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Abstract
Let p(n) denote the overpartition function. Engel showed that for n ≥ 2, p(n) satisfy
the Turán inequalities, that is, p(n)2 − p(n− 1)p(n+ 1) > 0 for n ≥ 2. In this paper,
we prove several inequalities for p(n). Moreover, motivated by the work of Chen,
Jia and Wang, we find that the higher order Turán inequalities of p(n) can also be
determined.
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Mathematics Subject Classification 05A20 · 11P82 · 11P99

1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers
whose sum is n. Let p(n) denote the number of partitions of n. Recall that a sequence
{ai }0≤i≤n is said to satisfy the Turán inequalities if

a2i − ai+1ai−1 ≥ 0, 1 ≤ i ≤ n.

In particular, a sequence satisfying the Turán inequalities can also be called log-
concave. DeSalvo and Pak [9] showed that p(n) is log-concave for all n ≥ 25. They
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also proved two conjectures given by Chen [3],

p(n − 1)

p(n)

(
1 + 1

n

)
>

p(n)

p(n + 1)
for n > 1,

and

p(n)2 − p(n − m)p(n + m) ≥ 0 for n > m > 1.

Since then, the inequalities between the partition functions have been extensively
studied. For example, Chen et al. [5] proved a sharper inequality

p(n − 1)

p(n)

(
1 + π√

24n3/2

)
>

p(n)

p(n + 1)

holds for n ≥ 45, which was conjectured by Desalvo and Pak [9]. Bessenrodt and Ono
[2] obtained that

p(a)p(b) ≥ p(a + b)

holds for a, b > 1 and a+b > 8. Based on this inequality, they extended the partition
function multiplicatively to a function on partitions and showed that it has a unique
maximum at an explicit partition for any n �= 7. Recently, Dawsey and Masri [8]
gave an effective asymptotic formula of the Andrews spt-function due to the algebraic
formula [1] for the spt-function. According to this asymptotic formula, they proved
some inequalities on the spt-function conjectured by Chen [4].

The similar inequalities can also be satisfied by the overpartition function. Recall an
overpartition [7] of a nonnegative integer n is a partition of n where the first occurrence
of each distinct part may be overlined. Let p(n) denote the number of overpartitions
of n. Zukermann [19] gave a formula for the overpartition function, which is indeed a
Rademacher-type convergent series,

p(n) = 1

2π

∞∑
k=1
2�k

√
k

k−1∑
h=0

(h,k)=1

ω(h, k)2

ω(2h, k)
e− 2π inh

k
d

dn

(
sinh π

√
n

k√
n

)
, (1.1)

where

ω(h, k) = exp

(
π i

k−1∑
r=1

r

k

(
hr

k
−

⌊
hr

k

⌋
− 1

2

))
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for positive integers h and k. Let μ = μ(n) = π
√
n. From this Rademacher-type

series (1.1), Engel [11] provided an error term for the overpartition function

p(n) = 1

2π

N∑
k=1
2�k

√
k

k−1∑
h=0

(h,k)=1

ω(h, k)2

ω(2h, k)
e− 2π inh

k
d

dn

(
sinh μ

k√
n

)
+ R2(n, N ),

where

|R2(n, N )| ≤ N
5
2

nμ
sinh

( μ

N

)
. (1.2)

In particular, when N = 2, we have

p(n) = 1

8n

[(
1 + 1

μ

)
e−μ +

(
1 − 1

μ

)
eμ

]
+ R2(n, 2), (1.3)

where

|R2(n, 2)| ≤ 2
5
2

nμ
sinh

(μ

2

)
. (1.4)

Moreover, using this asymptotic formula (1.3), Engel [11] proved that p(n) is log-
concave for n ≥ 2, that is,

p(n)2 > p(n − 1)p(n + 1). (1.5)

Let � be the difference operator as given by � f (n) = f (n + 1)− f (n). Recently,
Wang et al. [18] showed that for any given r ≥ 1, there exists a positive number n(r)
such that (−1)r−1�r log p(n) > 0 for n > n(r). Moreover, they gave an upper bound
for (−1)r−1�r log p(n). More precisely, for all r ≥ 1, there exists a positive integer
n(r) such that for n > n(r),

(−1)r−1�r log p(n) <
π

2

(
1

2

)
r−1

1

nr−1/2 ,

where (x)n := x · (x + 1) · · · (x + n − 1). From the proof of [18, Theorem 4.1], we
can obtain a slight modification of this result as follows:

(−1)r−1�r log p(n − 1) <
π

2

(
1

2

)
r−1

1

nr−1/2 .

In particular, when r = 2, we have

p(n − 1)

p(n)

(
1 + π

4n3/2

)
≥ p(n)

p(n + 1)
for n ≥ 2. (1.6)
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In this paper, we prove some inequalities for the overpartition function. One of
main results of this paper is the following theorem analogous to these inequalities for
the partition function obtained by DeSalvo and Pak [9] and Bessenrodt and Ono [2].

