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Abstract
An asymptotic classification for the linear homogeneous partition inequalities of the
form

∑r
i=1 p(n + xi ) �

∑s
i=1 p(n + yi ) has recently been introduced. In this paper,

we investigate partition inequalities of this form when r = s. From an asymptotic
point of view, such partition inequalities are considered to be non-trivial because they
have the same number of terms on both sides. In this context, we provide a very
general method for proving the non-trivial partition inequalities. This is a numerical
method that does not involve q series and connects the non-trivial linear homogeneous

partition inequalities with the Prouhet–Tarry–Escott problem: if {x1, x2, . . . , xr } k=
{y1, y2, . . . , yr } (k � 0), then for n large enough the expression

∑r
i=1

(
p(n + xi ) −

p(n + yi )
)
has the same sign as

∑r
i=1(xk+1

i − yk+1
i ). The method can be adopted to

other inequalities of a similar nature which involve sequences that are asymptotically
completely monotone.

Keywords Partition inequalities · Prouhet–Tarry–Escott problem · Finite
differences · Algorithms

Mathematics Subject Classification 05A20 · 05A17 · 11P81

1 Introduction

Themathematical theory of partitions began in themid-eighteenth century when Euler
showed that the generating function for p(n), the number of partitions of n, can be
expressed as
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∞∑

n=0

p(n)qn = 1

(q; q)∞
, |q| < 1,

where

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1)

is the q shifted factorial with (a; q)0 = 1. Because the infinite product

(a; q)∞ = lim
n→∞(a; q)n

diverges when a �= 0 and |q| � 1, whenever (a; q)∞ appears in a formula, we shall
assume that |q| < 1.

The Hardy–Ramanujan–Rademacher formula for p(n) states that

p(n) =
√
12

24n − 1

N∑

k=1

Ak(n)√
k

[(

1 − k

μ(n)

)

eμ(n)/k +
(

1 + k

μ(n)

)

e−μ(n)/k
]

+ R(n, N ),

where Ak(n) is an arithmetic function, R(n, N ) is the remainder term and

μ(n) = π

6

√
24n − 1

(see Hardy and Ramanujan [9], Rademacher [19] for more details). For positive inte-
gers n and N , we have the following bound for the remainder term R(n, N ) due to
Lehmer [13,14]:

|R(n, N )| <
π2N−2/3

√
3

[(
N

μ(n)

)3

sin h

(
μ(n)

N

)

+ 1

6
−
(

N

μ(n)

)2
]

. (1)

Inequalities involvingEuler’s partition function p(n) have been the subject of recent
studies. In [16], the first author proved the inequality

p(n) − p(n − 1) − p(n − 2) + p(n − 5) � 0, n > 0, (2)

in order to provide the fastest known algorithm for the generation of the partitions of
n. Subsequently, Andrews and Merca [1] proved more generally that, for k > 0,

(−1)k−1
2k−1∑

j=0

(−1)� j/2� p(n − G j ) � 0, (3)
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where

Gk = 1

2

⌈
k

2

⌉(

3

⌈
k

2

⌉

+ (−1)k
)

is the kth generalized pentagonal number. One can easily verify that (3) reduces to (2)
when k = 2. In [17], Merca showed that (3) is the case k odd of the inequality

(−1)�k/2	
k∑

j=0

(−1)� j/2� p(n − G j ) � 0.

In the same paper, the following two inequalities

p(n) − 2p(n − 1) + p(n − 2) � 0,

p(n) − 2p(n − 1) + p(n − 3) � 0,

are specializations of a more general result: for n > 1, k � 0,

(−1)�k/2	
k∑

j=0

(−1)� j/2�(p(n − G j ) − p(n − 1 − G j )
)

� 0. (4)

Very recently, Andrews and Merca [2] proposed the following conjecture: for n odd,

(−1)k−1
2k−1∑

j=0

(−1)� j/2� p(n − Tj ) � (−1)k−1
2k−1∑

j=0

(−1)� j/2� p(n − G j ), (5)

where Tn = n(n + 1)/2 is the nth triangular number.
Considering Rademacher’s convergent series and the Lehmer error bound (1),

DeSalvo and Pack [6] investigated in 2015 the log-concavity of Euler’s partition func-
tion p(n) and confirmed two recent conjectures of Chen [5]:

p(n − 1)

p(n)

(

1 + 1

n

)

>
p(n)

p(n + 1)
, for all n � 2 (6)

and

p(n)2 − p(n − m)p(n + m) � 0, for all n > m > 1.

