Determinantal inequalities for the partition function

Dennis X.Q. Jia and Larry X.W. Wang

Center for Combinatorics, Nankai University, Tianjin 300071, P. R. China (dennisjxq@mail.nankai.edu.cn; wsw82@nankai.edu.cn)

(MS received 16 January 2018; accepted 8 October 2018)

Let p(n) denote the partition function. In this paper, we will prove that for $n \ge 222$,

$$\begin{vmatrix} p(n) & p(n+1) & p(n+2) \\ p(n-1) & p(n) & p(n+1) \\ p(n-2) & p(n-1) & p(n) \end{vmatrix} > 0.$$

As a corollary, we deduce that p(n) satisfies the double Turán inequalities, that is, for $n \geqslant 222$,

$$(p(n)^{2} - p(n-1)p(n+1))^{2} - (p(n-1)^{2} - p(n-2)p(n))(p(n+1)^{2} - p(n)p(n+2)) > 0.$$

Keywords: Partition function; log-concavity; determinant; the Hardy-Ramanujan-Rademacher formula; double Turán inequality

2010 Mathematics subject classification: Primary 05A20; 11P82; 11C20

1. Introduction

The subject of this paper is concerned with the positivity of certain matrices having partition function entries. First, let us recall some background.

Let $\{a_k\}_{k=0}^n$ be a sequence of nonnegative real numbers. It is said that $\{a_k\}_{k=0}^n$ is \log -concave (\log -convex, resp.) if $a_{k+1}^2 \geqslant a_k a_{k+2}$ ($a_{k+1}^2 \leqslant a_k a_{k+2}$, resp.) for all $k \geqslant 0$. For a finite sequence $\{a_k\}_{k=0}^n$, it is also called log-concave (\log -convex, resp.) if $a_{k+1}^2 \geqslant a_k a_{k+2}$ ($a_{k+1}^2 \leqslant a_k a_{k+2}$, resp.) for all $0 \leqslant k \leqslant n-2$. If there exists an index $0 \leqslant j \leqslant n$ such that $a_k \leqslant a_{k+1}$ for all $k=0,\ldots,j-1$ and $a_k \geqslant a_{k+1}$ for $k=j,\ldots,n-1$, we call $\{a_n\}_{k=0}^n$ a unimodal sequence and if there are not three indices $0 \leqslant k < j < i \leqslant n$ such that $a_i, a_k \neq 0$ and $a_j = 0$, the sequence is said to have no internal zeros.

We say that a real polynomial $P(x) = \sum_{k=0}^{n} a_k x^k$ is log-concave (unimodal, with no internal zeros, resp.) if its the coefficient sequence has the corresponding property. There are many log-concave sequences or unimodal sequences in combinatorics. It has been proved that the coefficients of a real polynomial are log-concave if this polynomial has only real zeros, see [2].

© 2019 The Royal Society of Edinburgh

THEOREM 1.1. Let $P(x) = \sum_{k=0}^{n} a_k x^k$ be a real polynomial with nonnegative coefficients and with only real zeros. Then the coefficient sequence $\{a_k\}_{k=0}^n$ is log-concave with no internal zeros; in particular, it is unimodal.

Clearly, the above theorem gives a necessary condition for a real polynomial to have only real zeros.

Given a sequence $\{a_k\}_{k=0}^{\infty}$, we define its Toeplitz matrix T and Hankel matrix H by

$$T = \begin{bmatrix} a_0 & & & & \\ a_1 & a_0 & & & \\ a_2 & a_1 & a_0 & & \\ a_3 & a_2 & a_1 & a_0 & & \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
 (1.1)

and

$$H = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 & \cdots \\ a_1 & a_2 & a_3 & a_4 & \cdots \\ a_2 & a_3 & a_4 & a_5 & \cdots \\ a_3 & a_4 & a_5 & a_6 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \cdots \end{bmatrix}$$
(1.2)

Recall that a real matrix A is totally positive (TP) for short) if all its minors are positive. Let r be a positive integer. It is called TP_r if all minors of order $\leq r$ are nonnegative. We say that a real infinite sequence $\{a_k\}_{k=0}^{\infty}$ is called a totally positive sequence (TP)-sequence for short) or Pólya frequency sequence (PF)-sequence for short) if its Toeplitz matrix is totally positive. A sequence $\{a_k\}_{k=0}^{\infty}$ as above is called a totally positive sequence of order r $(TP)_r$ -sequence for short) or a Pólya frequency sequence of order r $(PF)_r$ -sequence for short) if its Toeplitz matrix is a TP matrix. We also call a real finite sequence a_0, a_1, \ldots, a_n a PF-sequence $(PF)_r$ -sequence, resp.) if the infinite sequence $a_0, a_1, \ldots, a_n, 0, 0, \ldots$ has the corresponding property. Furthermore, it is easy to see that a sequence of positive numbers is log-concave (log-convex, resp.) if and only if the corresponding Toeplitz matrix (Hankle matrix, resp.) is TP.

Aissen, Edrei, Schoenberg and Whitney [1] proved the following result.

THEOREM 1.2. Let $P(x) = \sum_{k=0}^{n} a_k x^k$ be a real polynomial with nonnegative coefficients. Then P(x) has only real zeros if and only if its coefficient sequence is a PF-sequence.

A sequence $\Gamma = \{\gamma_k\}_{k=0}^{\infty}$ of real numbers is called a *multiplier sequence* if, wherever the real polynomial $P(x) = \sum_{k=0}^{n} a_k x^k$ has only real zeros, the polynomial $\Gamma(P(x)) = \sum_{k=0}^{n} \gamma_k a_k x^k$ also has only real zeros. This theory commenced with the work of Laguerre [12] and was solidified in the seminal work of Pólya and Schur [14]. Multiplier sequences have been extensively studied in the theory of total positivity [11] and in combinatorics [2].

