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1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose
sum is n. Let p(n) denote the number of partitions of n. Recall that a sequence {a,, }n>0
is called log-concave if

ai — Qpi10p—1 >0, n>1.

Moreover, this sequence is said to be asymptotically r-log-concave if there exists N such

that

j{an}nzN,$2{an}nzN,...,Q?T{an}nzN (11)

are all non-negative sequences, where

j{an}nzo ={a5 11 = @nlniata>o  and jk{an}nzo -7 (jk_l{@n}nzo) :

Based on the Hardy-Ramanujan-Rademacher formula [1,8,9, 18] and the error esti-
mation given by Lehmer [13,14], DeSalvo and Pak [6] showed that the partition function
p(n) is log-concave for all n > 25, conjectured by Chen [2]. Consequently, Chen, Wang
and Xie proved the DeSalvo-Pak conjecture that states

Theorem 1.1 (Conjecture 1.3, [4]). Forn > 45, we have

p(n—1) T p(n)
oo (U 5m) * sty

Recently, Chen, Jia and Wang [3] proceed further to show that {p(n)},>95 satisfies the
higher order Turén inequality and formulate a conjecture [3, Conjecture 1.2] in somewhat
similar to Theorem 1.1, settled by Larson and Wagner [15, Theorem 1.2]. What’s more,
Hou and Zhang [10] proved the asymptotic r-log-concavity of p(n) and as a consequence
they showed {p(n)}n>901 is 2-log-concave, whereas an alternative approach through study-

ing determinant of certain class of matrix can be found in [12].

The overpartition function also reflects the similar log-behavior. Recall an overparti-
tion [5] of a nonnegative integer n is a partition of n where the first occurrence of each
distinct part may be overlined. Let p(n) denote the number of overpartitions of n. Zuker-

mann [21] gave a formula for the overpartition function, which is considered by Sills [19]
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as a Rademacher-type convergent series

%) k . m/n

— 1 w(h, k)2 _ 2minh d Sll’lh T
=5 = | 1.2
p(n) 27r;\/% Z w@h k) dn( Jio ) (1.2)

2k (hyk)=1

w(h, k) = exp (Wfé% (%_ {%J _%))

for positive integers h and k.

where

Let ji(n) = my/n. From this Rademacher-type series (1.2), Engel [7] provided an error

term for the overpartition function

N K )
— 1 W(h/ k)2 _ 2minh d Sll’lhu—
=—> vk ) ’ TE— | —=% | + Ry(n, N
pn) =52 Hf 2. Senk- " dn( T | RN,
ok (h,k)=1
where
N: o (fi(n)
N)| < h ) 1.
|Ro(n, N)| < ) sin ( N ) (1.3)

In particular, when N = 3, we have

P(n) = 8in [(1 + ﬁ) e Flm 4 (1 — ﬁ) em")] + Ry(n, 3), (1.4)

where

335 [An)\ _ 335
R 3)| < h < . 1.5
Ra(n3)] < 2 sinn (P9 ) < T (15)

Similar to the work done in the world of partitions, Engel initiated the study of log-
concavity property of the overpartition function in his work [7]. The second author and
Liu established Theorem 1.1 in context of overpartitions in [16, Equation (1.6)]. They
also proved the higher order Turdn property of p(n) for n > 16 (cf. see [16, Theorem
1.2]). Following the treatment done in [12], the first author [17, Theorem 1.7] laid out a

proof of {p(n)},>42 is 2-log-concave.

In this paper, our main goal is to prove the asymptotic r-log-concavity for the overpar-
tition function, stated in Theorem 1.2. In the proof of Theorem 1.2, we give a bound for
p(n+1)/p(n) and an asymptotic expression of p(n — 1)p(n + 1)/p(n)? which are compli-

cated in calculation. Consequently, we shall study the asymptotic growth of the quotient
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p(n — 1)p(n + 1)/p(n)* up to n?, stated in Theorem 1.3 as a specific example which
presents computing process. This in turn helps for a further study of certain quotients
stated in Theorems 1.6 and 1.9. A host of inequalities for overpartition function, see
Corollaries 1.4-1.11, appear as a special case of the theorems, similar to the partition
ones as discussed before. The primary objective of this paper is to exploit the proof of
Theorem 1.2, so that one can bring in all the proofs of Corollaries 1.4-1.11 under a unique
structure, unlike the different array of structure of proofs for inequalities in context of the

partition function.