Theorem 1.1 (1) For all n > m > 1, we have

p(n)2 − p(n − m)p(n + m) ≥ 0, (1.7)

with equality holding only for (n,m) = (2, 1).
(2) If a, b are integers with a, b > 1, then

p(a)p(b) > p(a + b). (1.8)

To state the second result, we first introduce some definitions. Given a function
γ : N → R and positive integers d and n, the associated Jensen polynomial of degree
d and shift n is defined by

Jd,n
γ (n) :=

d∑
j=0

(
d

j

)
γn+ j X

j .

If all of zeros of a polynomial are real, then this polynomial is said to be hyperbolic.
A real entire function

ψ(x) =
∞∑
k=0

γk
xk

k!

is said to be in the Laguerre–Pólya class if it can be represented in the form

ψ(x) = cxne−αx2+βx
∞∏
k=1

(1 + x/xk)e
−x/xk ,

where c, β, xk are real numbers, α ≥ 0, n is a nonnegative integer and
∑

x−2
k < ∞.

Jensen [14] showed that ψ(x) belongs to the Laguerre–Pólya class if and only if
all of the associated Jensen polynomials Jd,0

γ are hyperbolic. Pólya [16] proved that
the Riemann Hypothesis is equivalent to the hyperbolicity of all Jensen polynomials
associated to Riemann’s ξ -function.

The Turán inequalities and the higher order Turán inequalities are related to the
Lagurre–Pólya class of real entire functions. From the work of Pólya and Schur [17]
we see that the Maclaurin coefficients of ψ(x) in the Lagurre–Pólya class satisfy the
Turán inequalities

γ 2
k − γk−1γk+1 ≥ 0
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for k ≥ 1. Due to the result of Dimitrov [10], we know that the Macalurin coefficients
of ψ(x) in the Lagurre–Pólya class satisfy the higher order Turán inequalities

4(γ 2
k − γk−1γk+1)(γ

2
k+1 − γkγk+2) − (γkγk+1 − γk−1γk+2)

2 ≥ 0

for k ≥ 1.
Clearly, from the results of Desalvo and Pak [9], Engel [11] and Dawsey and Masri

[8], we see that the partition function, the overpartition function and the spt-function
all satisfy the Turán inequalities. Moreover, Chen et al. [6] showed that the partition
function satisfy the higher order Turán inequalities. In this paper, we confirm the
overpartition function also satisfy the higher order Turán inequalities.

Theorem 1.2 Let

un = p(n − 1)p(n + 1)

p(n)2
.

For n ≥ 16,

4(1 − un)(1 − un+1) − (1 − unun+1)
2 > 0.

Remark 1.3 Recently, Griffin et al. [12] proved that Jensen polynomials for weakly
holomorphic modular forms on SL2(Z) with real coefficients and a pole at i∞ are
eventually hyperbolic. This work proved Chen et al.’s conjecture [6] that the Jensen
polynomials associated to the partition function p(n) are eventually hyperbolic as a
special case. In other words, for each d ≥ 1 there exists some N (d) such that for all
n ≥ N (d), the polynomial Jd,n

p (x) is hyperbolic. Larson and Wagner [15] computed
the values of the minimal N (d) for d = 3, 4, 5 and gave an upper bound of the
minimal N (d) for each d ≥ 1. Moreover, the work of Griffin et al. [12] can also
be used to prove that the Jensen polynomials associated to the overpartition function
p(n) are eventually hyperbolic. In this paper, we give an explicit bound for the Jensen
polynomial J 3,np (x), that is, for all n ≥ 16, J 3,np (x) is hyperbolic.

2 Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. To prove the part (1) of Theorem 1.1,
we need the following lemma, which is looser but simpler than (1.3) and (1.4).

Lemma 2.1 For all n ≥ 1, we have

p(n) = α(n)eμ + Ep(n), (2.1)

where

α(n) = 1

8n

(
1 − 1

μ

)
,
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and

|Ep(n)| ≤ eμ/2

n3/2
.

Proof By (1.3) and (1.4), we obtain that

|Ep(n)| ≤ e−μ

8n

(
1 + 1

μ

)
+ 2

5
2

nμ
sinh

(μ

2

)
. (2.2)

Define

g(n) = e−μ

8n

(
1 + 1

μ

)
.

Clearly, g(n) is monotonically decreasing for n > 0. For n ≥ 1,

g(n) < g(1) = (1 + π)e−π

8π
< 0.0072.

Making use of the fact that

sinh(x) < ex/2, for x > 0,

we see that

|Ep(n)| ≤ 0.0072 + 2
3
2 e

μ
2

nμ
. (2.3)

Letting

f (x) = e
π

√
x

2

x3/2

(
1 − 2

3
2

π

)
,

wefind that for x > 1, theminimumof f (x) is at x = 36/π2 ≈ 3.65, and f
(
36/π2

)
>

0.287, hence we have

e
μ
2

n3/2
− 2

3
2 e

μ
2

nμ
> 0.0072 for n ≥ 1. (2.4)

The proof follows from (2.3) and (2.4). 	

