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Abstract. Let p(n) denote the overpartition function. In this paper, we study the

asymptotic higher order log-concavity property of the overpatition function in a similar

framework done by Hou and Zhang for the partition function. This will enable us to

move on further in order to prove log-concavity of overpartitions, explicitly by studying

the asymptotic expansion of the quotient p(n − 1)p(n + 1)/p(n)2 upto a certain order

so that one can finally ends up with the phenomena of 2-log-concavity and higher order

Turán property of p(n) by following a sort of unified approach.
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1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose

sum is n. Let p(n) denote the number of partitions of n. Recall that a sequence {an}n≥0

is called log-concave if

a2n − an+1an−1 ≥ 0, n ≥ 1.

Moreover, this sequence is said to be asymptotically r-log-concave if there exists N such

that

L̂ {an}n≥N , L̂
2{an}n≥N , . . . , L̂

r{an}n≥N (1.1)

are all non-negative sequences, where

L̂ {an}n≥0 = {a2n+1 − anan+2}n≥0 and L̂
k{an}n≥0 = L̂

(
L̂

k−1{an}n≥0

)
.

Based on the Hardy-Ramanujan-Rademacher formula [1, 8, 9, 18] and the error esti-

mation given by Lehmer [13,14], DeSalvo and Pak [6] showed that the partition function

p(n) is log-concave for all n > 25, conjectured by Chen [2]. Consequently, Chen, Wang

and Xie proved the DeSalvo-Pak conjecture that states

Theorem 1.1 (Conjecture 1.3, [4]). For n ≥ 45, we have

p(n− 1)

p(n)

(
1 +

π√
24n3/2

)
>

p(n)

p(n+ 1)
.

Recently, Chen, Jia and Wang [3] proceed further to show that {p(n)}n≥95 satisfies the

higher order Turán inequality and formulate a conjecture [3, Conjecture 1.2] in somewhat

similar to Theorem 1.1, settled by Larson and Wagner [15, Theorem 1.2]. What’s more,

Hou and Zhang [10] proved the asymptotic r-log-concavity of p(n) and as a consequence

they showed {p(n)}n≥221 is 2-log-concave, whereas an alternative approach through study-

ing determinant of certain class of matrix can be found in [12].

The overpartition function also reflects the similar log-behavior. Recall an overparti-

tion [5] of a nonnegative integer n is a partition of n where the first occurrence of each

distinct part may be overlined. Let p(n) denote the number of overpartitions of n. Zuker-

mann [21] gave a formula for the overpartition function, which is considered by Sills [19]
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as a Rademacher-type convergent series

p(n) =
1

2π

∞∑

k=1
2∤k

√
k

k∑

h=0
(h,k)=1

ω(h, k)2

ω(2h, k)
e−

2πinh
k

d

dn

(
sinh π

√
n

k√
n

)
, (1.2)

where

ω(h, k) = exp

(
πi

k−1∑

r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

))

for positive integers h and k.

Let µ̂(n) = π
√
n. From this Rademacher-type series (1.2), Engel [7] provided an error

term for the overpartition function

p(n) =
1

2π

N∑

k=1
2∤k

√
k

k∑

h=0
(h,k)=1

ω(h, k)2

ω(2h, k)
e−

2πinh
k

d

dn

(
sinh µ̂(n)

k√
n

)
+R2(n,N),

where

|R2(n,N)| ≤ N
5
2

nµ̂(n)
sinh

(
µ̂(n)

N

)
. (1.3)

In particular, when N = 3, we have

p(n) =
1

8n

[(
1 +

1

µ̂(n)

)
e−µ̂(n) +

(
1− 1

µ̂(n)

)
eµ̂(n)

]
+R2(n, 3), (1.4)

where

|R2(n, 3)| ≤
3

5
2

nµ̂(n)
sinh

(
µ̂(n)

3

)
≤ 3

5
2 e

µ̂(n)
3

2nµ̂(n)
. (1.5)

Similar to the work done in the world of partitions, Engel initiated the study of log-

concavity property of the overpartition function in his work [7]. The second author and

Liu established Theorem 1.1 in context of overpartitions in [16, Equation (1.6)]. They

also proved the higher order Turán property of p(n) for n ≥ 16 (cf. see [16, Theorem

1.2]). Following the treatment done in [12], the first author [17, Theorem 1.7] laid out a

proof of {p(n)}n≥42 is 2-log-concave.