The inequality (6) has been improved by DeSalvo and Pak [6]:

p(n − 1)

p(n)

(

1 + 240

(24n)3/2

)

>
p(n)

p(n + 1)
, for all n � 7.
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In addition, DeSalvo and Pak [6] proposed the following conjecture:

p(n − 1)

p(n)

(

1 + π√
24n3/2

)

>
p(n)

p(n + 1)
, for all n � 45.

In 2016, using Lehmer’s error bound (1) for the remainder term of p(n), Bessenrodt
and Ono [3] proved the following analytic inequality: if a, b are integers with a, b > 1
and a + b > 8, then

p(a)p(b) � p(a + b).

Very recently, Katriel [10] considered the asymptotic behavior of p(n+�)
p(n)

and pro-
vided the following �-dependent partition inequalities:

p(n + �) − p(n + � − 1) �
(

p(� + 1) − p(�)
)

p(n), for n � 0, � � 1,

p(n + �) − p(n + � − 2) �
(

p(� + 1) − p(� − 1)
)

p(n), for n � 0, � � 1,

p(n + �) − p(n + � − 3) �
(

p(� + 1) − p(� − 2)
)

p(n), for n � 0, � � 2.

In his paper,Katriel introduced an asymptotic classification for the linear homogeneous
partition inequalities of the form

r∑

i=1

p(n + xi ) �
s∑

i=1

p(n + yi ).

For r < s, it follows from the large n asymptotic behavior of the partition function
p(n) that an inequality of this form holds for all n > N , for an appropriately specified
N . The inequality can be established for all n � 1 by verifying that it holds for the
finite set of cases specified by 1 � n � N . Such an inequality has been referred to as
asymptotically trivial. The asymptotic information provided by the partition function
p(n) is not useful when r = s. Katriel claimed that in this case a proof has to be
provided that applies to all n. Such an inequality has been referred to as non-trivial.

In this paper, we investigate the linear homogeneous partition inequalities that
Katriel classified as non-trivial, which are of the form

r∑

i=1

p(n + xi ) �
r∑

i=1

p(n + yi ), (7)

where x1, x2, . . . , xr and y1, y2, . . . , yr are integers.More precisely,we are looking for
a criterion to determine the direction of the inequality corresponding to x1, x2, . . . , xr

and y1, y2, . . . , yr . In thisway,weprovide a numericalmethod for proving the partition
inequalities of the form (7) that does not involve q series and connects the non-trivial
linear homogeneous partition inequalities with the Prouhet–Tarry–Escott problem.
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Recall that the Prouhet–Tarry–Escott problem asks for two distinct multisets of
integers {x1, x2, . . . , xr } and {y1, y2, . . . , yr } such that

r∑

i=1

x j
i =

r∑

i=1

y j
i , for all j = 1, 2, . . . , k,

and

r∑

i=1

xk+1
i �=

r∑

i=1

yk+1
i ,

where k is a positive integer. If k = r − 1, such a solution is called ideal. In what
follows, we consider k a non-negative integer and we write

{x1, x2, . . . , xr } k= {y1, y2, . . . , yr }

to denote a solution to the Prouhet–Tarry–Escott problem if k is positive or to denote
the case x1 + x2 + · · · + xr �= y1 + y2 + · · · + yr if k = 0.

The Prouhet–Tarry–Escott problem has a long history and is, in some form, well
over two centuries old. In 1750–1751, Euler and Goldbach noted that

{0, a + b, a + c, b + c} 2= {a, b, c, a + b + c}. (8)

If a, b, c are distinct positive integers, then it is clear that the coefficients of qn in

(1 − qa)(1 − qb)(1 − qc)

(q; q)∞

are all non-negative. Thus it is an easy exercise to prove that the partition inequality

p(n) + p(n + a + b) + p(n + a + c) + p(n + b + c)

� p(n + a) + p(n + b) + p(n + c) + p(n + a + b + c)

holds for any non-negative integer n when a, b, c are distinct positive integers. In
the general case, we will prove that the direction of the linear homogeneous partition
inequality corresponding to (8) is given by the sign of the product abc.

The following results can be used to connect the linear homogeneous partition
inequalities of the form (7) with the Prouhet–Tarry–Escott problem.