Recall that a real entire function

$$\psi(x) = \sum_{k=0}^{\infty} \gamma_k \frac{x^k}{k!} \tag{1.3}$$

is said to be in the Laguerre-Pólya class, denoted $\psi(x) \in \mathcal{LP}$, if it can be represented in the form

$$\psi(x) = cx^m e^{-\alpha x^2 + \beta x} \prod_{k=1}^{\infty} (1 + x/x_k) e^{-x/x_k},$$

where c, β, x_k are real numbers, $\alpha \ge 0$, m is a nonnegative integer and $\sum x_k^{-2} < \infty$. These functions are the only ones which are uniform limits of polynomials whose zeros are real. If $\gamma_k \ge 0$ (or $(-1)^k \gamma_k \ge 0$ or $\gamma_k \le 0$) for all $k = 0, 1, 2, \ldots$, then $\psi(x) \in \mathcal{LP}$ is said to be of $type\ I$ in the Laguerre-Pólya class written as $\psi(x) \in \mathcal{LP}I$. It is well-known that a sequence $\{\gamma_k\}_{k=0}^{\infty}$ is a multiplier sequence if and only if its exponential generating function $P(x) = \sum_{k=0}^{\infty} \gamma_k / k! x^k$ belongs to $\mathcal{LP}I$. We refer to $[\mathbf{13}, \mathbf{15}]$ for the background on the theory of the \mathcal{LP} class.

It is easy to find an intimate connection between multiplier sequences and PFsequences from the following theorem.

THEOREM 1.3 (Aissen et al. [1]). Let $\psi(x) = \sum_{k=0}^{\infty} \alpha_k x^k$, $\alpha_0 = 1$, $\alpha_k \in \mathbb{R}^+$, be an entire function. Then $\{\alpha_k\}_{k=0}^{\infty}$ is a PF-sequence if and only if $\psi(x) \in \mathcal{LPI}$.

Concerning multiplier sequences, Craven and Csordas $[{\bf 6}]$ obtained the following theorem.

Theorem 1.4 (Theorem 2.13, [6]). If $\{\gamma_k\}_{k=0}^{\infty}$, $\gamma_k > 0$, is a multiplier sequence, then

$$\begin{vmatrix} \gamma_k & \gamma_{k+1} & \gamma_{k+2} \\ \gamma_{k-1} & \gamma_k & \gamma_{k+1} \\ \gamma_{k-2} & \gamma_{k-1} & \gamma_k \end{vmatrix} \geqslant 0, \quad \text{for } k = 2, 3, 4, \dots$$
 (1.4)

Notice that the left-hand side of (1.4) is equivalent to

$$\frac{1}{\gamma_k} \left((\gamma_k^2 - \gamma_{k-1} \gamma_{k+1})^2 - (\gamma_{k-1}^2 - \gamma_{k-2} \gamma_k) (\gamma_{k+1}^2 - \gamma_k \gamma_{k+2}) \right).$$

Thus theorem 1.4 gives us

$$(\gamma_k^2 - \gamma_{k-1}\gamma_{k+1})^2 - (\gamma_{k-1}^2 - \gamma_{k-2}\gamma_k)(\gamma_{k+1}^2 - \gamma_k\gamma_{k+2}) \geqslant 0,$$

which is called a double Turán inequality, see [6-8].

Let us now turn to the partition function. A partition of a positive integer n is a nonincreasing sequence $(\lambda_1, \lambda_2, \ldots, \lambda_r)$ of positive integers such that $\lambda_1 + \lambda_2 + \cdots + \lambda_r = n$. Let p(n) denote the number of partitions of n. DeSalvo and Pak [9] proved the log-concavity of the partition function for $n \ge 26$ as well as the following

inequality as conjectured in [3]:

$$\frac{p(n-1)}{p(n)}\left(1+\frac{1}{n}\right) > \frac{p(n)}{p(n+1)}, \quad n \geqslant 2.$$
 (1.5)

DaSalvo and Pak also conjectured that for $n \ge 45$.

$$\frac{p(n-1)}{p(n)} \left(1 + \frac{\pi}{\sqrt{24}n^{3/2}} \right) > \frac{p(n)}{p(n+1)}. \tag{1.6}$$

Chen, Wang and Xie [5] gave an affirmative answer to this conjecture.

Recently, Chen and Jia and Wang [4] showed that for $n \ge 95$, p(n) satisfies a high order Turán inequality, that is,

$$4(p(n)^{2} - p(n-1)p(n+1))(p(n+1)^{2} - p(n)p(n+2))$$
$$-(p(n)p(n+1) - p(n-1)p(n+2))^{2} \ge 0$$
(1.7)

holds for $n \ge 95$.

In the remaining of this paper, we shall prove the following result.

Theorem 1.5. Let p(n) denote the partition function and

$$M_3(p(n)) = \begin{pmatrix} p(n) & p(n+1) & p(n+2) \\ p(n-1) & p(n) & p(n+1) \\ p(n-2) & p(n-1) & p(n) \end{pmatrix}$$
(1.8)

Then for $n \ge 222$, we have

$$\det M_3(p(n)) > 0. \tag{1.9}$$

Note that 222 is best possible since $\det M_3(p(221)) < 0$. In fact, $\det M_3(p(n))$ is negative for all odd n with $3 \le n \le 221$.

From the above theorem, we immediately get the following result.

THEOREM 1.6. The partition function p(n) satisfies the double Turán inequalities for $n \ge 222$, that is, for $n \ge 222$,

$$(p(n)^2 - p(n-1)p(n+1))^2 - (p(n-1)^2 - p(n-2)p(n))$$

$$\times (p(n+1)^2 - p(n)p(n+2)) > 0.$$

Remark that recently, Hou and Zhang [10] independently proved theorem 1.6 by a different approach.

Let

$$M_k(p(n)) = (p(n-i+j))_{1 \leqslant i,j \leqslant k}.$$

Numerical evidences show that for all $656 \le n \le 10\,000$, $\det(M_4(p(n))) > 0$ and for all $1372 \le n \le 10\,000 \det(M_5(p(n))) > 0$. These facts encourage us to propose the following conjecture.