Using the estimate of the overpartition function in Lemma 2.1, we are ready to

give a proof of the first part of Theorem 1.1 which is analogous to the proof of the
corresponding theorem for p(n) in [9].
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Inequalities for the overpartition function 491

Proof of Theorem 1.1 (1) We already know that the sequence p(n) satisfies (1.5). It is
known that log-concavity implies strong log-concavity, that is

p(k)p(
) ≤ p(
 − i)p(k + i),

for all 0 ≤ k ≤ 
 and 0 ≤ i ≤ 
 − k. In particular, we take k = n − m, 
 = n + m
and i = m in the above inequality to obtain

p(n)2 − p(n − m)p(n + m) > 0

for all n > m > 1 with n − m > 1.
Now we consider the case n > m > 1 with n = m + 1. It suffices to show that

p(m + 1)2 > p(1)p(2m + 1) (2.5)

for all m ≥ 2. Taking logarithms in the inequality above, we see that it is equivalent
to prove that

2 log p(m + 1) − log p(1) − log p(2m + 1) > 0 (2.6)

for all m ≥ 2. Moreover, it follows from Lemma 2.1 that for m ≥ 5,

1

8m

(
1 − 2

μ(m)

)
eμ(m) < p(m) <

1

8m

(
1 + 1

μ(m)

)
eμ(m). (2.7)

Combining (2.7) with (2.6), we deduce that

− 2 log(8m + 8) + 2 log

(
1 − 2

μ(m + 1)

)
+ 2μ(m + 1) − log 2 + log(16m + 8)

− log

(
1 + 1

μ(2m + 1)

)
− μ(2m + 1) > 0

for all m ≥ 5. It is checked directly that (2.5) holds for the cases m = 2, 3 and 4.
	


Next we will prove the second part of Theorem 1.1 due to Engel’s bound

p(n) = 1

8n

[(
1 + 1

μ

)
e−μ +

(
1 − 1

μ

)
eμ

]
+ R2(n, 2),

where

|R2(n, 2)| ≤ 2
5
2

nμ
sinh

(μ

2

)
.

It closely follows the proofs of the corresponding theorems for p(n) and spt(n) in [2]
and [8].
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Proof of Theorem 1.1 (2) Engle [11, p. 234] showed that

|R2(n, N )| ≤
∞∑

m=1

4m

4m − 3

(
μ(n)
N

)2m
(2m + 1)!

N 3/2

4n
.

From this inequality we can modify the bound of R2(n, N ) slightly,

|R2(n, N )| ≤ N 3/2

n

∞∑
m=1

(
μ(n)
N

)2m
(2m + 1)!

= N 5/2

nμ

(
sinh

( μ

N

)
− μ

N

)
.

For N = 2, we have

|R2(n, 2)| ≤ 25/2

nμ

(
sinh

(μ

2

)
− μ

2

)
≤ 2

5
2

nμ

[
sinh

(μ

2

)
− 1

]
. (2.8)

Thanks to this error bound (2.8), we obtain the upper bound of p(n)

p(n) <
eμ

8n

(
1 + 1

n

)
for n ≥ 1. (2.9)

On the other hand, it follows from (2.7) that the lower bound of p(n) is

p(n) >
eμ

8n

(
1 − 1√

n

)
for n ≥ 1.

We may assume 1 < a ≤ b, for convenience, we let b = λa, where λ ≥ 1. These
inequalities immediately give

p(a)p(λa) >
eμ(a)+μ(λa)

64λa2

(
1 − 1√

a

) (
1 − 1√

λa

)
,

p(a + λa) <
eμ(a+λa)

8a(λ + 1)

(
1 + 1

a + λa

)
.

For all but finitely many cases, it suffices to find conditions on a > 1 and λ ≥ 1 for
which

eμ(a)+μ(λa)

64λa2

(
1 − 1√

a

) (
1 − 1√

λa

)
>

eμ(a+λa)

8a(λ + 1)

(
1 + 1

a + λa

)
.

Since λ ≥ 1, we have that λ/(λ + 1) ≥ 1/2, hence it suffices to consider when

eμ(a)+μ(λa)−μ(a+λa) > 4aSa(λ),
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Table 1 Values of λa a λa

2 7.578…

3 2.566…

4 1.550…

5 1.117…

where

Sa(λ) = 1 + 1
a+λa(

1 − 1√
a

) (
1 − 1√

λa

) . (2.10)

By taking the logarithm, we obtain the inequality

Ta(λ) > log(4a) + log(Sa(λ)), (2.11)

where

Ta(λ) = π
(√

a + √
λa − √

a + λa
)

. (2.12)

We consider (2.10) and (2.12) as functions in λ ≥ 1 and fixed a > 1. By simple
calculations, we find that Sa(λ) is decreasing in λ ≥ 1, while Ta(λ) is increasing in
λ ≥ 1. Therefore, (2.11) becomes

Ta(λ) ≥ Ta(1) > log(4a) + log(Sa(1)) ≥ log(4a) + log(Sa(λ)).

By evaluating Ta(1) and Sa(1) directly, one easily finds that (2.11) holds whenever
a ≥ 6. To complete the proof, assume that 2 ≤ a ≤ 5. We then directly calculate the
real number λa for which

Ta(λa) = log(4a) + log(Sa(λa)).