In this paper, our main goal is to prove the asymptotic r-log-concavity for the overpar-

tition function, stated in Theorem 1.2. In the proof of Theorem 1.2, we give a bound for

p(n+ 1)/p(n) and an asymptotic expression of p(n− 1)p(n+ 1)/p(n)2 which are compli-

cated in calculation. Consequently, we shall study the asymptotic growth of the quotient
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p(n − 1)p(n + 1)/p(n)2 up to n−4, stated in Theorem 1.3 as a specific example which

presents computing process. This in turn helps for a further study of certain quotients

stated in Theorems 1.6 and 1.9. A host of inequalities for overpartition function, see

Corollaries 1.4-1.11, appear as a special case of the theorems, similar to the partition

ones as discussed before. The primary objective of this paper is to exploit the proof of

Theorem 1.2, so that one can bring in all the proofs of Corollaries 1.4-1.11 under a unique

structure, unlike the different array of structure of proofs for inequalities in context of the

partition function.

Theorem 1.2. The sequence {p(n)}n≥1 is asymptotically r-log-concave for any positive

integer r.

Define

un :=
p(n− 1)p(n + 1)

p(n)2
.

Theorem 1.3. For all n ≥ 37, we have

sn −
15

n4
< un < sn +

20

n4
, (1.6)

where

sn = 1− π

4n3/2
+

1

n2
− 3

4πn5/2
− 32 + π4

32π2

1

n3
−
( 5

4π3
+

21π

64

) 1

n7/2
.

Corollary 1.4. [7, Theorem 1.2] {p(n)}n≥4 is log-concave.

Corollary 1.5. [16, Equation (1.6)] For n ≥ 2,

p(n− 1)

p(n)

(
1 +

π

4n3/2

)
>

p(n)

p(n+ 1)
. (1.7)

Theorem 1.6. For all n ≥ 27,

tn −
120

n5/2
<

(1− un)
2

u2
n(1− un−1)(1− un+1)

< tn +
120

n5/2
, (1.8)

where

tn = 1 +
π

2n3/2
− 7

2n2
.

Corollary 1.7. [17, Theorem 1.7] {p(n)}n≥42 is 2-log-concave.
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Corollary 1.8. For n ≥ 52,

u2
n(1− un−1)(1− un+1)

(
1 +

π

2n3/2

)
> (1− un)

2. (1.9)

Theorem 1.9. For all n ≥ 2,

vn −
120

n5/2
<

4(1− un)(1− un+1)

(1− unun+1)2
< vn +

101

n5/2
, (1.10)

where

vn = 1 +
π

4n3/2
− 25

16n2
.

Corollary 1.10. [16, Theorem 1.2] {p(n)}n≥16 satisfies higher order Turán inequality.

Corollary 1.11. For n ≥ 2,

(1− unun+1)
2
(
1 +

π

4n3/2

)
> 4(1− un)(1− un+1). (1.11)

The paper is organized as follow. Proof of Theorem 1.2 is given in Section 2, first we

obtain an error estimation of p(n) in Subsection 2.1 and then computing the asymptotic

expression of R2p(n) = p(n)p(n + 2)/p(n + 1)2 by studying the bounds for the ratio

p(n+ 1)/p(n) in Subsection 2.2. Proof of Theorems 1.3, 1.6, 1.9 and Corollaries 1.4-1.11

is given in Section 3.

2 Proof of Theorem 1.2

In this section, we utilize the Rademacher-type convergent series and the error estimation

given by Engel to derive an estimation for p(n). In view of (1.4), p(n) can be written as

p(n) = T̂ (n) + R̂(n), (2.1)

where

T̂ (n) =
1

8n

(
1− 1

µ̂(n)

)
eµ̂(n), (2.2)

R̂(n) =
1

8n

(
1 +

1

µ̂(n)

)
e−µ̂(n) +R2(n, 3). (2.3)
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2.1 Error estimation of p(n)

To obtain the error estimation of p(n), we need to introduce the following lemma.

Lemma 2.1. For any integer m ≥ 1, there exists a real number

N0(m) :=

{
1, if m = 1,

2m logm−m log logm, if m ≥ 2,

such that

xme−x < 1, for x ≥ N0(m).