Lemma 1.1 Let P be a polynomial of degree N in q which is not divisible by 1 − q,
such that

(1 − q)k · P(q) =
N+k∑

n=0

ak,nqn,
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where k is a positive integer. For 0 � p � k,

N+k∑

n=0

(−n)pak,n = δk,p · k! · P(1),

where δi, j is the Kronecker delta function.

Corollary 1.1 Let P be as in Lemma 1.1. Then

⎧
⎪⎨

⎪⎩
n, . . . , n
︸ ︷︷ ︸
ak,n times

|ak,n > 0

⎫
⎪⎬

⎪⎭

k−1=

⎧
⎪⎨

⎪⎩
n, . . . , n
︸ ︷︷ ︸
|ak,n| times

|ak,n < 0

⎫
⎪⎬

⎪⎭
.

Any solution of the Prouhet–Tarry–Escott problem and its partition inequality are
related by the following result.

Theorem 1.2 Let {x1, x2, . . . , xr } k= {y1, y2, . . . , yr }. There is a non-negative integer
N such that for n � N, the expression

r∑

i=1

p(n + xi ) −
r∑

i=1

p(n + yi )

has the same sign as the expression

r∑

i=1

xk+1
i −

r∑

i=1

yk+1
i .

We point out that the inequalities (3) and (5) of Andrews and Merca can be derived
as special cases of this theorem:

{
G j

∣
∣
∣

0� j�2r−1
j≡0,3 (mod 4)

}
0=
{

G j

∣
∣
∣

0� j�2r−1
j≡1,2 (mod 4)

}

and
{

Tj , G j+(−1) j

∣
∣
∣

0� j�2r−1
j≡0,3 (mod 4)

}
1=
{

G j , Tj+(−1) j

∣
∣
∣

0� j�2r−1
j≡0,3 (mod 4)

}
.

Having Theorem 1.2, we can say that there is a positive integer N (k), such that the
inequality (5) holds for all n � N (k). On the other hand, for a ∈ {0, 1} we have

{
G j , 1 + G j+(−1) j

∣
∣
∣

0� j�2r−a
j≡0,3 (mod 4)

}
a=
{
1 + G j , G j+(−1) j

∣
∣
∣

0� j�2r−a
j≡0,3 (mod 4)

}
.

Thus we deduce that the inequality (4) is also a consequence of Theorem 1.2.
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It is known that the solutions to the Prouhet–Tarry–Escott problem satisfy many
relations. Given a solution to the Prouhet–Tarry–Escott problem, we can generate an
infinite family of solutions. That is, if

{x1, x2, . . . , xr } k= {y1, y2, . . . , yr },

then

{Mx1 + N , . . . , Mxr + N } k= {My1 + N , . . . , Myr + N }.

Thus, without loss of generality, we can consider the non-trivial solution

{x1, x2, . . . , xr } k= {y1, y2, . . . , yr },

with

0 = x1 � x2 � · · · � xr and 0 < y1 � y2 � · · · � yr

or

0 = x1 � x2 � · · · � xr and 0 > y1 � y2 � · · · � yr .

We have the following connection between the ideal solutions of the Prouhet–Tarry–
Escott problem and the linear homogeneous partition inequalities of the form (7).

Theorem 1.3 Let {x1, x2, . . . , xr } r−1= {y1, y2, . . . , yr } be an ideal solution of the
Prouhet–Tarry–Escott problem with

0 = x1 � x2 � · · · � xr and 0 > y1 � y2 � · · · � yr .

There is a non-negative integer N such that for n � N, the coefficients of qn in

1

(q; q)∞

r∑

i=1

(q−xi − q−yi )

are all positive, i.e., for n � N,

r∑

i=1

p(n + xi ) −
r∑

i=1

p(n + yi ) > 0.

On the one hand, it is known that the following relations are equivalent (see [4,
Proposition 1]):

(i) {x1, x2, . . . , xr } k−1= {y1, y2, . . . , yr },
(ii) (1 − q)k |

∑r

i=1
(q−xi − q−yi ).
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252 M. Merca, J. Katriel

There is a substantial amount of numerical evidence to conjecture the following result.

Conjecture 1.4 Let {x1, x2, . . . , xr } r−1= {y1, y2, . . . , yr } be an ideal solution of the
Prouhet–Tarry–Escott problem with

0 = x1 � x2 � · · · � xr and 0 > y1 � y2 � · · · � yr .

The coefficients of qn in

1

(1 − q)r

r∑

i=1

(
q−xi − q−yi

)

are all non-negative.