By the discussion above, if b = λa ≥ a is an integer for which λ > λa , then (2.11)
holds, which in turn gives the theorem in these cases. Table 1 gives the numerical
calculations for these λa . Only finitely many cases remain, namely the pairs of integers
where 2 ≤ a ≤ 5 and 1 ≤ b/a ≤ λa . We compute p(a), p(b) and p(a + b) for these
cases to complete the proof. 	


3 Proof of Theorem 1.2

In this section, we employ the method of Chen et al. [6], which is used to prove the
third order Turán inequality for the partition function, to prove the third order Turán
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inequality for the overpartition function

4(1 − un)(1 − un+1) − (1 − unun+1)
2 > 0 for n ≥ 16.

To this end, we first bound the ratio un = p(n − 1)p(n + 1)/p(n)2. Then we build
some inequalities among μ = μ(n) = π

√
n and the lower bound f (n) and the upper

bound g(n) for un . Finally, the distribution of the roots of the polynomial

F(t) = 4(1 − un)(1 − t) − (1 − unt)
2

gives us the chance to prove the third order Turán inequality for the overpartition
function.

Next we find an effective bound for the overpartition function p(n) and then give
the upper and lower bounds of un ,

Theorem 3.1 For n ≥ 55,

f (n) < un < g(n), (3.1)

where

x = μ(n − 1), y = μ = μ(n), z = μ(n + 1), w = μ(n + 2),

and

f (n) = ex−2y+z y
14(x5 − x4 − 1)(z5 − z4 − 1)

x7z7(y5 − y4 + 1)2
, (3.2)

g(n) = ex−2y+z y
14(x5 − x4 + 1)(z5 − z4 + 1)

x7z7(y5 − y4 − 1)2
. (3.3)

Proof Let

B1(n) = eμ

8n

(
1 − 1

μ
− 1

μ5

)
,

B2(n) = eμ

8n

(
1 − 1

μ
+ 1

μ5

)
.

We first claim that the following bounds for the overpartition function p(n) holds,

B1(n) < p(n) < B2(n) for n ≥ 55. (3.4)

Set

T̃ (n) =
(
1 + 1

μ

)
e−2μ + 8n

eμ
R2(n, 2).

123



Inequalities for the overpartition function 495

So we can rewrite (1.3) as

p(n) = eμ

8n

(
1 − 1

μ
+ T̃ (n)

)
, (3.5)

where

|R2(n, 2)| ≤ 2
5
2

nμ
sinh

(μ

2

)
≤ 2

3
2 e

μ
2

nμ
.

Obviously, for n ≥ 1,

0 <
1

μ
<

1

2
,

we have

(
1 + 1

μ

)
e−2μ < 2e−2μ < 2e− 1

2μ.

As for the last term in T̃ (n),

∣∣∣∣8neμ
R2(n, 2)

∣∣∣∣ <

∣∣∣∣∣2
9
2
e− 1

2μ

μ

∣∣∣∣∣ < 8e− 1
2μ.

Thus

|T̃ (n)| < 10e− 1
2μ. (3.6)

Next we aim to prove that for n ≥ 254,

10e− 1
2μ <

1

μ5
, (3.7)

which can be recast as

eμ/10

μ/10
> 10 · 5

√
10.

Let F(t) = et/t . Since F ′(t) = et (t − 1)/t2 > 0 for t > 1, F(t) is increasing for
t > 1. Observe that for n > 253, μ/10 > 5. Thus,

F
( μ

10

)
= eμ/10

μ/10
> F(5) = e5

5
> 10 5

√
10.
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So (3.7) holds for n ≥ 254. Thus, combining (3.6) and (3.7), we get that for n ≥ 254,

− 1

μ5
< T̃ (n) <

1

μ5
. (3.8)

Substituting (3.8) into (3.5), we see that (3.4) holds for n ≥ 254. It is routine to check
that (3.4) is true for 55 ≤ n ≤ 253, and hence the claim (3.4) can be verified.

Since B1(n) and B2(n) are all positive for n ≥ 1, using the bounds for p(n) in
(3.4), we find that for n ≥ 55,

B1(n − 1)B1(n + 1)

B2(n)2
<

p(n − 1)p(n + 1)

p(n)2
<

B2(n − 1)B2(n + 1)

B1(n)2
,

and which completes the proof. 	

Now we will build an inequality between f (n) and g(n + 1).

Theorem 3.2 For n ≥ 2,

g(n + 1) < f (n) + 1000

μ(n − 1)5
. (3.9)

Proof Recall that

μ(n) = π
√
n,

and

x = μ(n − 1), y = μ(n), z = μ(n + 1), w = μ(n + 2).

Let

α(t) = t5 − t4 + 1, β(t) = t5 − t4 − 1.