Proof. For m = 1, it is immediate that N0(m) = 1. For m ≥ 2, rewrite the inequality

xme−x < 1 as f(x) := x−m log x > 0. Now f(x) is strictly increasing for x > m. In order

to show f(x) > 0 for x ≥ N0(m), first we show that N0(m) > m and then it is enough to

show f(N0(m)) > 0. To prove N0(m) > m, it is equivalent to show m2 > e. logm which

holds for m ≥ 2. Next, we observe that

f(N0(m)) > 0 ⇔ logm > log 2 + 2 log logm+ log
(
1− log logm

2 logm

)

For m ≥ 3, log
(
1− log logm

2 logm

)
< 0 and hence, it is sufficient to prove

logm > log 2 + 2 log logm ⇔ m > 2 (logm)2,

which holds for m ≥ 14. Therefore, f(N0(m)) > 0 for all m ≥ 14 and we conclude the

proof by checking numerically that f(N0(m)) > 0 for 2 ≤ m ≤ 13.

With the aid of Lemma 2.1, we obtain the following conclusion.

Theorem 2.2. For any integer m ≥ 2, there exist an integer N1(m) with

N1(m) = max

{
184,

9

4π2
N2

0 (m)

}
,

such that

|ŷn| <
(
3

2

)m+1

µ̂(n)−m,

where ŷn = R̂(n)/T̂ (n).
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Proof. By (2.2) and (2.3), we have

ŷn ≤ e−
2µ̂(n)

3

(
T̂1(n) + R̂1(n)

)
, (2.4)

where

T̂1(n) =
µ̂(n) + 1

µ̂(n)− 1
e−

4µ̂(n)
3 , R̂1(n) = 4 · 3 5

2
1

µ̂(n)− 1
.

From (2.4), it follows that

T̂1(184) + R̂1(184) <
3

2
.

Therefore,

|ŷn| <
3

2
e−

2µ̂(n)
3 , for n ≥ 184.

According to Lemma 2.1, there exists the integer N0(m) such that for 2
3
µ̂(n) ≥ N0(m)

e−
2µ̂(n)

3 <

(
3

2

)m

µ̂(n)−m.

On the other side,

n
1
2 =

µ̂(n)

π
.

Therefore, when

n ≥ max

{
184,

9

4π2
N2

0 (m)

}
= N1(m),

we have

µ̂(n) >
3

2
N0(m),

which completes the proof.

2.2 Bounds for the ratio p(n+ 1)/p(n)

In order to obtain an estimation of p(n+1)/p(n), we need the following lower and upper

bounds for T̂ (n+ 1)/T̂ (n).
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Lemma 2.3. Let ν̂(n) = µ̂(n)(µ̂1(n)− 1) and

µ̂1(n) =

m′∑

k=0

(
1/2

k

)
π2kµ̂(n)−2k, ε̂1(n) =

∣∣∣∣
(

1/2

m′ + 1

)∣∣∣∣ π
2(m′+1)µ̂(n)−2(m′+1),

µ̂2(n) =

m′∑

k=0

(−3/2

k

)
π2kµ̂(n)−2k, ε̂2(n) =

∣∣∣∣
( −3/2

m′ + 1

)∣∣∣∣π
2(m′+1)µ̂(n)−2(m′+1),

ν̂1(n) =

(
µ̂1(n)− ε̂1(n)−

1

µ̂(n)

) m∑

k=0

µ̂(n)−k,

ν̂2(n) =

(
µ̂1(n) + ε̂1(n)−

1

µ̂(n)

)( m∑

k=0

µ̂(n)−k + 2µ̂(n)−m−1

)
,

then

T̂ (n+ 1)

T̂ (n)
> ν̂1(n) (µ̂2(n)− ε̂2(n)) (1− µ̂(n)ε̂1(n))

m∑

k=0

ν̂(n)k

k!
, (2.5)

and

T̂ (n+ 1)

T̂ (n)
< ν̂2(n)(µ̂2(n) + ε̂2(n))(1 + 2µ̂(n)ε̂1(n))

(
m∑

k=0

ν̂(n)k

k!
+ eν̂(n)

ν̂(n)m+1

(m+ 1)!

)
(2.6)

where T̂ (n) is defined as in (2.2).

Proof. By (2.2), we have

T̂ (n+ 1)

T̂ (n)
=

µ̂(n + 1)− 1

µ̂(n)− 1
· µ̂(n)3

µ̂(n+ 1)3
· eµ̂(n+1)−µ̂(n). (2.7)

Now we consider the above ratio term by term. For the first factor, we have

µ̂(n + 1)− 1

µ̂(n)− 1
=

µ̂(n+1)
µ̂(n)

− 1
µ̂(n)

1− 1
µ̂(n)

.