Conjecture 1.7. For any given k, there exists a positive integer n(k) such that for n > n(k),

$$\det(M_k(p(n))) > 0.$$

2. Upper bound for s(n)

Let

$$u_n = \frac{p(n-1)p(n+1)}{p(n)^2}. (2.1)$$

It can be checked that

$$\det M_3(p(n)) = p(n)^3 \left(u_n^2 \left(u_{n-1} + u_{n+1} - u_{n-1} u_{n+1} \right) - 2u_n + 1 \right). \tag{2.2}$$

For convenience, we denote

$$s(n) = u_{n-1} + u_{n+1} - u_{n-1}u_{n+1}, (2.3)$$

and hence, theorem 1.5 can be restated as follows.

THEOREM 2.1. Let u_n be defined as in (2.1) and s(n) be denoted as in (2.3). Then for n > 221, we have

$$s(n)u_n^2 - 2u_n + 1 > 0. (2.4)$$

In this section, we shall give an upper and a lower bound for s(n), which plays an important role in (2.4).

To this aim, we denote

$$\mu(n) = \frac{\pi\sqrt{24n-1}}{6}.$$

Let $r = \mu(n-2)$ and adopt the following notation as used in [4]:

$$x = \mu(n-1), \quad y = \mu(n), \quad z = \mu(n+1), \quad w = \mu(n+2),$$
 (2.5)

and

$$f(n) = e^{x-2y+z} \frac{\left(x^{10} - x^9 - 1\right)y^{24}\left(z^{10} - z^9 - 1\right)}{x^{12}\left(y^{10} - y^9 + 1\right)^2 z^{12}},$$
(2.6)

$$g(n) = e^{x-2y+z} \frac{\left(x^{10} - x^9 + 1\right) y^{24} \left(z^{10} - z^9 + 1\right)}{x^{12} \left(y^{10} - y^9 - 1\right)^2 z^{12}}.$$
 (2.7)

Employing Rademacher's convergent series and Lehmer's error bound, Chen, Jia and Wang [4] proved the following inequality.

Theorem 2.2. For $n \ge 1207$,

$$f(n) < u_n < g(n). \tag{2.8}$$

1456

D.X.Q. Jia and L.X.W. Wang

Set

$$s_1(n) = f(n-1) + f(n+1) - g(n-1)g(n+1), \tag{2.9}$$

and

$$s_2(n) = g(n-1) + g(n+1) - f(n-1)f(n+1).$$
(2.10)

By the above theorem, we get the following bounds for s(n).

Corollary 2.3. For $n \ge 1207$, we have

$$s_1(n) < s(n) < s_2(n).$$
 (2.11)

The upper bound $s_2(n)$ for s(n) is very precise and to make our proof easy, we claim that s(n) < 1 for $n \ge 1207$. In fact, we have the following theorem.

THEOREM 2.4. Let $s_2(n)$ be defined as in (2.10). Then for $n \ge 3$, we have

$$s_2(n) < 1. (2.12)$$

Proof. Recall that

$$s_2(n) = g(n-1) + g(n+1) - f(n-1)f(n+1), \tag{2.13}$$

and hence, to verify (2.12), we estimate to g(n-1), g(n+1), f(n-1) and f(n+1) first. For this aim, we prefer to give the estimates of r, x, z and w by the following equalities: For $n \ge 3$,

$$r = \sqrt{y^2 - \frac{4\pi^2}{3}}, \quad x = \sqrt{y^2 - \frac{2\pi^2}{3}}, \quad z = \sqrt{y^2 + \frac{2\pi^2}{3}}, \quad w = \sqrt{y^2 + \frac{4\pi^2}{3}}.$$
 (2.14)

Following Chen, Jia and Wang [4], we obtain the following expansions easily:

$$\begin{split} r &= y - \frac{2\pi^2}{3y} - \frac{2\pi^4}{9y^3} - \frac{4\pi^6}{27y^5} - \frac{10\pi^8}{81y^7} - \frac{28\pi^{10}}{243y^9} - \frac{28\pi^{12}}{243y^{11}} - \frac{88\pi^{14}}{729y^{13}} + O\left(\frac{1}{y^{15}}\right), \\ x &= y - \frac{\pi^2}{3y} - \frac{\pi^4}{18y^3} - \frac{\pi^6}{54y^5} - \frac{5\pi^8}{648y^7} - \frac{7\pi^{10}}{1944y^9} - \frac{7\pi^{12}}{3888y^{11}} - \frac{11\pi^{14}}{11664y^{13}} + O\left(\frac{1}{y^{15}}\right), \\ z &= y + \frac{\pi^2}{3y} - \frac{\pi^4}{18y^3} + \frac{\pi^6}{54y^5} - \frac{5\pi^8}{648y^7} + \frac{7\pi^{10}}{1944y^9} - \frac{7\pi^{12}}{3888y^{11}} + \frac{11\pi^{14}}{11664y^{13}} + O\left(\frac{1}{y^{15}}\right), \end{split}$$

and

$$w = y + \frac{2\pi^2}{3y} - \frac{2\pi^4}{9y^3} + \frac{4\pi^6}{27y^5} - \frac{10\pi^8}{81y^7} + \frac{28\pi^{10}}{243y^9} - \frac{28\pi^{12}}{243y^{11}} + \frac{88\pi^{14}}{729y^{13}} + O\left(\frac{1}{y^{15}}\right).$$