By (3.2) and (3.3), we see that

f (n)x5 − g(n + 1)x5 + 1000 = −ew+y−2z t1 + ez+x−2yt2 + 1000t3
t3

,

where

t1 = x7z21α(y)3α(w), (3.10)

t2 = y21w7β(x)β(z)3, (3.11)

t3 = x2y7z7w7α(y)2β(z)2. (3.12)

123



Inequalities for the overpartition function 497

Since t3 > 0 for n ≥ 2, (3.9) is equivalent to

−ew+y−2z t1 + ez+x−2yt2 + 1000t3 > 0

for n ≥ 2. To do this, we need to estimate t1, t2, t3, ew+y−2z and ex−2y+z in terms of
x . Note that for n ≥ 2,

y =
√
x2 + π2, z =

√
x2 + 2π2, w =

√
x2 + 3π2.

Then for x > 1, we have the following expansions:

y = x + π2

2x
− π4

8x3
+ π6

16x5
− 5π8

128x7
+ 7π10

256x9
− 21π12

1024x11
+ O

(
1

x12

)
,

z = x + π2

x
− π4

2x3
+ π6

2x5
− 5π8

8x7
+ 7π10

8x9
− 21π12

16x11
+ O

(
1

x12

)
,

w = x + 3π2

2x
− 9π4

8x3
+ 27π6

16x5
− 405π8

128x7
+ 1701π10

256x9
− 15309π12

1024x11
+ O

(
1

x12

)
.

It is easy to see that for x > 1,

y1 < y < y2, (3.13)

z1 < z < z2, (3.14)

w1 < w < w2, (3.15)

where

y1 = x + π2

2x
− π4

8x3
+ π6

16x5
− 5π8

128x7
+ 7π10

256x9
− 21π12

1024x11
,

y2 = x + π2

2x
− π4

8x3
+ π6

16x5
− 5π8

128x7
+ 7π10

256x9
,

z1 = x + π2

x
− π4

2x3
+ π6

2x5
− 5π8

8x7
+ 7π10

8x9
− 21π12

16x11
,

z2 = x + π2

x
− π4

2x3
+ π6

2x5
− 5π8

8x7
+ 7π10

8x9
,

w1 = x + 3π2

2x
− 9π4

8x3
+ 27π6

16x5
− 405π8

128x7
+ 1701π10

256x9
− 15309π12

1024x11
,

w2 = x + 3π2

2x
− 9π4

8x3
+ 27π6

16x5
− 405π8

128x7
+ 1701π10

256x9
.

Next we make use of these bounds of y, z and w in (3.13), (3.14) and (3.15) to
estimate t1, t2, t3, ew+y−2z and ex−2y+z in terms of x .

First, we give estimates for t1, t2 and t3. We use (3.15) to derive that for x > 1,

w1w
4 < w5 < w2w

4.
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Let

η1 = w2w
4 − w4 + 1,

so that for x > 1,

α(w) < η1. (3.16)

Similarly, set

η2 = y2y
14 − 3y14 + 3y2y

12 − y12 + 3y10 − 6y1y
8 + 3y8 + 3y2y

4 − 3y4 + 1,

η3 = z1z
14 − 3z14 + 3z1z

12 − z12 − 3z10 + 6z1z
8 − 3z8 + 3z1z

4 − 3z4 − 1,

η4 = y10 − 2y2y
8 + y8 + 2y1y

4 − 2y4 + 1,

η5 = z10 − 2z2z
8 + z8 − 2z2z

4 + 2z4 + 1.

Then we have for x > 1,

α(y)3 < η2, β(z)3 > η3, α(y)2 > η4, β(z)2 > η5. (3.17)

Together the relations in (3.16) and (3.17), we find that for x > 1,

t1 = x7z21α(y)3α(w) < x7z2z
20η1η2, (3.18)

t2 = y21w7(x5 − x4 − 1)β(z)3 > y1y
20w1w

6(x5 − x4 − 1)η3, (3.19)

t3 = x2y7z7w7α(y)2β(z)2 > x2y1y
6z1z

6w1w
6η4η5. (3.20)

We continue to estimate ew+y−2z and ez+x−2y . Applying (3.13), (3.14) and (3.15)
to w + y − 2z, we see that for x > 1,

w + y − 2z < w2 + y2 − 2z1, (3.21)

which implies that

ew+y−2z < ew2+y2−2z1 . (3.22)

We define

Φ(t) = 1 + t + t2

2
+ t3

6
+ t4

24
+ t5

120
+ t6

720
, (3.23)

so as to give a feasible upper bound for ew+y−2z , Then we have that for t < 0,

et < Φ(t). (3.24)
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Since π4(16x8 − 48π2x6) > 0 and 125π4x4 − 315π6x2 − 168π8 > 0 both hold
for x ≥ 6,

w2 + y2 − 2z1 = −π4(16x8 − 48π2x6 + 125π4x4 − 315π6x2 − 168π8)

64x11
< 0

holds for x ≥ 6. Thus, we deduce that for x ≥ 6

ew2+y2−2z1 < Φ(w2 + y2 − 2z1). (3.25)

Then it follows from (3.22) and (3.25) that for x ≥ 6,

ew+y−2z < Φ(w2 + y2 − 2z1). (3.26)

Similarly, applying (3.13), (3.14) and (3.15) to z + x − 2y, we find that for x > 1,

z1 + x − 2y2 < z + x − 2y (3.27)

so that

ez1+x−2y2 < ez+x−2y . (3.28)

Define

φ(t) = 1 + t + t2

2
+ t3

6
+ t4

24
+ t5

120
+ t6

720
+ t7

5040
. (3.29)

It can be easily verified that for t < 0, φ(t) < et . Since

z + x − 2y =
√
x2 + 2π2 + x − 2

√
x2 + π2

= −
(√

x2 + 2π2 − x
)2

√
x2 + 2π2 + x + 2

√
x2 + π2

< 0

for x ≥ 5, we deduce that for x ≥ 5,

z1 + x − 2y2 < 0.