By Taylor’s Theorem, we have

(
1− 1

µ̂(n)

)−1

=
∞∑

k=0

µ̂(n)−k,

which implies that

m∑

k=0

µ̂(n)−k <

(
1− 1

µ̂(n)

)−1

<
m∑

k=0

µ̂(n)−k + 2µ̂(n)−m−1. (2.8)

8



Noting that

µ̂(n + 1) = µ̂(n)

(
1 +

π2

µ̂(n)2

) 1
2

.

For any integer m, let m′ = ⌊m
2
⌋. Since

(
1 +

π2

µ̂(n)2

) 1
2

=
m′∑

k=0

(
1/2

k

)
π2kµ̂(n)−2k +

(
1/2

m′ + 1

)(
π2

µ̂(n)2

)m′+1

(1 + ξ)
1
2
−m′−1 ,

where 0 < ξ < π2

µ̂(n)2
. We have

µ̂1(n)− ε̂1(n) <
µ̂(n+ 1)

µ̂(n)
< µ̂1(n) + ε̂1(n). (2.9)

Combining (2.8) and (2.9), we deduce that

ν̂1(n) <
µ̂(n+ 1)− 1

µ̂(n)− 1
< ν̂2(n). (2.10)

For the second factor, we have

µ̂(n)3

µ̂(n+ 1)3
=

(
1 +

π2

µ̂(n)2

)−3/2

.

Since

(
1 +

π2

µ̂(n)2

)− 3
2

=

m′∑

k=0

(−3/2

k

)
π2kµ̂(n)−2k +

( −3/2

m′ + 1

)(
π2

µ̂(n)2

)m′+1

(1 + ξ)−
3
2
−m′−1 ,

where 0 < ξ < π2

µ̂(n)2
. We have

µ̂2(n)− ε̂2(n) <
µ̂(n)3

µ̂(n+ 1)3
< µ̂2(n) + ε̂2(n). (2.11)

For the last factor, using (2.9), then

eν̂(n)−µ̂(n)ε̂1(n) < eµ̂(n+1)−µ̂(n) < eν̂(n)+µ̂(n)ε̂1(n).

Evidently, for 0 < x < 1
2
,

e−x > 1− x, ex < 1 + 2x

and for x > 0
m∑

k=0

xk

k!
< ex <

m∑

k=0

xk

k!
+ ex

xm+1

(m+ 1)!
,

9



so that

eµ̂(n+1)−µ̂(n) > (1− µ̂(n)ε̂1(n))

m∑

k=0

ν̂(n)k

k!
(2.12)

and

eµ̂(n+1)−µ̂(n) < (1 + 2µ̂(n)ε̂1(n))

(
m∑

k=0

ν̂(n)k

k!
+ eν̂(n)

ν̂(n)m+1

(m+ 1)!

)
. (2.13)

Applying the estimates (2.10), (2.11), (2.12) and (2.13) to (2.7), we reach (2.5) and (2.6).

This completes the proof.

Theorem 2.4. For any positive integer m, there exist integer N , real numbers ak and

C1, C2 > 0 such that for n ≥ N

m∑

k=0

akµ̂(n)
−k − C1µ̂(n)

−m−1 <
p(n + 1)

p(n)
<

m∑

k=0

akµ̂(n)
−k + C2µ̂(n)

−m−1. (2.14)

Proof. By (2.1) and Theorem 2.2, for any m ≥ 2 there exists the integer N1(m) such that

|p(n)/T̂ (n)− 1| <
(
3

2

)m+1

µ̂(n)−m, ∀n ≥ N1(m).

We have

T̂ (n)

(
1−

(
3

2

)m+1

µ̂(n)−m

)
< p(n) < T̂ (n)

(
1 +

(
3

2

)m+1

µ̂(n)−m

)
.

Since µ̂(n) is a increasing function of n, we derive that

T̂ (n+ 1)

T̂ (n)

1−
(
3
2

)m+1
µ̂(n)−m

1 +
(
3
2

)m+1
µ̂(n)−m

<
p(n + 1)

p(n)
<

T̂ (n+ 1)

T̂ (n)

1 +
(
3
2

)m+1
µ̂(n)−m

1−
(
3
2

)m+1
µ̂(n)−m

.

We find that for 0 < λ < 1/3,

1 + λ

1− λ
< 1 + 3λ and

1− λ

1 + λ
> 1− 2λ.