It is readily checked that for $n \ge 145$,

$$r_1 < r < r_2,$$
 (2.15)

$$x_1 < x < x_2, (2.16)$$

$$z_1 < z < z_2, (2.17)$$

$$w_1 < w < w_2, (2.18)$$

where

$$\begin{split} r_1 &= y - \frac{2\pi^2}{3y} - \frac{2\pi^4}{9y^3} - \frac{4\pi^6}{27y^5} - \frac{10\pi^8}{81y^7} - \frac{28\pi^{10}}{243y^9} - \frac{28\pi^{12}}{243y^{11}} - \frac{89\pi^{14}}{729y^{13}}, \\ r_2 &= y - \frac{2\pi^2}{3y} - \frac{2\pi^4}{9y^3} - \frac{4\pi^6}{27y^5} - \frac{10\pi^8}{81y^7} - \frac{28\pi^{10}}{243y^9} - \frac{28\pi^{12}}{243y^{11}} - \frac{88\pi^{14}}{729y^{13}}, \\ x_1 &= y - \frac{\pi^2}{3y} - \frac{\pi^4}{18y^3} - \frac{\pi^6}{54y^5} - \frac{5\pi^8}{648y^7} - \frac{7\pi^{10}}{1944y^9} - \frac{7\pi^{12}}{3888y^{11}} - \frac{12\pi^{14}}{11664y^{13}}, \\ x_2 &= y - \frac{\pi^2}{3y} - \frac{\pi^4}{18y^3} - \frac{\pi^6}{54y^5} - \frac{5\pi^8}{648y^7} - \frac{7\pi^{10}}{1944y^9} - \frac{7\pi^{12}}{3888y^{11}} - \frac{11\pi^{14}}{11664y^{13}}, \\ z_1 &= y + \frac{\pi^2}{3y} - \frac{\pi^4}{18y^3} + \frac{\pi^6}{54y^5} - \frac{5\pi^8}{648y^7} + \frac{7\pi^{10}}{1944y^9} - \frac{7\pi^{12}}{3888y^{11}}, \\ z_2 &= y + \frac{\pi^2}{3y} - \frac{\pi^4}{18y^3} + \frac{\pi^6}{54y^5} - \frac{5\pi^8}{648y^7} + \frac{7\pi^{10}}{1944y^9} - \frac{7\pi^{12}}{3888y^{11}} + \frac{11\pi^{14}}{11664y^{13}}, \\ w_1 &= y + \frac{2\pi^2}{3y} - \frac{2\pi^4}{9y^3} + \frac{4\pi^6}{27y^5} - \frac{10\pi^8}{81y^7} + \frac{28\pi^{10}}{243y^9} - \frac{28\pi^{12}}{243y^{11}}, \\ w_2 &= y + \frac{2\pi^2}{3y} - \frac{2\pi^4}{9y^3} + \frac{4\pi^6}{27y^5} - \frac{10\pi^8}{81y^7} + \frac{28\pi^{10}}{243y^9} - \frac{28\pi^{12}}{243y^{11}} + \frac{88\pi^{14}}{729y^{13}}. \end{split}$$

Applying these bounds for r, x, z and w, we now estimate g(n-1), g(n+1),f(n-1) and f(n+1). For convenience, set

$$h(n) = \frac{\left(x^{10} - x^9 - 1\right)y^{24}\left(z^{10} - z^9 - 1\right)}{x^{12}\left(y^{10} - y^9 + 1\right)^2z^{12}}$$
(2.19)

and

$$q(n) = \frac{\left(x^{10} - x^9 + 1\right)y^{24}\left(z^{10} - z^9 + 1\right)}{x^{12}\left(y^{10} - y^9 - 1\right)^2z^{12}}.$$
 (2.20)

Then,

$$f(n) = e^{x-2y+z}h(n), \quad g(n) = e^{x-2y+z}q(n),$$
 (2.21)

which suggest that we should bound f(n-1), f(n+1), g(n-1) and g(n+1) by

estimating e^{r-2x+y} , e^{y-2z+w} , h(n-1), h(n+1), q(n-1) and q(n+1) separately. We first consider the exponential factors e^{r-2x+y} and e^{y-2z+w} . It is easily seen that for $n \ge 145$

$$r_1 - 2x_2 + y < r - 2x + y < r_2 - 2x_1 + y, (2.22)$$

$$y - 2z_2 + w_1 < y - 2z + w < y - 2z_1 + w_2, \tag{2.23}$$

which implies that

$$e^{r_1 - 2x_2 + y} < e^{r - 2x + y} < e^{r_2 - 2x_1 + y},$$
 (2.24)

$$e^{y-2z_2+w_1} < e^{y-2z+w} < e^{y-2z_1+w_2}.$$
 (2.25)

In order to give a feasible bound for e^{r-2x+y} and e^{y-2z+w} , we define

$$\Phi(t) = 1 + t + \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24} + \frac{t^5}{120} + \frac{t^6}{720},\tag{2.26}$$

and

$$\phi(t) = 1 + t + \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24} + \frac{t^5}{120} + \frac{t^6}{720} + \frac{t^7}{5040}.$$
 (2.27)

It can be checked that for t < 0,

$$\phi(t) < e^t < \Phi(t). \tag{2.28}$$

To apply this result to (2.24) and (2.25), we have to show that both $r_2 - 2x_1 + y$ and $y - 2z_1 + w_2$ are negative. By straightforward calculation, it is easy to obtain that

$$r_2 - 2x_1 + y = -\frac{\pi^4 \left(648y^{10} + 648\pi^2 y^8 + 630\pi^4 y^6 + 630\pi^6 y^4 + 651\pi^8 y^2 + 692\pi^{10}\right)}{5832y^{13}},$$

which is clearly negative. As for $y - 2z_1 + w_2$, we find that

$$y - 2z_1 + w_2 = -\frac{\pi^4 \left(648y^{10} - 648\pi^2 y^8 + 630\pi^4 y^6 - 630\pi^6 y^4 + 651\pi^8 y^2 + 11\pi^{10}\right)}{5832y^{13}},$$

which is also negative for $n \ge 2$. This fact can be confirmed by noting that for $n \ge 2$,

$$648\pi^{2}y^{8} - 648y^{10} < 0,$$

$$630\pi^{6}y^{4} - 630\pi^{4}y^{6} < 0,$$

$$704\pi^{10} - 651\pi^{8}y^{2} < 0.$$

Thus, applying (2.28) to (2.24) and (2.25), we obtain that for $n \ge 145$,

$$\phi(r_1 - 2x_2 + y) < e^{r - 2x + y} < \Phi(r_2 - 2x_1 + y), \tag{2.29}$$

and

$$\phi(y - 2z_2 + w_1) < e^{y - 2z + w} < \Phi(y - 2z_1 + w_2). \tag{2.30}$$

Now we turn to estimate h(n-1), h(n+1), q(n-1) and q(n+1).