Thus, we get that for x ≥ 5,

φ(z1 + x − 2y2) < ez1+x−2y2 . (3.30)

Combining (3.28) and (3.30) yields that for x ≥ 5,

ez+x−2y > φ(z1 + x − 2y2). (3.31)
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Using the above bounds for t1, t2, t3, ew+y−2z and ex−2y+z , we obtain that for x ≥ 6,

− ew+y−2z t1 + ez+x−2yt2 + 1000t3

> −Φ(w2 + y2 − 2z1)x
7z2z

20η1η2

+ φ(z1 + x − 2y2)y1w1y
20w6(x5 − x4 − 1)η3

+ 1000x2y1z1w1y
6z6w6η4η5.

It remains to verify that for x ≥ 5,

− Φ(w2 + y2 − 2z1)x
7z2z

20η1η2 + φ(z1 + x − 2y2)y1w1y
20w6(x5 − x4 − 1)η3

+ 1000x2y1z1w1y
6z6w6η4η5 > 0.

Replacing y, z andw by
√
x2 + π2,

√
x2 + 2π2 and

√
x2 + 3π2, respectively, we see

that the left-hand side of above inequality can be expressed as H(x)/G(x), where

H(x) =
153∑
k=0

akx
k

and

G(x) = 47601454147326023754055680x110.

Here we just list the last few values of

a151 = 1487545442103938242314240

×
(
191232 + 1143744π2 − 388π6 − 387π8

)
,

a152 = 166605089515641083139194880
(
−1136 + π6

)
,

a153 = 5950181768415752969256960
(
7936 − 3π6

)
,

which a151 and a153 are positive, but a152 is negative.
BecauseG(x) is always positive for all positive x , it suffices to prove that H(x) > 0.

It is clear that x ≥ 2 for n ≥ 2 and hence

H(x) ≥
150∑
k=0

−|ak |xk + a151x
151 + a152x

152 + a153x
153.

Moreover, numerical evidence indicates that for any 0 ≤ k ≤ 150,

−|ak |xk > −a151x
151
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holds for x ≥ 14. It follows that for x ≥ 14,

150∑
k=0

−|ak |xk + a152x
152 + a153x

153 > −151a151x
151 + a151x

151

+ a152x
152 + a153x

153,

which yields that

H(x) >
(
−150a151 + a152x + a153x

2
)
x151.

Thus, H(x) is positive provided

−150a151 + a152x + a153x
2 > 0,

which is true if

x >
−a152 +

√
a2152 + 600a151a153

2a153
≈ 235.402.

So we conclude that H(x) is positive if x ≥ 236. Therefore, for x ≥ 236, or equiva-
lently, for n ≥ 5615,

−ew+y−2z t1 + ez+x−2yt2 + 1000t3 > 0. (3.32)

For 2 ≤ n ≤ 5614, (3.32) can be directly verified. So we complete the proof. 	

The following result is an inequality on un and f (n) and is also an important step

to prove the third Turán inequality in Theorem 1.2.

Theorem 3.3 For 0 < t < 1, let

Q(t) = 3t + 2
√

(1 − t)3 − 2

t2
. (3.33)

Then for n ≥ 92,

f (n) + 1000

μ(n − 1)5
< Q(un). (3.34)

Before we give a proof of Theorem 3.3, we need the following lemma. Recall that

f (n) = ex−2y+z y
14(x5 − x4 − 1)(z5 − z4 − 1)

x7z7(y5 − y4 + 1)2
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and

Φ(t) = 1 + t + t2

2
+ t3

6
+ t4

24
+ t5

120
+ t6

720
.

Lemma 3.4 For n ≥ 4, we have

f (n) <
Φ(x − 2y1 + z2)(x5 − x4 − 1)y14(z2z4 − z4 − 1)

x7(y10 − 2y2y8 + y8 + 2y1y4 − 2y4 + 1)z1z6
< 1, (3.35)

where y1, y2, z1 and z2 are defined in the proof of Theorem 3.2.

Proof From (3.13) and (3.14) we see that for x ≥ 1,

ex−2y+z < ex−2y1+z2 , (3.36)

z5 − z4 − 1 < z2z
4 − z4 − 1, (3.37)

(y5 − y4 + 1)2 > y10 − 2y2y
8 + y8 + 2y1y

4 − 2y4 + 1. (3.38)

Now we give an upper bound for ex−2y1+z2 . Notice that

x − 2y1 + z2 = −π4
(
128x8 − 192π2x6 + 280π4x4 − 420π6x2 − 21π8

)
512x11

.