Theorem 1.2. The sequence {p(n)},>1 is asymptotically r-log-concave for any positive

integer r.

Define
_p(n—1p(n+1)

o B(n)?

Theorem 1.3. For all n > 37, we have

15 _
Sn—ﬁ<un<8n+ﬁ, (16)
where
s 1 3 32+7t 1 d 21y 1
ST SOV U S SN LT
4n3/2  n2  4rnb/? 3272 n? 43 64 ) nT/?
Corollary 1.4. [7, Theorem 1.2] {p(n)},>4 is log-concave.
Corollary 1.5. [16, Equation (1.6)] For n > 2,
p(n—1) ( m ) p(n)
— (1 > . 1.7
o) T aeR) 7 gt 1) 17)
Theorem 1.6. For alln > 27,
120 (1-1,)? 120
t, — < <tp+ —73, 1.8
B2 SR, (=t e (18)

where
; 1 m 7
" * 32 2p?

Corollary 1.7. [17, Theorem 1.7] {p(n)}n>42 is 2-log-concave.



Corollary 1.8. Forn > 52,

T2 (1 — Tp1)(1 — un+1)(1 + %—3/2) > (1—a,)% (1.9)

Theorem 1.9. For alln > 2,
120 4(1 —7,)(1 —Tpyq) - 101

n — n+ —=75, 1.10
Un TP (1 — UpTUpy1)? no/? (1.10)
where
B T 25
Un =T T Ten2

Corollary 1.10. [16, Theorem 1.2] {p(n)},>16 satisfies higher order Turdn inequality.

Corollary 1.11. Forn > 2,

s
4n3/2

(1— ﬂnﬂn+1)2<1 + ) > 41— T (1 — Tosr). (1.11)

The paper is organized as follow. Proof of Theorem 1.2 is given in Section 2, first we
obtain an error estimation of p(n) in Subsection 2.1 and then computing the asymptotic
expression of Z°p(n) = p(n)p(n + 2)/p(n + 1)? by studying the bounds for the ratio
p(n 4+ 1)/p(n) in Subsection 2.2. Proof of Theorems 1.3, 1.6, 1.9 and Corollaries 1.4-1.11

is given in Section 3.

2 Proof of Theorem 1.2

In this section, we utilize the Rademacher-type convergent series and the error estimation

given by Engel to derive an estimation for p(n). In view of (1.4), p(n) can be written as

p(n) = T(n) + R(n), (2.1)
where
Ty = 4 (1- LY i
)= 5 (1 7 ) 22)
Bin) — - R ) .
R(n) o (1+ ﬁ(n)) + Rs(n, 3). (2.3)
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2.1 Error estimation of p(n)

To obtain the error estimation of p(n), we need to introduce the following lemma.

Lemma 2.1. For any integer m > 1, there exists a real number

No(m) 1, ifm =1,
m) =
0 2mlogm — mloglogm, ifm > 2,

such that

e <1,  for x> Ny(m).

Proof. For m = 1, it is immediate that Ny(m) = 1. For m > 2, rewrite the inequality

e < las f(x) :=x—mlogx > 0. Now f(x) is strictly increasing for x > m. In order

to show f(x) > 0 for > Ny(m), first we show that Ny(m) > m and then it is enough to

show f(Ny(m)) > 0. To prove Ny(m) > m, it is equivalent to show m? > e.logm which

holds for m > 2. Next, we observe that

log 1
f(NO(m)) >0« logm > 10g2 —+ 210g10gm + log(l . w)
2logm
log 1
For m = 3, 10g<1 - w) < 0 and hence, it is sufficient to prove
2logm

logm > log2 + 2loglogm < m > 2 (logm)?,

which holds for m > 14. Therefore, f(No(m)) > 0 for all m > 14 and we conclude the

proof by checking numerically that f(No(m)) > 0 for 2 <m < 13.