Let

$$\alpha(t) = t^{10} - t^9 + 1, \quad \beta(t) = t^{10} - t^9 - 1.$$
 (2.31)

With these notation, h(n-1), h(n+1), q(n-1) and q(n+1) can be rewritten as

$$\begin{split} h(n-1) &= \frac{x^{24}\beta(r)\beta(y)}{r^{12}y^{12}\alpha(x)^2}, \quad h(n+1) = \frac{z^{24}\beta(y)\beta(w)}{w^{12}y^{12}\alpha(z)^2}, \\ q(n-1) &= \frac{x^{24}\alpha(r)\alpha(y)}{r^{12}y^{12}\beta(x)^2}, \quad q(n+1) = \frac{z^{24}\alpha(y)\alpha(w)}{y^{12}w^{12}\beta(z)^2}. \end{split}$$

For our purpose, we recall (2.15), (2.16), (2.17), (2.18) and establish the following inequalities, which can be directly checked, that is, for $n \ge 145$,

$$r^{10} - r_{2}r^{8} + 1 < \alpha(r) < r^{10} - r_{1}r^{8} + 1,$$

$$x^{10} - x_{2}x^{8} + 1 < \alpha(x) < x^{10} - x_{1}x^{8} + 1,$$

$$z^{10} - z_{2}z^{8} + 1 < \alpha(z) < z^{10} - z_{1}z^{8} + 1,$$

$$z^{10} - z_{2}z^{8} + 1 < \alpha(z) < z^{10} - z_{1}z^{8} + 1,$$

$$w^{10} - w_{2}w^{8} + 1 < \alpha(w) < w^{10} - w_{1}w^{8} + 1,$$

$$r^{10} - r_{1}r^{8} - 1 < \beta(r) < r^{10} - r_{2}r^{8} - 1,$$

$$x^{10} - x_{1}x^{8} - 1 < \beta(x) < x^{10} - x_{2}x^{8} - 1,$$

$$z^{10} - z_{1}z^{8} - 1 < \beta(z) < z^{10} - z_{2}y^{8} - 1,$$

$$w^{10} - w_{1}w^{8} - 1 < \beta(w) < w^{10} - w_{2}w^{8} - 1,$$

$$x^{20} - 2x_{2}x^{18} + x^{18} + 2x^{10} - 2x_{2}x^{8} + 1 < \alpha(x)^{2} < x^{20} - 2x_{1}x^{18} + x^{18} + 2x^{10} - 2x_{1}x^{8} + 1,$$

$$z^{20} - 2z_{2}z^{18} + z^{18} + 2z^{10} - 2z_{2}z^{8} + 1 < \alpha(z)^{2} < z^{20} - 2z_{1}z^{18} + z^{18} + 2z^{10} - 2z_{1}z^{8} + 1,$$

$$x^{20} - 2x_{2}x^{18} + x^{18} - 2x^{10} + 2x_{1}x^{8} + 1 < \beta(x)^{2} < x^{20} - 2x_{1}x^{18} + x^{18} - 2x^{10} + 2x_{2}x^{8} + 1,$$

$$z^{20} - 2z_{2}z^{18} + z^{18} - 2z^{10} + 2z_{1}z^{8} + 1 < \beta(z)^{2} < z^{20} - 2z_{1}z^{18} + z^{18} - 2z^{10} + 2z_{2}z^{8} + 1,$$

$$z^{20} - 2z_{2}z^{18} + z^{18} - 2z^{10} + 2z_{1}z^{8} + 1 < \beta(z)^{2} < z^{20} - 2z_{1}z^{18} + z^{18} - 2z^{10} + 2z_{2}z^{8} + 1.$$

$$(2.32)$$

Applying these above inequalities to h(n-1), h(n+1), q(n-1) and q(n+1) leads to

$$h(n-1) > \frac{\left(r^{10} - r_2 r^8 - 1\right) x^{24} \left(y^{10} - y^9 - 1\right)}{r^{12} \left(x^{20} - 2x_1 x^{18} + x^{18} + 2x^{10} - 2x_1 x^8 + 1\right) y^{12}},$$
(2.33)

$$h(n+1) > \frac{\left(w^{10} - w_2 w^8 - 1\right) \left(y^{10} - y^9 - 1\right) z^{24}}{w^{12} y^{12} \left(z^{20} - 2z_1 z^{18} + z^{18} + 2z^{10} - 2z_1 z^8 + 1\right)},\tag{2.34}$$

$$q(n-1) < \frac{\left(r^{10} - r_1 r^8 + 1\right) x^{24} \left(y^{10} - y^9 + 1\right)}{r^{12} \left(x^{20} - 2x_2 x^{18} + x^{18} - 2x^{10} + 2x_1 x^8 + 1\right) y^{12}},\tag{2.35}$$

$$q(n+1) < \frac{\left(w^{10} - w_1 w^8 + 1\right) \left(y^{10} - y^9 + 1\right) z^{24}}{w^{12} y^{12} \left(z^{20} - 2z_2 z^{18} + z^{18} - 2z^{10} + 2z_1 z^8 + 1\right)}.$$
 (2.36)