(3.39)

Moreover, it is easily verified that

128x8 − 192π2x6 > 0 for x ≥ 4,

and

280π4x4 − 420π6x2 − 21π8 > 0 for x ≥ 4.

Therefore, x − 2y1 + z2 < 0 holds for x ≥ 4. It follows from (3.24) that for x ≥ 4,

ex−2y1+z2 < Φ(x − 2y1 + z2). (3.40)

Combining (3.36) with (3.40), we find that for x ≥ 4,

ex−2y+z < Φ(x − 2y1 + z2). (3.41)

Together with (3.37), (3.38) and (3.41), we see that the first inequality in (3.35) holds
for x ≥ 4, or equivalently, n ≥ 2.
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To prove the second inequality in (3.35), we define the polynomial H(x) and G(x)
to be the numerator and denominator of

Φ(x − 2y1 + z2)(x5 − x4 − 1)y14(z2z4 − z4 − 1)

x7(y10 − 2y2y8 + y8 + 2y1y4 − 2y4 + 1)z1z6
,

respectively. It is easy to see that H(x) and G(x) are both polynomials of degree 99.
For convenience, write

H(x) =
99∑
k=0

bkx
k, G(x) =

99∑
k=0

ckx
k . (3.42)

Here are the values of bk and ck for 94 ≤ k ≤ 99:

b94 = −258 · 32 · 5 · (16 + 934π4 + 21π6),

b95 = 261 · 32 · 5 · π2 · (11 + 64π2),

b96 = −259 · 32 · 5 · π2 · (92 + π2),

c94 = 259 · 32 · 5 · (8 − 455π4),

c95 = 260 · 32 · 5 · π2 · (22 + 125π2),

c96 = −261 · 32 · 5 · 23 · π2,

b97 = c97 = 261 · 32 · 5 · (1 + 12π2),

b98 = c98 = −262 · 32 · 5,
b99 = c99 = 261 · 32 · 5.

In order to complete the proof of this lemma, it suffices to show that for x ≥ 8,

G(x) > 0 (3.43)

and

G(x) − H(x) > 0. (3.44)

If (3.43) and (3.44) are verified, we see that the second inequality in (3.35) holds for
x ≥ 109, or equivalently, n ≥ 1204. The cases for 4 ≤ n ≤ 1204 can be directly
verified, and the proof follows.

Thus it remains to verify (3.43) and (3.44). Simple calculations reveal that for
0 ≤ k ≤ 96,

−|ck |xk > −c97x
97 (3.45)
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holds when

x > π

√
22 + 125π2

2(1 + 12π2)
≈ 7.203.

Then it follows that for x ≥ 8,

G(x) > −96c97x
97 + c98x

98 + c99x
99.

Since

−96c97 + c98x + c99x
2 > 0

for x >
√
97 + 1152π2 + 1 ≈ 108.083, we have G(x) > 0 for x ≥ 109.

Now we turn to prove (3.44). It is easy to check that for 0 ≤ k ≤ 93,

−|ck − bk |xk > −(c94 − b94)x
94

for x > π
2

√
2432+1824π4+767π6

2(32+24π4+21π6)
≈ 7.083. It immediately follows that

G(x) − H(x) >
(
−93(c94 − b94) + (c95 − b95)x + (c96 − b96)x

2
)
x94.

Moreover, we find that for x >

√
3
2 (992+750π4+651π6)

π2 + 3 ≈ 106.817,

−93(c94 − b94) + (c95 − b95)x + (c96 − b96)x
2 > 0.

Thus, for x ≥ 107, G(x) − H(x) > 0. 	

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3 It is easy to see that Q(t) is increasing for 0 < t < 1 since

Q′(t) = 1

(
√
1 − t + 1)3

is positive for 0 < t < 1. By Theorem 3.1, we know that f (n) < un for n ≥ 29. Then
we have for n ≥ 9,

Q( f (n)) < Q(un).

If we can prove

f (n) + 1000

μ(n − 1)5
< Q( f (n)) (3.46)
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for n ≥ 30985, it is done. Let

ψ(t) = Q(t) − t = 3t + 2
√

(1 − t)3 − t3 − 2

t2
.

Then (3.46) is equivalent to

ψ( f (n)) >
1000

μ(n − 1)5
.

Since for 0 < t < 1,

ψ ′(t) =
√
1 − t(−t + 3

√
1 − t + 4)

(
√
1 − t + 1)3

< 0,

it is clear that ψ(t) is decreasing for 0 < t < 1. From (3.35) we see that 0 < f (n) <

H(x)/G(x) < 1 for n ≥ 4. So it remains to prove

ψ ( f (n)) > ψ

(
H(x)

G(x)

)
for n ≥ 30985.

