)
k=0

Here we just list the value of azi¢, ar17 and a7is:

a1 = _2113332355747_‘.87
ary = 2115332154747‘,8,
arg = —2112332054747T8.
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Noting that y is positive for n > 1, we can easily deduce that
717
H(y)G(y) <Y larly* + ansy™. (2.42)
k=0
Moreover, it is easily seen that for any 0 < k < 715,

lakly® < —aney™° (2.43)

holds for all y > 8 or n > 10. Thus it follows that for y > 8,

717
Z lag|y* + arisy™® < (=T1Tare + anry + ansy?)y C. (2.44)
k=0
Combining (2.42) and (2.44) leads to
H(y)G(y) < (=T1Taz6 + anry + ansy’)y"° (2.45)
for y > 8. Hence, (2.40) holds as long as
—T17az6 + ar7y + ansy” <0, (2.46)
which is true if
y>3 (4 + M) ~ 452.152.
Hence, H(y)G(y) is negative for y > 453 and this implies (2.38).
Combining (2.37) and (2.38), we deduce that for y > 453, or equivalently, for

n > 31072, (2.12) is true. Moreover, it can be directly checked for 3 < n < 31071,
(2.12) holds. This completes the proof. O

3. An inequality involving g(n) and s(n)

In this section, we establish an inequality between g(n) and s(n), which is the key
to prove theorem 2.1.

THEOREM 3.1. Let

p(t) = ———, (3.1)

where 0 <t < 1. Then for n > 200, we have

g9(n) < ¢(s(n)). (3.2)
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Proof. To prove this theorem, we first consider the monotonicity of ¢(t). Noting
that

CE :
v 2(VI—t+1)°yI=1

(3.3)

which is positive for 0 < ¢ < 1, we find that ¢(t) is increasing for 0 < ¢ < 1. In view
of the monotonicity of ¢(t) and corollary 2.3, we deduce that for n > 1207,

p(s(n)) > @(s1(n)). (34)
Thus, to verify (3.2), we turn to show that for n > 1207,
g9(n) < p(s1(n)), (3.5)
which can be rewritten as
s1(n)g(n)? —2¢g(n) +1 > 0. (3.6)

By the definition (2.31) of a(t) and §(¢), the left-hand side of the above inequality
can be simplified to

s1(n)g(n)? — 29(n) + 1
B _hler+w—2y + h26w+2w—3y + h3 _ 2h4ew—2y+z 4 h5er—3y+2z (37)

P12qp122:24 (10 — 29 — 1)2 (y10 — 49 — 1)4 224 (210 — 29 — 1)2 ’

where
hy = 2y a(r)a(w)a(z)®a(y)?a(2)?, (3.8)
hy = r?y* 224 B(w) B(x) () B(y) B(2)?, (3.9)
hs = 2wl 2 3(2)2 4(y) 4 B(2)?, (3.10)
ha = w2y 22 a(2) B(2) B(y)  a(2)B(2)%, (3.11)
hs = w'ay™ B(r)B(x)*B(y)B(2)  a(2)? (3.12)

For the convenience, let
Aly) = —h1 €07 4 hgeV 2T 4 hg — 20y THTE 4 hgel TP (313)

Since the denominator of (3.7) is positive, to prove (3.6), we aim to prove the
numerator A(y) is positive too. For this aim, we shall estimate e"Tw=2¥ ew+2z=3y,
e*~2¥F2 and " ~3Y1+2% by the same method used in previous section. First, we apply
(2.15), (2.16), (2.17) and (2.18) to the indexes of these functions and obtain that
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for n > 145,
rtw =2y <r+w—2y <re+ wy — 2y, (3.14)
wy + 221 — 3y < w + 2z — 3y < wa + 225 — 3y, (3.15)
1 —2y+z1 <x—2y+z<mx2— 2y + 29, (3.16)
r—3y+2z <r—3y+2z<ry—3y+2z. (3.17)
From the monotonicity of exponential function, we find that
e TUTAY < gratwa=2y (3.18)
eI > gt iy, (3.19)
TR < gty (3.20)
e T2E3Y 5 erit2a =3y, (3.21)

To apply (2.28), we aim to show that for n > 145 the indexes in the right-hand side
of the above four inequalities, that is,