Now, combining (2.21), (2.29) and (2.30), we can bound f(n-1), f(n+1), g(n-1) and g(n+1) easily, that is, for $n \ge 145$,

$$\begin{split} g(n-1) &< \lambda_1(y) = \frac{\left(r^{10} - r_1 r^8 + 1\right) x^{24} \left(y^{10} - y^9 + 1\right) \Phi(r_2 - 2x_1 + y)}{r^{12} \left(x^{20} - 2x_2 x^{18} + x^{18} - 2x^{10} + 2x_1 x^8 + 1\right) y^{12}}, \\ g(n+1) &< \lambda_2(y) = \frac{\left(w^{10} - w_1 w^8 + 1\right) \left(y^{10} - y^9 + 1\right) z^{24} \Phi(y - 2z_1 + w_2)}{w^{12} y^{12} \left(z^{20} - 2z_2 z^{18} + z^{18} - 2z^{10} + 2z_1 z^8 + 1\right)}, \\ f(n-1) &> \lambda_3(y) = \frac{\left(r^{10} - r_2 r^8 - 1\right) x^{24} \left(y^{10} - y^9 - 1\right) \phi(r_1 - 2x_2 + y)}{r^{12} \left(x^{20} - 2x_1 x^{18} + x^{18} + 2x^{10} - 2x_1 x^8 + 1\right) y^{12}}, \\ f(n+1) &> \lambda_4(y) = \frac{\left(w^{10} - w_2 w^8 - 1\right) \left(y^{10} - y^9 - 1\right) z^{24} \phi(y - 2z_2 + w_1)}{w^{12} y^{12} \left(z^{20} - 2z_1 z^{18} + z^{18} + 2z^{10} - 2z_1 z^8 + 1\right)}. \end{split}$$

Since

$$s_2(n) = g(n-1) + g(n+1) - f(n-1)f(n+1),$$

it is easy to get that for $n \ge 145$

$$s_2(n) < \lambda_1(y) + \lambda_2(y) - \lambda_3(y)\lambda_4(y).$$
 (2.37)

We proceed to prove (2.12). In view of (2.37), we only need to show that for $n \ge 31072$,

$$\lambda_1(y) + \lambda_2(y) - \lambda_3(y)\lambda_4(y) - 1 < 0. \tag{2.38}$$

The left-hand side in the above inequalities can be simplified as

$$\lambda_1(y) + \lambda_2(y) - \lambda_3(y)\lambda_4(y) - 1 = \frac{H(y)}{G(y)},$$
 (2.39)

where H(y) and G(y) are polynomials in y whose degree are separately 356 and 362.

For the convenience of calculation, we show that for $n \ge 31072$,

$$H(y)G(y) < 0. (2.40)$$

The left-hand side of (2.40) is a polynomial in y of degree 718, and we write

$$H(y)G(y) = \sum_{k=0}^{718} a_k y^k.$$
 (2.41)

Here we just list the value of a_{716} , a_{717} and a_{718} :

$$a_{716} = -2^{113}3^{323}5^{5}7^{4}\pi^{8},$$

$$a_{717} = 2^{115}3^{321}5^{4}7^{4}\pi^{8},$$

$$a_{718} = -2^{112}3^{320}5^{4}7^{4}\pi^{8}.$$

Determinantal inequalities for the partition function

1461

Noting that y is positive for $n \ge 1$, we can easily deduce that

$$H(y)G(y) < \sum_{k=0}^{717} |a_k| y^k + a_{718} y^{718}.$$
 (2.42)

Moreover, it is easily seen that for any $0 \le k \le 715$,

$$|a_k|y^k < -a_{716}y^{716} (2.43)$$

holds for all $y \ge 8$ or $n \ge 10$. Thus it follows that for $y \ge 8$,

$$\sum_{k=0}^{717} |a_k| y^k + a_{718} y^{718} < (-717a_{716} + a_{717} y + a_{718} y^2) y^{716}. \tag{2.44}$$

Combining (2.42) and (2.44) leads to

$$H(y)G(y) < (-717a_{716} + a_{717}y + a_{718}y^2)y^{716}$$
(2.45)

for $y \ge 8$. Hence, (2.40) holds as long as

$$-717a_{716} + a_{717}y + a_{718}y^2 < 0, (2.46)$$

which is true if

$$y > 3\left(4 + \sqrt{21526}\right) \approx 452.152.$$

Hence, H(y)G(y) is negative for $y \ge 453$ and this implies (2.38).

Combining (2.37) and (2.38), we deduce that for $y \ge 453$, or equivalently, for $n \ge 31072$, (2.12) is true. Moreover, it can be directly checked for $3 \le n \le 31071$, (2.12) holds. This completes the proof.

3. An inequality involving g(n) and s(n)

In this section, we establish an inequality between g(n) and s(n), which is the key to prove theorem 2.1.

Theorem 3.1. Let

$$\varphi(t) = \frac{1 - \sqrt{1 - t}}{t},\tag{3.1}$$

where 0 < t < 1. Then for $n \ge 200$, we have

$$g(n) < \varphi(s(n)). \tag{3.2}$$

Proof. To prove this theorem, we first consider the monotonicity of $\varphi(t)$. Noting that

$$\varphi'(t) = \frac{1}{2(\sqrt{1-t}+1)^2 \sqrt{1-t}},$$
(3.3)

which is positive for 0 < t < 1, we find that $\varphi(t)$ is increasing for 0 < t < 1. In view of the monotonicity of $\varphi(t)$ and corollary 2.3, we deduce that for $n \ge 1207$,

$$\varphi(s(n)) > \varphi(s_1(n)). \tag{3.4}$$

Thus, to verify (3.2), we turn to show that for $n \ge 1207$,

$$g(n) < \varphi(s_1(n)), \tag{3.5}$$

which can be rewritten as

$$s_1(n)g(n)^2 - 2g(n) + 1 > 0.$$
 (3.6)