Some applications of these results will be presented in this paper. In Sects. 3
and 4, we consider the higher-order differences of the partition function p(n). In
Sect. 5, we provide a new generalization of the homogeneous linear partition inequal-
ity (2). Theorem 1.2 provides a simple algorithm to determine the direction of the
partition inequality corresponding to x1, x2, . . . , xr and y1, y2, . . . , yr (see Algorithm
1 in the last section of this paper).

2 Proof of Lemma 1.1

We consider R(0)
k , a polynomial in q defined as

R(0)
k (q) = (1 − q)k P(q) =

N+k∑

n=0

ak,nqn .

For p > 0 we define the polynomial R(p)
k in q as follows:

R(p)
k (q) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂

∂q
R(p−1)

k (q) for p = 1,

∂

∂q

(
q · R(p−1)

k (q)
)

for p > 1.

It is clear that

R(p)
k (1) =

N+k∑

n=0

ak,nn p.

On the other hand, the polynomial R(p)
k can be rewritten as

R(p)
k (q) = (1 − q)k−p Q(p)

k (q), (9)
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where Q(0)
k (q) = Pk(q). For p = 1, we can write

R(1)
k (q) = ∂

∂q

(
(1 − q)k Q(0)

k (q)
)

= − k(1 − q)k−1Q(0)
k (q) + (1 − q)k ∂

∂q
Q(0)

k (q). (10)

For 1 < p � k, we have

R(p)
k (q) = ∂

∂q

(
(1 − q)k−p+1q Q(p−1)

k (q)
)

= − (k − p + 1)(1 − q)k−pq Q(p−1)
k (q) + (1 − q)k−p+1 ∂

∂q

(
q Q(p−1)

k (q)
)
.

(11)

For p < k we see that R(p)
k (1) = 0. For 0 < p � k, by (9)–(11) we deduce that

Q(p)
k (1) = −(k − p + 1)Q(p−1)

k (1). Then having R(k)
k (1) = Q(k)

k (1), we obtain

R(k)
k (1) = (−1)k · k! · Q(0)

k (1)

and the proof is finished.

3 Differences of the partition function

The first backward difference of the function f is defined by

∇ f (x) = f (x) − f (x − 1).

Iterating, we obtain the kth order backward difference:

∇k f (x) = ∇(∇k−1 f (x)
) =

k∑

i=0

(−1)i
(

k

i

)

f (x − i).

In 1977, Good [7] and Andrews [8] have independently asked about the behavior of
∇k p(n). Good conjectured that for each k, there is a positive integer n0(k) such that
∇k p(n) alternates in sign for n < n0(k), and ∇k p(n) is non-negative for n � n0(k).
In 1978, Gupta [8] considered the Hardy–Ramanujan–Rademacher formula for p(n)

and proved that∇k p(n) > 0 for each fixed k if n is sufficiently large. In 1988, Odlyzko
[18] proved the conjecture of Good and obtained the following asymptotic formula
for n0(k):

n0(k) ∼ 6

π2 k2 log k2 as k → ∞.
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This asymptotic result is not very accurate for moderate values of k because the
convergence to the limit is very slow. In 1990, Knessl and Keller [11,12] obtained a
better asymptotic approximation n′

0(k) of n0(k) by deriving a recurrence for ∇k p(n)

and solving it asymptotically. For example,

∣
∣n′

0(k) − n0(k)
∣
∣ � 2 for all k � 75.

For n � n0(k), the inequality

∇k p(n) � 0

can be rewritten as a linear homogeneous partition inequality of the form (7):

�k/2	∑

i=0

(
k

2i + 1

)

p(n − 1 − 2i) �
�k/2	∑

i=0

(
k

2i

)

p(n − 2i). (12)

Moreover, considering the case P = 1 ofLemma1.1,we deduce the following solution
for the Prouhet–Tarry–Escott problem

⎧
⎪⎪⎨

⎪⎪⎩
−2i − 1, . . . ,−2i − 1
︸ ︷︷ ︸

( k
2i+1) times

|i = 0, 1, . . . , �k/2	

⎫
⎪⎪⎬

⎪⎪⎭

k−1=

⎧
⎪⎪⎨

⎪⎪⎩
−2i, . . . ,−2i
︸ ︷︷ ︸

( k
2i) times

|i = 0, 1, . . . , �k/2	

⎫
⎪⎪⎬

⎪⎪⎭
.