With the aid of Lemma 2.1, we obtain the following conclusion.

Theorem 2.2. For any integer m > 2, there exist an integer N1(m) with

N;(m) = max {184, iNg(m)} :

472

such that
R 3 m+1 R .
ml<(3) Ao

where , = R(n)/T(n).



Proof. By (2.2) and (2.3), we have

@\n <e 2“§") (fl(n) + El(n)> ) (2 4)
where
S pn)+1 _aam ~ 5 1
T = — , R :4 3 —
) ) —1° ) Aln) - 1
From (2.4), it follows that
- = 3
T)(184) + Ry (184) < 3.
Therefore,
3 a(n
| < 56_2?5 ), for n > 184.

According to Lemma 2.1, there exists the integer No(m) such that for 2fi(n) > No(m)

s (5) Ai(n) ™.

On the other side,
Therefore, when
we have

which completes the proof. |

2.2 Bounds for the ratio p(n + 1)/p(n)

In order to obtain an estimation of p(n 4 1)/p(n), we need the following lower and upper

bounds for T'(n + 1)/ (n).



Lemma 2.3. Let v(n) = u(n)(u1(n) — 1) and

’

) = 0(122)#%)-2’2 a0 = (/2 ))|=

m' + 1

3

2(m’+1)ﬁ(n)—2(m’+l)

Y

i

fiz(n) = (_:2;/2) T i(n) 7%, Ea(n) = '(&3121) a2 D f(p) ~20m'+1)
w1 = (o) — &) — =) St ™
k=0
1 m
Pa(n) = (fir(m) + E1(n) = = ) | D 7ln) ™ + 20(n) " |
<“ ] u(n)> (Z“ 2 )
then
Tr+1) o~ ~ PO "L D(n)k
(f(n) ) v1(n) (fia(n) — &(n)) (1 — f(n)ér(n)) kZ:O (k') :
and
I'(n = o(n) . D(n)" !
% < Do(n) (ia(n) + Ea(n)) (1 + 20(n)7: (n)) (kzzo <k!> L (;)H)!) 2.6

where T(n) is defined as in (2.2).

Proof. By (2.2), we have

o~

Tatl) _pnt1)—1 50’ aern-pw

~

T(n) p(n) =1 p(n+1)°

Now we consider the above ratio term by term. For the first factor, we have

~ p(n+1) 1

pn+1)—1 _ TG~ aw
~ _ - _ 1 .
ji(n) =1 L)

By Taylor’s Theorem, we have

which implies that

S < (1= =) < YA 4 2,

0 H



Noting that

i(n+1) = () <1+ﬁ”2 )

For any integer m, let m’ = |§]. Since

(1+502) - i (1) =e (02)) () w0,

where 0 < £ < A(n . We have

N N pn+1) R

fi(n) — &1(n) < ———= < (n) + & (n).

fi(n)
Combining (2.8) and (2.9), we deduce that
) -1
N _ pa(n+1) -5

Since

o

(2.9)

(2.10)

1+ T) S (V= (20 () e

k=0

where 0 < £ < A( . We have

ﬁg(n) — 52(n) < ﬁﬁL)g < i

For the last factor, using (2.9), then

P —FE(R) - A+ —R() _ P)+AR)E (n)

Evidently, for 0 < x < %,

e >1—u, e’ <1+2
and for z > 0 . . "
¥ " o x™
D ey

(2.11)



so that

(2.12)

and

m

R0 (1 4 9i(n)E (n) (Z 7" gt LWH) e

kI (m+1)!

Applying the estimates (2.10), (2.11), (2.12) and (2.13) to (2.7), we reach (2.5) and (2.6).
This completes the proof. |

Theorem 2.4. For any positive integer m, there exist integer N, real numbers a;, and
C1,Cy > 0 such that forn > N

m

N afiln) ™ — Cufiln) ™ < % < afitn) 4 Coi(n) ™ (2.14)

Proof. By (2.1) and Theorem 2.2, for any m > 2 there exists the integer N1(m) such that

pn)/Tn) — 1] < (—) Am)™, Vi > Ny(m).