By the definition (2.31) of $\alpha(t)$ and $\beta(t)$, the left-hand side of the above inequality can be simplified to

$$s_{1}(n)g(n)^{2} - 2g(n) + 1$$

$$= \frac{-h_{1}e^{r+w-2y} + h_{2}e^{w+2x-3y} + h_{3} - 2h_{4}e^{x-2y+z} + h_{5}e^{r-3y+2z}}{r^{12}w^{12}x^{24}(x^{10} - x^{9} - 1)^{2}(y^{10} - y^{9} - 1)^{4}z^{24}(z^{10} - z^{9} - 1)^{2}},$$
(3.7)

where

$$h_1 = x^{24} y^{24} z^{24} \alpha(r) \alpha(w) \alpha(x)^2 \alpha(y)^2 \alpha(z)^2,$$
(3.8)

$$h_2 = r^{12} y^{36} z^{24} \beta(w) \beta(x)^2 \alpha(x)^2 \beta(y) \beta(z)^2, \tag{3.9}$$

$$h_3 = r^{12} w^{12} x^{24} z^{24} \beta(x)^2 \beta(y)^4 \beta(z)^2, \tag{3.10}$$

$$h_4 = r^{12} w^{12} x^{12} y^{24} z^{12} \alpha(x) \beta(x)^2 \beta(y)^2 \alpha(z) \beta(z)^2, \tag{3.11}$$

$$h_5 = w^{12} x^{24} y^{36} \beta(r) \beta(x)^2 \beta(y) \beta(z)^2 \alpha(z)^2.$$
(3.12)

For the convenience, let

$$A(y) = -h_1 e^{r+w-2y} + h_2 e^{w+2x-3y} + h_3 - 2h_4 e^{x-2y+z} + h_5 e^{r-3y+2z}.$$
 (3.13)

Since the denominator of (3.7) is positive, to prove (3.6), we aim to prove the numerator A(y) is positive too. For this aim, we shall estimate e^{r+w-2y} , $e^{w+2x-3y}$, e^{x-2y+z} and $e^{r-3y+2z}$ by the same method used in previous section. First, we apply (2.15), (2.16), (2.17) and (2.18) to the indexes of these functions and obtain that

for $n \geqslant 145$,

$$r_1 + w_1 - 2y < r + w - 2y < r_2 + w_2 - 2y,$$
 (3.14)

$$w_1 + 2x_1 - 3y < w + 2x - 3y < w_2 + 2x_2 - 3y, \tag{3.15}$$

$$x_1 - 2y + z_1 < x - 2y + z < x_2 - 2y + z_2,$$
 (3.16)

$$r_1 - 3y + 2z_1 < r - 3y + 2z < r_2 - 3y + 2z_2.$$
 (3.17)

From the monotonicity of exponential function, we find that

$$e^{r+w-2y} < e^{r_2+w_2-2y}, (3.18)$$

$$e^{w+2x-3y} > e^{w_1+2x_1-3y}, (3.19)$$

$$e^{x+z-2y} < e^{x_2+z_2-2y}, (3.20)$$

$$e^{r+2z-3y} > e^{r_1+2z_1-3y}. (3.21)$$

To apply (2.28), we aim to show that for $n \ge 145$ the indexes in the right-hand side of the above four inequalities, that is,

$$\begin{split} r_2 + w_2 - 2y &= -\frac{4\pi^4 \left(27y^8 + 15\pi^4 y^4 + 14\pi^8\right)}{243y^{11}}, \\ w_1 + 2x_1 - 3y &= -\frac{\pi^4 \left(648y^{10} - 216\pi^2 y^8 + 270\pi^4 y^6 - 210\pi^6 y^4 + 231\pi^8 y^2 + 4\pi^{10}\right)}{1944y^{13}}, \\ x_2 - 2y + z_2 &= -\frac{\pi^4 \left(216y^8 + 30\pi^4 y^4 + 7\pi^8\right)}{1944y^{11}}, \\ r_1 + 2z_1 - 3y &= -\frac{\pi^4 \left(1944y^{10} + 648\pi^2 y^8 + 810\pi^4 y^6 + 630\pi^6 y^4 + 693\pi^8 y^2 + 712\pi^{10}\right)}{5832y^{13}}, \end{split}$$

are negative. In fact, we only need to verify the second is negative since the others are obviously negative. Noting that for $n \ge 145$,

$$648y^{10} - 216\pi^2y^8 > 0,$$

$$270\pi^4y^6 - 210\pi^6y^4 > 0,$$

$$231\pi^8y^2 + 4\pi^{10} > 0,$$

we can easily conclude that $w_1 + 2x_1 - 3y$ is negative, and hence, we now can apply (2.28) to (3.18), (3.19), (3.20) and (3.21) and obtain that for $n \ge 145$,

$$e^{r+w-2y} < e^{r_2+w_2-2y} < \Phi(r_2+w_2-2y),$$
 (3.22)

$$e^{w+2x-3y} > e^{w_1+2x_1-3y} > \phi(w_1+2x_1-3y),$$
 (3.23)

$$e^{x+z-2y} < e^{x_2+z_2-2y} < \Phi(x_2+z_2-2y),$$
 (3.24)

$$e^{r+2z-3y} > e^{r_1+2z_1-3y} > \phi(r_1+2z_1-3y).$$
 (3.25)

After applying the estimates of the exponential functions, we have that for $n \ge 145$,

$$A > -h_1 \Phi(r_2 + w_2 - 2y) + h_2 \phi(w_1 + 2x_1 - 3y)$$

+ $h_3 - 2h_4 \Phi(x_2 + z_2 - 2y) + h_5 \phi(r_1 + 2z_1 - 3y).$

Recalling the definition of these polynomials h_1 , h_2 , h_3 , h_4 , h_5 and (2.32) and substituting r, x, z, w by the expressions in (2.14), it is easy to obtain a lower bound for the right-hand side of the above inequality, that is,

$$\frac{\sum_{k=0}^{256} a_k y^k}{2^{35} 3^{117} 35 y^{107}},\tag{3.26}$$

where a_k are known real number, and the value of a_{256} , a_{255} , a_{254} are given below:

$$a_{256} = 2^{37}3^{116}35\pi^2$$
, $a_{255} = -2^{38}3^{117}35\pi^2$, $a_{254} = -2^{37}3^{115}35\pi^2 (2\pi^2 - 45)$.