and the following identity

�k/2	∑

i=0

(
k

2i + 1

)

(−2i − 1)k −
�k/2	∑

i=0

(
k

2i

)

(−2i)k = −k!. (13)

We remark that the direction of the inequality (12) is given by the identity (13), i.e.,
for all n � n0(k) the expression

�k/2	∑

i=0

(
k

2i + 1

)

p(n − 1 − 2i) −
�k/2	∑

i=0

(
k

2i

)

p(n − 2i)

has the same sign as

�k/2	∑

i=0

(
k

2i + 1

)

(−2i − 1)k −
�k/2	∑

i=0

(
k

2i

)

(−2i)k .
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Example 1 Considering Algorithm 1, we illustrate the connection between (12) and
(13) when k ∈ {2, 3, 4}.
1. For k = 2, we have the ideal solution

{− 1,− 1} 1= {0,−2}.

The partition inequality

2p(n − 1) � p(n) + p(n − 2).

holds for all n � 2. According to [12, Table 1], the initial value of N in Algorithm
1 is n0(2) = 2.

2. For k = 3, we have the solution

{− 1,− 1,− 1,− 3} 2= {0,− 2,− 2,− 2}.

The partition inequality

3p(n − 1) + p(n − 3) � p(n) + 3p(n − 2)

holds for all n � 26. According to [12, Table 1], the initial value of N in Algorithm
1 is n0(3) = 26.

3. For k = 4, we have the solution

{− 1,− 1,− 1,− 1,− 3,− 3,− 3,− 3} 3= {0,− 2,− 2,− 2,− 2,− 2,− 2,− 4}.

The partition inequality:

4p(n − 1) + 4p(n − 3) � p(n) + 6p(n − 2) + p(n − 4)

holds for all n � 68. According to [12, Table 1], the initial value of N in Algorithm
1 is n0(4) = 68.

4 Partitions into parts greater thanm

The results presented in the previous section can be extended to the partitions of n into
parts greater than m. We denote by pm(n) the number of these partitions. Noting that

∞∑

n=0

pm(n)qn = (q; q)m

(q; q)∞
,

123



256 M. Merca, J. Katriel

we easily obtain the following expression for the generating function of ∇k pm(n):

∞∑

n=0

∇k pm(n)qn = (1 − q)k(q; q)m

(q; q)∞
.

On the one hand, we know that for each fixed k there is a positive integer n0(k) such

that the coefficients of qn in
(1 − q)k

(q; q)∞
are positive for n � n0(k). On the other hand,

we have

(1 − q)k(q; q)m

(q; q)∞
= (1 − q)k+m

(q; q)∞
· P(q),

where

P(q) =
m−1∏

j=1

(1 + q + q2 + · · · + q j )

is a polynomial in q with positive coefficients. In this way, we deduce that for each
fixed k and m there is a positive integer n0(k, m) such that

∇k pm(n) � 0 for all n � n0(k, m).

Having

k+(m+1
2 )∑

j=0

ak,m, j q
j = (1 − q)k+m · P(q),

it is clear that the linear homogeneous partition inequality

k+(m+1
2 )∑

j=0

ak,m, j p(n − j) > 0,

holds for n � n0(k, m). This inequality is of the form (7). In addition, by Lemma 1.1
we obtain

k+(m+1
2 )∑

j=0

(− j)pak,m, j = δk+m,p · (k + m)! · m!, p � k + m. (14)
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In the spirit of Theorem 1.2, we notice that for all n � n0(k, m) the expression

k+(m+1
2 )∑

j=0

ak,m, j p(n − j)

is positive just as the expression

k+(m+1
2 )∑

j=0

(− j)k+mak,m, j .

Example 2 Considering Algorithm 1, we point out a few special cases of (14) as ideal
solutions for the Prouhet–Tarry–Escott problem and their partition inequalities:

1. For k = 0 and m = 2, we have

{a0,2,n}0�n�3 = {1,− 1,− 1, 1}.

So we obtain the ideal solution

{0,−3} 1= {− 1,− 2}

with the partition inequality

p(n) + p(n − 3) � p(n − 1) + p(n − 2)

that holds for all n � 0. According to [12, Table 1], the initial value of N in
Algorithm 1 is n0(3) = 26.

2. For k = 0 and m = 3, we have

{a0,3,n}0�n�6 = {1,− 1,− 1, 0, 1, 1,− 1}.