Therefore the proof is reduced to prove that for n ≥ 30985,

ψ

(
H(x)

G(x)

)
>

1000

μ(n − 1)5
. (3.47)

To this end, we should give an estimate for ψ
(
H(x)
G(x)

)
. Firstly, we claim that for

x ≥ 109,

√
5 − 1

2
<

H(x)

G(x)
< 1. (3.48)

To do this, it suffices to show that

2H(x) − (
√
5 − 1)G(x) ≥ 0 for x ≥ 109. (3.49)

Notice that

b97 = c97, b98 = c98, b99 = c99,

and observe that for 0 ≤ k ≤ 96,

−|2bk − (
√
5 − 1)ck |xk > −(3 − √

5)c97x
97
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when

x >

√√√√−125π2
√
5 − 22

√
5 + 381π2 + 66

2
(
3 − √

5
) (

1 + 12π2
) ≈ 7.42197.

Then it follows that for x ≥ 8,

2H(x) − (
√
5 − 1)G(x) > (3 − √

5)
(
−96c97 + c98x + c99x

2
)
x97.

Since −96c97 + c98x + c99x2 > 0 for x >
√
97 + 1152π2 + 1 ≈ 108.083, we arrive

at (3.49), and so (3.48) holds for x ≥ 109.
Secondly, we find that

ψ(t) < (1 − t)3/2 for any

√
5 − 1

2
< t < 1. (3.50)

This is because

ψ(t) − (1 − t)3/2 =
(1 − t)3/2

(
t −

√
5−1
2

) (
t +

√
5−1
2

)
(
√
1 − t + 1)2(

√
1 − t + t)

> 0

for
√
5−1
2 < t < 1. In view of (3.48) and (3.50), we infer that for x ≥ 109,

ψ

(
H(x)

G(x)

)
>

(
1 − H(x)

G(x)

)3/2

. (3.51)

We continue to show that for x ≥ 553, or equivalently, n ≥ 30985,

(
1 − H(x)

G(x)

)3/2

>
1000

μ(n − 1)5
. (3.52)

Since G(x) > 0 for x ≥ 8, the above inequality can be reformulated as follows. For
x ≥ 555,

x10(G(x) − H(x))3 − 10002G(x)3 > 0. (3.53)

The left-hand side of (3.53) is a polynomial of degree 298, and we write

x10(G(x) − H(x))3 − 10002G(x)3 =
298∑
k=0

γk x
k .

The values of γ296, γ297 and γ298 are given below:
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γ296 = 2176 · 37 · 53 · (21π14 + 96π12 + 32π8 + 256000000),

γ297 = −2178 · 36 · 53 · (32000000 + 9π12),

γ298 = 2177 · 36 · 53 · π12.

For 0 ≤ k ≤ 295, we have

−|γk |xk > −γ296x
296,

provided that

x >
−2560000000 − 6144000000π2 − 1664π8 − 1776π12 − 1488π14 − π16

−1024000000 − 128π8 − 384π12 − 84π14

≈ 36.5822.

Thus, for x ≥ 37,

x10(G(x) − H(x))3 − 10002G(x)3 >
(
−295γ296 + γ297x + γ298x

2
)
x296.

The left-hand side of the above inequality is positive, since

−295γ296 + γ297x + γ298x
2 > 0

when

x >

√
γ 2
297 + 1180γ296γ298 − γ297

2γ298
≈ 552.349.

Therefore (3.52) is true. Combining (3.51) and (3.52) yields (3.47) is true for n ≥
30985. The proof follows from checking that (3.34) is true for 92 ≤ n < 30985
directly. 	


With Theorems 3.1, 3.2 and 3.3 in hand, we are ready to give a proof of Theorem
1.2 as follows.

Proof of Theorem 1.2 From (1.6) we know that un < 1 for n ≥ 2. Define F(t) to be

F(t) = 4(1 − un)(1 − t) − (1 − unt)
2.

Then it is easy to see that the inequality

4(1 − un)(1 − un+1) − (1 − unun+1)
2 > 0, for n ≥ 16,

equivalent to

F(un+1) > 0, for n ≥ 16. (3.54)
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For 16 ≤ n ≤ 91, (3.54) can be easily checked. Therefore, it remains to prove that
(3.54) holds for n ≥ 92. Let Q(t) be as defined in Theorem 3.3, that is

Q(t) = 3t + 2
√

(1 − t)3 − 2

t2
.

Here we first claim that F(t) > 0 for un < t < Q(un). So the proof is reduced to
proving that for n ≥ 92,

un ≤ un+1 ≤ Q(un).

Observe that Wang et al. [18, Theorem 3.1] proved that un < un+1 for n ≥ 18.
From Theorem 3.1 we know that un+1 < g(n + 1) for n ≥ 92. Moreover, combining
Theorem 3.2 with Theorem 3.3 yields that for n ≥ 92,

g(n + 1) < f (n) + 1000

μ(n − 1)5
< Q(un).

Therefore, we conclude that un+1 < Q(un) for n ≥ 92, as required.
Finally, it remains to verify the previous claim. Rewrite F(t) as

F(t) = −u2nt
2 + (6un − 4)t − 4un + 3.

The equation F(t) = 0 has two solutions

P(un) = 3un − 2
√

(1 − un)3 − 2

u2n
, Q(un) = 3un + 2

√
(1 − un)3 − 2

u2n

so that F(t) > 0 for P(un) < un < Q(un). Therefore, F(t) > 0 for un < t < Q(un),
as claimed. 	
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