Thus, for $n \ge 145$, we have

$$A > \frac{\sum_{k=0}^{256} a_k y^k}{2^{35} 3^{117} 35 y^{107}}. (3.27)$$

Since $2^{35}3^{117}35y^{107}$ is positive for $n \ge 1$, to verify (3.6), we proceed to prove for $n \ge 1207$,

$$\sum_{k=0}^{256} a_k y^k > 0. (3.28)$$

As y is positive for $n \ge 1$, we see that

$$\sum_{k=0}^{256} a_k y^k > \sum_{k=0}^{255} -|a_k| y^k + a_{256} y^{256}. \tag{3.29}$$

Hence, to verify (3.28), we aim to show that for $n \ge 1207$,

$$\sum_{k=0}^{255} -|a_k| y^k + a_{256} y^{256} > 0. {(3.30)}$$

For $0 \le k \le 253$, we find that

$$-|a_k|y^k > a_{254}y^{254} (3.31)$$

holds for $y > \sqrt{(-270 + 120\pi^2 + 299\pi^4)/(270 - 12\pi^2)} \approx 15$. Therefore, we obtain that for $y \ge 16$,

$$\sum_{k=0}^{256} a_k y^k > \sum_{k=0}^{255} -|a_k| y^k + a_{256} y^{256} > (-255a_{254} + a_{255} y + a_{256} y^2) y^{254}.$$
 (3.32)

It is clear that (3.28) is true provided

$$-255a_{254} + a_{255}y + a_{256}y^2 > 0, (3.33)$$

which holds for $y > \sqrt{3834 - 170\pi^2} + 3 \approx 50$, or equivalently, for $n \ge 380$. So we get that (3.6) holds for $n \ge 1207$, which implies (3.5). Combining (3.4) and (3.5),

we conclude that for $n \ge 1207$

$$g(n) < \varphi(s(n)). \tag{3.34}$$

And for $200 \le n \le 1206$, it can be checked that (3.2) is also true, which completes this proof.

4. Proof of theorem 2.1

In this section, we shall give a proof of theorem 2.1, which states that for $n \ge 222$,

$$s(n)u_n^2 - 2u_n + 1 > 0, (4.1)$$

where

$$u_n = \frac{p(n-1)p(n+1)}{p(n)^2},$$

and

$$s(n) = u_{n-1} + u_{n+1} - u_{n-1}u_{bn+1}.$$

By corollary 2.3 and theorem 2.4, we know s(n) < 1 holds for $n \ge 1207$.

Proof of theorem 2.1. Since for $222 \le n \le 1207$, (4.1) can be directly checked, to prove this theorem, we just only prove that (4.1) holds for $n \ge 1207$. Let

$$F(t) = s(n)t^2 - 2t + 1. (4.2)$$

We have now to prove that for $n \ge 1207$,

$$F(u_n) > 0. (4.3)$$

It is easily seen that the equation F(t) = 0 has two solutions:

$$t_1 = \frac{1 - \sqrt{1 - s(n)}}{s(n)}, \quad t_2 = \frac{1 + \sqrt{1 - s(n)}}{s(n)},$$

and thus F(t) is positive when $t < t_1$ or $t > t_2$. To verify (4.3), we claim that for $n \ge 1207$,

$$u(n) < t_1 = \frac{1 - \sqrt{1 - s(n)}}{s(n)}. (4.4)$$

According to theorem 2.2, we know that for $n \ge 1207$,

$$u(n) < g(n), \tag{4.5}$$

and from theorem 3.1, we see that for $n \ge 200$,

$$g(n) < \varphi(s(n)) = \frac{1 - \sqrt{1 - s(n)}}{s(n)}.$$

$$(4.6)$$

Hence, the claim is verified by combining (4.5) and (4.6). The proof is completed.

https://doi.org/10.1017/prm.2018.144 Published online by Cambridge University Press

Acknowledgements

We thank the anonymous reviewers for their helpful comments. This work is supported by the National Science Foundation of China.

References

- M. Aissen, A. Edrei, I. J. Schoenberg and A. M. Whitney. On the generating functions of totally positive sequence. *Proc. Nat. Acad. Sci.* 37 (1951), 303–307.
- F. Brenti. Unimodal, log-concave, and Pólya frequency sequences in combinatorics. Mem. Amer. Math. Soc. 81 (1989).
- 3 W. Y. C. Chen. Recent developments on log-concavity and q-log-concavity of combinatorial polynomials. In FPSAC 2010 Conf. Talk Slides, http://www.billchen.org/talks/2010-FPSAC.pdf (2010).
- W. Y. C. Chen, D. X. Q. Jia and L. X. W. Wang. Higher order Turán inequalities for the partition function. Trans. Amer. Math. Soc. (to appear), http://doi.org/10.1090/tran/ 7707.
- 5 W. Y. C. Chen, L. X. W. Wang and G. Y. B. Xie. Finite differences of the logarithm of the partition function. *Math. Comp.* 85 (2016), 825–847.
- 6 T. Craven and G. Csordas. Jensen polynomials and the Turán and Laguerre inequalities. Pacific J. Math. 136 (1989), 241–260.
- 7 T. Craven and G. Csordas. Karlin's conjecture and a question of Pólya. Rocky Moutain J. Math. 35 (2005), 61–82.
- 8 G. Csordas and D. K. Dimitrov. Conjectures and theorems in the theory of entire functions. Numer. Alg. 25 (2000), 109–122.
- S. DeSalvo and I. Pak. Log-concavity of the partition function. Ramanujan J. 38 (2015), 61–73.
- 10 Q. H. Hou and Z. R. Zhang. r-log-concavity of partition functions. $Ramanujan\ J.\ (2018)$. https://doi.org/10.1007/s11139-017-9975-5.
- 11 S. Karlin. Total positivity, vol. I (California: Standford University Press, 1968).
- 12 E. Laguerre. *Oeuvres*, vol. 1 (Paris: Gaauthier-Villars, 1989).
- 13 B.Ja. Levin. *Distribution of zeros of entire functions*, revised edn, Translations of Mathematical Monographs, vol. 5 (Providence, R.I.: American Mathematical Society, 1980).
- G. Pólya and J. Schur. Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen. J. Reine Angew. Math. 144 (1914), 89–113.
- Q. I. Rahman and G. Schmeieer. Analytic theroy of polynomials (Oxford: Oxford University Press, 2002).