We obtain the ideal solution

{0,− 4,− 5} 2= {− 1,− 2,− 6}

with the partition inequality

p(n) + p(n − 4) + p(n − 5) � p(n − 1) + p(n − 2) + p(n − 6)

that holds for all n � 0. According to [12, Table 1], the initial value of N in
Algorithm 1 is n0(6) = 228.

3. For k = 0 and m = 4, we have

{a0,4,n}0�n�10 = {1,− 1,− 1, 0, 0, 2, 0, 0,− 1,− 1, 1}.
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We obtain the ideal solution

{0,− 5,− 5,− 10} 3= {− 1,− 2,− 8,− 9}

with the inequality

p(n) + 2p(n − 5) + p(n − 10) � p(n − 1) + p(n − 2) + p(n − 8) + p(n − 9)

that holds for all n � 0. According to [12, Table 1], the initial value of N in
Algorithm 1 is n0(10) = 934.

4. For k = 1 and m = 2, we have

{a1,2,n}0�n�4 = {1,− 2, 0, 2,− 1}.

We obtain the ideal solution

{0,− 3,− 3} 2= {− 1,− 1,− 4}

with the partition inequality

p(n) + 2p(n − 3) � 2p(n − 1) + p(n − 4)

that holds for all n � 2. According to [12, Table 1], the initial value of N in
Algorithm 1 is n0(4) = 68.

5. For k = 1 and m = 3, we have

{a1,3,n}0�n�7 = {1,− 2, 0, 1, 1, 0,− 2, 1}.

We obtain the ideal solution

{0,− 3,− 4,− 7} 3= {− 1,− 1,− 6,− 6}

with the partition inequality

p(n) + p(n − 3) + p(n − 4) + p(n − 7) � 2p(n − 1) + 2p(n − 6)

that holds for all n � 2. According to [12, Table 1], the initial value of N in
Algorithm 1 is n0(7) = 352.

6. For k = 1 and m = 5, we have

{a1,5,n}0�n�16 = {1,− 2, 0, 1, 0, 1, 0, 0,− 2, 0, 0, 1, 0, 1, 0,− 2, 1}.

We obtain the ideal solution

{0,− 3,− 5,− 11,− 13,− 16} 5= {− 1,− 1,− 8,− 8,− 15,− 15}
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with the partition inequality

p(n) + p(n − 3) + p(n − 5) + p(n − 11) + p(n − 13) + p(n − 16)

� 2p(n − 1) + 2p(n − 8) + 2p(n − 15)

that holds for all n � 2. According to [12, Table 1], the initial value of N in
Algorithm 1 is n0(16) = 3188.

5 A generalization of the inequality (2)

In this section, we consider the following special case of Lemma 1.1:

P(q) = (1 − q − qk+2)

k∏

j=1

(1 + q + q2 + · · · + q j ),

with k � 1. Thus we have

(k+3
2 )−1∑

n=0

ak,nqn = (1 − q − qk+2)(q2; q)k .

Considering Euler’s formula

∞∑

n=0

zn

(q; q)n
= 1

(z; q)∞
,

we can write

(1 − q − qk+2)(q2; q)k

(q; q)∞
= 1 − q − qk+2

(1 − q)(qk+2; q)∞

= 1

(qk+2; q)∞
− qk+2

(1 − q)(qk+2; q)∞

=
∞∑

j=0

q(k+2) j

(q; q) j
−

∞∑

j=0

q(k+2)( j+1)

(1 − q)(q; q) j

= 1 +
∞∑

j=1

q(k+2) j

(q; q) j
−

∞∑

j=1

q(k+2) j (1 − q j )

(1 − q)(q; q) j

= 1 +
∞∑

j=2

q(k+2) j

(q; q) j

(

1 − 1 − q j

1 − q

)

= 1 −
∞∑

j=2

q(k+2) j

(q; q) j

(
q + q2 + · · · + q j−1

)
.
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We see that the coefficient of q0 equals 1, the coefficients of q j for 1 � j � 2(k+2)
are all 0, and for j > 2(k + 2) all the coefficients are negative. In this way, we proved
that the inequality

(k+3
2 )−1∑

j=0

ak, j p(n − j) � 0 (15)

holds for all n � 1. For n > 2(k +2) we have a strict inequality. One can easily verify
that the inequality (15) reduces to (2) when k = 1. In addition, taking into account
that

(1 − q − qk+2)(q2; q)k − (1 − q − qk+3)(q2; q)k+1

(q; q)∞
= −q2k+5

(1 − q)(qk+2; q)∞
,

we deduce that the inequality

(k+4
2 )−1∑

j=0

(ak+1, j − ak, j )p(n − j) � 0 (16)

holds for all n � 0, with strict inequality if n � 2k+5. For j �
(k+3

2

)
, we set ak, j = 0.