47t <27y8 + 157r4y4 + 14718)

ro +wo — 2y = —

243y11 ’
n? (648y10 — 216728 + 27071y — 21075y* + 2317392 + 471'10)
w1 +2r1 — 3y = — 194413 )
7l (216y8 1 30mtyt + 77r8)
T2 — 2y + 29 = — 1944y 1T )
r (1944y10 1 6487248 + 81074y + 63075y* + 6937542 + 7127r10)
T+ 221 =3y = —

5832y13 ’

are negative. In fact, we only need to verify the second is negative since the others
are obviously negative. Noting that for n > 145,

648y'0 — 2167%y® > 0,
270745 — 21075y* > 0,
2317%y* + 47’0 > 0,

we can easily conclude that wy + 2z — 3y is negative, and hence, we now can apply
(2.28) to (3.18), (3.19), (3.20) and (3.21) and obtain that for n > 145,

@I < T By oy — 2y), (
W23y o i 213y o g4y 4 23 — 3y)), (3.23
eI < o2  P(gy + 29 — 2y), (

(

er+2273y > 6T1+2z1*3y > (25(7"1 + 221 _ 3y)
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After applying the estimates of the exponential functions, we have that for n > 145,
A > —h®(rg + we — 2y) + hoo(wy + 221 — 3y)
+ hs — 2hgP(z2 + 22 — 2y) + hsd(r1 + 221 — 3y).

Recalling the definition of these polynomials hq, ha, hs, hg, hs and (2.32) and
substituting r, z, z, w by the expressions in (2.14), it is easy to obtain a lower
bound for the right-hand side of the above inequality, that is,

256
DI LIaN (3.26)
235311735y107’ :
where aj are known real number, and the value of assg, asss, G254 are given below:
asss = 277319357, agss = —2°93M7351%,  agsy = —273'193577 (277 — 45) .

Thus, for n > 145, we have

256
k— Oaky
A> 235311735107 (3.27)
Since 229311735197 is positive for n > 1, to verify (3.6), we proceed to prove for
n > 1207,
256
Zakyk > 0. (3.28)

As y is positive for n > 1, we see that

256 255
Z ary® > Z —lak|y® + ass6y*. (3.29)
k=0 k=0
Hence, to verify (3.28), we aim to show that for n > 1207,
255
Z_|ak|y + ag56y”° > 0. (3.30)
k=0

For 0 < k < 253, we find that
—laxly* > agsay®™ (3.31)

holds for y > /(=270 + 12072 + 29974) /(270 — 1272) ~ 15. Therefore, we obtain
that for y > 16,

256 255
Z apy® > Z —lakly® + azs6y”®° > (—255asss + azssy + azsey’)yt.  (3.32)

It is clear that (3.28) is true provided
—255a954 + a955Y + ag56y2 > 0, (3.33)

which holds for y > /3834 — 17072 + 3 = 50, or equivalently, for n > 380. So we
get that (3.6) holds for n > 1207, which implies (3.5). Combining (3.4) and (3.5),
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we conclude that for n > 1207

g(n) < ¢(s(n)). (3.34)
And for 200 < n < 1206, it can be checked that (3.2) is also true, which completes
this proof. O

4. Proof of theorem 2.1

In this section, we shall give a proof of theorem 2.1, which states that for n > 222,

s(n)u? — 2u, +1> 0, (4.1)
where
p(n —1)p(n+1)
Un - 2 I
p(n)
and

$(n) = Up—1 + Up+1 — Up—Uppt1-

By corollary 2.3 and theorem 2.4, we know s(n) < 1 holds for n > 1207.

Proof of theorem 2.1. Since for 222 < n < 1207, (4.1) can be directly checked, to
prove this theorem, we just only prove that (4.1) holds for n > 1207. Let

F(t) = s(n)t> — 2t + 1. (4.2)
We have now to prove that for n > 1207,
F(uy) > 0. (4.3)
It is easily seen that the equation F(t) = 0 has two solutions:

1—+/1-s(n) ; :1+\/1—s(n)

T P T s

and thus F(t) is positive when ¢ < t; or t > t5. To verify (4.3), we claim that for
n > 1207,

1—+/1-s(n)
_— (4.4)
s(n)
According to theorem 2.2, we know that for n > 1207,
u(n) < g(n), (4.5)

and from theorem 3.1, we see that for n > 200,

1—+/1—3s(n)

mm<¢wm»=——;@7—< (4.6)

u(n) <t =

Hence, the claim is verified by combining (4.5) and (4.6). The proof is completed.
O
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