T(n) (1 - (g)w ﬁ(n)—m> < B(n) < T(n) (1 + (;)mﬂ ﬁ(n)—m> |

Since fi(n) is a increasing function of n, we derive that

We have

)" )

)" )

T+ )1- ()" A ™" _pnt1) Tt 1)1+(
Tn) 1+ "™ )  bn) T(n) 1—(

N [N

We find that for 0 < A\ < 1/3,

14+ A 1—A
— <1 — >1-2)\
1_)\< + 3\ and 1—|-)\> A
According to
(é)m-i-l
0< =2 < 1/3,
iy <

10



we have that for all n > Ny(m)

T(n+1) . Lgmoymy o P+ 1) T(n+1)
Ty LA PR < ToRsT < =R

(1+6-2"0(n)™™). (2.15)

By Lemma 2.3, we can see that T(n + 1)/T(n) is bounded by a pair of polynomials in
7i(n)~! whose difference is a polynomials in 7i(n)~! with degree at least m + 1. Combining

(2.15) and lim,,_, 1o fi(n) = 400, we have (2.14). This completes the proof. |

For any positive integer m, we further show that we can give the explicit numbers of
these parameters. In this paper, we follow the Mathematica package of Hou and Zhang [10)]

to compute these parameters. For example, we compute that for n > 66

~ 160 p(n+1) o 873
k k
— = < E -
k=0 k=0
where
4 2 2 w 2 5mt 78 2 5mt 36 8
~ -+ = T o2 T T4 om STy T
ak,u(n)k—l-q- T + 28+2 A83 8 4 2 4_ i 384
— 2n(n) — p(n) 1i(n) 1i(n)

This depends on an algorithm, so we give a specific example to present the calculating

process in Section 3.

The following lemma given by Hou and Zhang [11] plays an important role in the proof
of Theorem 1.2.

Lemma 2.5. Let {a,},>0 be a positive sequence such that #*a, = anan42/a2., has the

following asymptotic expression

c c
%2an:1+——|—~-~—|—0<—>, n — 0o,
ne nf

where 0 < a < . If ¢ <0 and o < 2, then {an}n>0 is asymptotically [3/a]-log-concave.

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Based on (2.14), we consider the bound of fi(n + 1)™" and
1/h(fi(n)~1), where h(fi(n)~') is a polynomial in fi(n)~* with constant term 1.

Let ¢ denote the tail term of h(fi(n)~") — 1. If ¢ > 0, there exists a positive integer N
such that

h(ji(n)™') —1>0, Vn>N.

11



By Taylor’s Theorem, we have

1 1
1—)\—|—)\2_..._|_ _1m)\m_)\m+1< _ _ _
- hi(n)=Y) 1+ (h(a(n)~1) —1)
T = A+ A2 — o (=)Ao N

where A = h(fi(n)™') — 1. If ¢ < 0, there exists a positive integer N such that
N 1
0<1-h(ji(n)™) < 1 VYn > N.

So

1 1
h(i(n)=) 1= (1= h(fi(n)™))
<THA+FAN + AT 20

LA+ N+ AT A <

where A = 1 — h(u(n)™1).

We now consider the bound of fi(n + 1)~". It is easy to get that

Then we can derive the bounds of (%) ina way similar to the estimation of pntl) %"(:)1),

thus get an estimation of fi(n +1)7".

Based on the above estimations, we compute the asymptotic expression of u, :=
p(n—1)p(n+1)
p(n)?

by Mathematica, for any positive integer m,

T =1 ™ 1
U=t T oG )

By Lemma 2.5, we complete the proof. 1

3 Proof of Theorems 1.3, 1.6, 1.9 and Corollary 1.4-
1.11

In Section 2, we prove the asymptotic r-log-concavity for the overpartition function. In

this section, we study the 2-log-concavity as an example, stated in Corollary 1.7. It’s

12



worth noting that we can derive 3-log-concavity (or others) in the same way. But it could
be more difficult with » becoming larger. We also prove the conclusions what Theorem

1.2 brings.