The inequalities (15) and (16) are of the form (7). By Lemma 1.1, we obtain the
following identity:

(k+3
2 )−1∑

j=0

(− j)pak, j = −δk,p · (k + 1)! · k!, p � k. (17)

Then we derive

(k+4
2 )−1∑

j=0

(− j)p(ak+1, j − ak, j ) = δk,p · (k + 1)! · k!, p � k. (18)

It is clear that for n � 2(k + 2) the expression

(k+3
2 )−1∑

j=0

ak, j p(n − j)

is negative just as the expression

(k+3
2 )−1∑

j=0

(− j)kak, j .
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Similarly, for n � 2k + 5 the expression

(k+4
2 )−1∑

j=0

(ak+1, j − ak, j )p(n − j)

is positive just as the expression

(k+4
2 )−1∑

j=0

(− j)k(ak+1, j − ak, j ).

Example 3 We point out the case k = 2 of (17) as a solution for the Prouhet–Tarry–
Escott problem and its partition inequality. We have

{a2,n}0�n�9 = {1,−1,−1, 0, 0, 1, 0, 1, 0,−1}.

So we obtain the solution

{0,−5,−7} 1= {−1,−2,−9}

with the partition inequality

p(n) + p(n − 5) + p(n − 7) � p(n − 1) + p(n − 2) + p(n − 9)

that holds for all n � 1, with strict inequality if n � 9.

Example 4 Considering (18) with k = 2, we have

{a3,n − a2,n}0�n�14 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,−1,−1, 0, 1}.

So we obtain the solution

{−9,−14} 1= {−11,−12}

with the partition inequality

p(n − 9) + p(n − 14) > p(n − 11) + p(n − 12)

that holds for all n � 9 or

p(n) + p(n − 5) > p(n − 2) + p(n − 3)

that holds for all n � 0.
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6 Proof of Theorem 1.2

The first forward difference of the function f is defined by

� f (x) = f (x + 1) − f (x).

Iterating, we obtain the kth order forward difference:

�k f (x) = �
(
�k−1 f (x)

) =
k∑

i=0

(−1)k−i
(

k

i

)

f (x + i).

Considering Newton’s forward difference formula, Euler’s partition function p(n) can
be expressed in terms of the kth order forward difference as follows:

p(n + ξ) =
∞∑

j=0

� j p(n)

j ! (ξ) j ,

where

(ξ) j = ξ(ξ − 1) · · · (ξ − j + 1)

is the falling factorial with (ξ)0 = 1. Then we can write:

r∑

i=1

(
p(n + xi ) − p(n + yi )

) =
∞∑

j=0

� j p(n)

j !
r∑

i=1

(
(xi ) j − (yi ) j

)
.

Without loss of generality, we consider that x1, x2, . . . , xr and y1, y2, . . . , yr are non-

negative. By {x1, x2, . . . , xr } k= {y1, y2, . . . , yr }, we deduce that

(i)
r∑

i=1

(xi ) j =
r∑

i=1

(yi ) j for all j = 0, 1, . . . , k;

(ii)
r∑

i=1

(xi ) j �=
r∑

i=1

(yi ) j for j > k;

(iii)
r∑

i=1

(
(xi )k+1 − (yi )k+1

) =
r∑

i=1

(xk+1
i − yk+1

i ).

Let M = max(x1, x2, . . . , xr , y1, y2, . . . , yr ). For j > M , it is clear that

r∑

i=1

(
(xi ) j − (yi ) j

) = 0.
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Thus we obtain

r∑

i=1

(
p(n + xi ) − p(n + yi )

) =
M∑

j=k+1

� j p(n)

j !
r∑

i=1

(
(xi ) j − (yi ) j

)
.

In addition, for k < j � M the expression

r∑

i=1

(
(xi ) j − (yi ) j

)

has the same sign as (iii), because for j > k the expression

r∑

i=1

(
x j

i − y j
i

)

has the same sign as (iii). Moreover, it is known that for each fixed j there is a positive
integer n0( j) such that � j p(n) � 0. Clearly for

n � max
(
n0(k + 1), n0(k + 2), . . . , n0(M)

)
,

the expression

r∑

i=1

(
p(n + xi ) − p(n + yi )

)

has the same sign as (iii). The proof of Theorem 1.2 is finished.

7 Proof of Theorem 1.3

Considering the following lemma, Theorem 1.3 can be derived as a specialization of
Theorem 1.2.

Lemma 7.1 Let {x1, x2, . . . , xr } r−1= {y1, y2, . . . , yr } be an ideal solution for the
Prouhet–Tarry–Escott problem with

0 = x1 � x2 � . . . � xr and 0 < y1 � y2 � . . . � yr .

Then

r∑

i=1

xr
i −

r∑

i=1

yr
i = (−1)r r

r∏

i=1

yi .
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Proof To prove this result, we use several tools from symmetric functions theory. We
work with formal symmetric functions and we will use the standard notation from
Macdonald’s book [15] for the classical families of symmetric functions: ek for the
kth elementary symmetric function

ek(ξ1, ξ2, . . . , ξn) =
∑

1�n1<n2<...<nk�n

ξn1ξn2 . . . ξnk

and pk for the k-th power sum symmetric function

pk(ξ1, ξ2, . . . , ξn) =
n∑

j=1

ξ k
j .

The following relation is well known as Newton’s identity:

kek(ξ1, ξ2, . . . , ξn) =
k∑

j=1

(−1) j−1ek− j (ξ1, ξ2, . . . , ξn)p j (ξ1, ξ2, . . . , ξn). (19)

Having

p j (x1, x2, . . . , xr ) = p j (y1, y2, . . . , yr ) for all j = 1, 2, . . . , r − 1,

by (19) we deduce that

e j (x1, x2, . . . , xr ) = e j (y1, y2, . . . , yr ) for all j = 1, 2, . . . , r − 1.

Using again (19), we obtain

r
(
er (x1, x2, . . . , xr ) − er (y1, y2, . . . , yr )

)

= (−1)r−1(pr (x1, x2, . . . , xr ) − pr (y1, y2, . . . , yr )
)
.

Taking into account that er (x1, x2, . . . , xr ) = 0, the proof is finished. ��

8 Concluding remarks

Interesting connections between the Prouhet–Tarry–Escott problem and the linear
homogeneous partition inequalities of the form (7) have been introduced in this paper.
A criterion to determine the direction of the linear homogeneous partition inequality
corresponding to an ideal solution of the Prouhet–Tarry–Escott problem has been
provided by Theorem 1.3. A more general criterion referring to the direction of any
linear homogeneous partition inequality of the form (7) was provided by Theorem
1.2. Surprisingly, connections between linear partition inequalities and the Prouhet–
Tarry–Escott problem have not been noticed so far.
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Any non-trivial linear homogeneous partition inequality is equivalent to an inequal-
ity of the form (7) with

0 � x1 � x2 � · · · � xr and 0 > y1 � y2 � · · · � yr .

According to the proof of Theorem 1.2, we provide the following algorithm to deter-
mine the direction of the partition inequality corresponding to x1, x2, . . . , xr and
y1, y2, . . . , yr .

Algorithm 1 Proving non-trivial partition inequalities
Require: x1 � x2 � . . . � xr and y1 � y2 � . . . � yr (non-positive integers)
Ensure: N , S
1: k ← 0
2: S ← 0
3: while S = 0 do
4: k ← k + 1

5: S ←
r∑

i=1
(xk

i − yk
i )

6: end while
7: M ← max(|xr |, |yr |)
8: N ← no(M)

9: while

(

S ·
r∑

i=1

(
p(N − 1 + xi ) − p(N − 1 + yi )

)
� 0

)

and (N > 0) do

10: N ← N − 1
11: end while

In the line (8) of Algorithm 1, the parameter N is initialized in accordance with
Knessl andKeller [12]. If Algorithm 1 returns a positive value for S then the inequality

r∑

i=1

p(n + xi ) �
r∑

i=1

p(n + yi )

holds for any n � N . When Algorithm 1 returns a negative value for S then the
inequality

r∑

i=1

p(n + xi ) �
r∑

i=1

p(n + yi )

holds for any n � N .
Finally, we remark that Theorem 1.2 and Algorithm 1 can be adopted to other

partition functions and other infinite sequences that are asymptotically completely
monotone.
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