The key idea behind the proof of Theorem 1.3 is lying in a detail analysis of the
Theorem 2.4 by exploiting the Equations (2.7) and (2.15). More specifically, we shall
proceed for a detail inquiry of the exact asymptotics for each of the factor present in
f(n +1)/ f(n) explicitly by studying the Taylor expansion of the form >~ am(v/n)™™
upto order 7 and bounding the error term. This will set up a stage for the proof of

Theorem 1.6 and 1.9.

Proof of Theorem 1.3. We recall the Equation (2.7):

o~

Ttl) A+ -1 [n)°  seen-amw

~

T(n) p(n) =1 p(n+1)°

By Taylor’s theorem, we get

Hrx D)L 0+ 0(L).

PRV SO SRS SR A INVAE BN SO SN NS SRS B
=145t ot (5 a)m (o 5n) e T (5 T o~ 5) 8

+( 1 1 . 1) 1
2m5 83 16w/ n7/?’

) 3 fi(n)? @) 3
- < = < —, 3.2
S+ (n) nA ,u(n—l— 1)3 S+ (TL) + n? ( )
where
3 15 35
T

(3,0)

sP0(n) <A+ 1) = filn) < sV () + (3.3)
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where
(3,0) T s T 5%

s ) =g g T e T T
: 1
Now, expanding Y and truncate the infinite series at the order —7 and bound the
n
error term that states for n > 2,
nd 4 3 1 $3:0) 0, 3 1
e?/ <1+ﬁ and si)(n)—ﬁ<e+ ( )<si)(n)+ﬁ, (3.4)
where
7 1 \m
() _ () (_)
St (n) mzz:os-l-,m \/ﬁ
with
2 2 2.2
3 _ @ _T 3 _ @ _ T —=6) g _m(r —24)
S40 = 17 Sya1 =™ 57 Sy = §7 Sy3 = Tv Sy4— Tv
@3  m(mt— 607 + 240) 3  m(r" —1207% 4 1800)
S — S =
i 3840 PoHS 46080 ’
(B _ 7(m8 — 2107 + 756072 — 25200)
i 645120 '
From (3.3) and (3.4), we get
(3) 1 fi(n+1)—fi(n (3) 1 4
<s+ (n)—ﬁ><e“( )”()<<SJr (n)+ﬁ)<1+m>. (3.5)
It can be easily checked that for n > 1,
4 .28 1 6 - 28 1
l——>1-— d 1+ — <1+ —. 3.6
O T T AT 0

Hence, by (3.1), (3.2), (3.5), (3.6) and using (2.15) with m = 8, we obtain for all n > 184,

p(n+1)
Li(n) < o) < U, (n), (3.7)

where

nA A
1 2 2 3 3 1 1
Li(m) = (sPm) = ) (&) = ) (P = ) (1= ).
In the similar way stated before, we obtain for n > 184,
p(n—1)
L (n) < ————=<U_(n), 3.8
(n) < Poesd < U_(n) 33
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where

1 1 2 3 3 1
U_(n)= (s(_)(n) + ﬁ) (s_)(n) + ﬁ) (s(_)(n) + ﬁ) (1 + 4>,
1 1 2 3 12
L_(n)= (s(_)(n) — ﬁ) (s_)(n)) (s(_)(n)> (1 — ﬁ) :
with
1) B 1 1 ( 1 1) 1 ( 1 1 ) 1
S e (N Tt B (N H P
s—(n) o2n  2mn3/? 272 + 8/ n? 2m3 + 8/ nd/2
(1+1+1>1 (1+1+1)1
16 274 872/ n3 2m5 - 8w3 16w/ n7/?’
Oy =14 o 4 15 4 3
S =1+ o 4ot o
7 1 \m
(3) (3)
S_ (n) = Z s—,m(—) )
m=0 \/ﬁ
along with
2 2
3 3 T 3 T 3 (7 +6)
8(_7)0 —_— 17 S(—,)l pr— —57 S(_’)2 pr— g’ 8(_7)3 o _T7 8_74 =
S8 _ _ m(r! + 607 4 240) () _ 7 (m* + 1207 + 1800)
=5 3840 rT8 46080 ’
S8 _ _7r(7r6 + 2107 4 756072 + 25200)
- 645120 '

Now by (3.7) and (3.8), it follows that for n > 184,
Li(n)-L_(n) <u(n) <Ug(n)- -U_(n).
It can be readily checked that for n > 2,

U, (n)-U_(n) < s(n) + % and L.(n)-L_(n) > s(n) — =

3) 7'(‘2(7'('2 + 24)
384

(3.9)

This finishes the proof of (1.6) for n > 184. For the rest 37 < n < 183, one can check

numerically in Mathematica.

Proof of Corollary 1.4. It is easy to check that s, + % < 1 for n > 5 and therefore from

(1.6), can conclude that @, < 1 for n > 37 which is equivalent to say that {p(n)},>37 is

log-concave. For 4 < n < 37, we did numerical checking in Mathematica.
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Proof of Corollary 1.5. Note that for n > 5

15 ™
(s 2) (L4 ) > 1

and therefore from (1.6), it follows that for n > 37

which is equivalent to (1.7). For 2 < n < 37, we did numerical checking in Mathematica.

|
Define
U, = s, + % and L, == s, — %. (3.10)
Proof of Theorem 1.6. Using (1.6) from Theorem 1.3, it follows that for n > 37,
-0 a-wp (1-L.)° s

< .
Ug(l - Ln—l)(l - Ln-i-l) ﬂ%(l - ﬂn—l)(l - ﬂn-i-l) L’?L(]‘ - Un—l)(l - Un-i-l)

Moreover, it can be readily checked that for n > 29,

(- Ln)” <+ 2
L%(l - Un_1>(1 - Un+1) " n5/2’
(1—U,)? 120

th — —=.
U201 — Ly ) (1= Lny) " il

We conclude the proof of (1.8) by checking numerically for 27 < n < 36 in Mathematica.
|

Proof of Corollary 1.7. 1t is equivalent to show that for n > 42

(1 B ﬂn)z

ﬂ%(l - ﬂn—l)(l - ﬂn-i-l)

From the fact that for all n > 99,

> 1.

120

and by (1.8), the proof is finished after the numerical verification for 42 < n < 98 in
Mathematica. |

16



Proof of Corollary 1.8. Since for all n > 1176,

120 T

ot —5 <1+ 5o

By (1.8), we conclude the proof. For the rest, we can check numerically (1.9) for 52 <
n < 1175 in Mathematica. |

Proof of Theorem 1.9. Following the definition given before and by (1.6) of Theorem 1.3,
it follows that for n > 37,

A1 =Un)(A =Unp1) A0 =) = TUns1) 41— Ly)(1 = Lyy1)
(1—L,L,1)? (1 — TpUpyq)? (1 —=U,Upi1)?

(3.12)

It is easy to observe that for n > 99,

41—-L —
( n)(l n+1) <, + 101’
(1= UpUpir)? o2
4(1 - Un)(l - Un-i—l) > 120
Uy — ——=.
(1= LyLosy)? no/?

We conclude the proof of (1.10) by checking numerically for 2 < n < 98 in Mathematica.
|

120
Proof of Corollary 1.10. We observe that v, — 75 > 1 for all n > 180 and hence by
n

(1.10), it follows immediately that {p(n)},>1s0 satisfies higher order Turdn inequality and
for 16 < n < 179, we verified numerically in Mathematica. ]

101
Proof of Corollary 1.11. It is straightforward to check that v, + — < 1+ T for all
ns/2 4n3/2

n > 4179 in (1.10). To finish the proof of (1.11), it remains to verify for 2 < n < 4178,

which was done by numerical verification in Mathematica. |
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