According to

0 <

(
3
2

)m+1

µ̂(n)m
< 1/3,

10



we have that for all n ≥ N1(m)

T̂ (n+ 1)

T̂ (n)

(
1− 4 · 2mµ̂(n)−m

)
<

p(n+ 1)

p(n)
<

T̂ (n+ 1)

T̂ (n)

(
1 + 6 · 2mµ̂(n)−m

)
. (2.15)

By Lemma 2.3, we can see that T̂ (n + 1)/T̂ (n) is bounded by a pair of polynomials in

µ̂(n)−1 whose difference is a polynomials in µ̂(n)−1 with degree at least m+1. Combining

(2.15) and limn→+∞ µ̂(n) = +∞, we have (2.14). This completes the proof.

For any positive integer m, we further show that we can give the explicit numbers of

these parameters. In this paper, we follow the Mathematica package of Hou and Zhang [10]

to compute these parameters. For example, we compute that for n > 66

4∑

k=0

akµ̂(n)
−k − 160

µ̂(n)5
<

p(n+ 1)

p(n)
<

4∑

k=0

akµ̂(n)
−k +

873

µ̂(n)5
,

where
4∑

k=0

akµ̂(n)
−k = 1 +

π2

2µ̂(n)
+

−π2 + π4

8

µ̂(n)2
+

π2

2
− 5π4

8
+ π6

48

µ̂(n)3
+

π2

2
+ 5π4

4
− 3π6

16
+ π8

384

µ̂(n)4
.

This depends on an algorithm, so we give a specific example to present the calculating

process in Section 3.

The following lemma given by Hou and Zhang [11] plays an important role in the proof

of Theorem 1.2.

Lemma 2.5. Let {an}n≥0 be a positive sequence such that R2an = anan+2/a
2
n+1 has the

following asymptotic expression

R
2an = 1 +

c

nα
+ · · ·+ o

( c

nβ

)
, n → ∞,

where 0 < α ≤ β. If c < 0 and α < 2, then {an}n≥0 is asymptotically [β/α]-log-concave.

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Based on (2.14), we consider the bound of µ̂(n + 1)−r and

1/h(µ̂(n)−1), where h(µ̂(n)−1) is a polynomial in µ̂(n)−1 with constant term 1.

Let c denote the tail term of h(µ̂(n)−1)− 1. If c > 0, there exists a positive integer N

such that

h(µ̂(n)−1)− 1 > 0, ∀n ≥ N.

11



By Taylor’s Theorem, we have

1− λ+ λ2 − · · ·+ (−1)mλm − λm+1 <
1

h(µ̂(n)−1)
=

1

1 + (h(µ̂(n)−1)− 1)

< 1− λ+ λ2 − · · ·+ (−1)mλm + λm+1,

where λ = h(µ̂(n)−1)− 1. If c < 0, there exists a positive integer N such that

0 < 1− h(µ̂(n)−1) <
1

2
, ∀n ≥ N.

So

1 + λ+ λ2 + · · ·+ λm + λm+1 <
1

h(µ̂(n)−1)
=

1

1− (1− h(µ̂(n)−1))

< 1 + λ+ λ2 + · · ·+ λm + 2λm+1,

where λ = 1− h(µ̂(n)−1).

We now consider the bound of µ̂(n+ 1)−r. It is easy to get that

(
µ̂(n+ 1)

µ̂(n)

)−r

=

(
1 +

π2

µ̂(n)2

)−r/2

.

Then we can derive the bounds of
(

µ̂(n+1)
µ̂(n)

)−r

in a way similar to the estimation of µ̂(n+1)
µ̂(n)

,

thus get an estimation of µ̂(n+ 1)−r.

Based on the above estimations, we compute the asymptotic expression of un :=
p(n− 1)p(n+ 1)

p(n)2
by Mathematica, for any positive integer m,

un = 1− π

4n3/2
+ · · ·+ o

(
1

nm

)
.

By Lemma 2.5, we complete the proof.

3 Proof of Theorems 1.3, 1.6, 1.9 and Corollary 1.4-

1.11

In Section 2, we prove the asymptotic r-log-concavity for the overpartition function. In

this section, we study the 2-log-concavity as an example, stated in Corollary 1.7. It’s

12



worth noting that we can derive 3-log-concavity (or others) in the same way. But it could

be more difficult with r becoming larger. We also prove the conclusions what Theorem

1.2 brings.

The key idea behind the proof of Theorem 1.3 is lying in a detail analysis of the

Theorem 2.4 by exploiting the Equations (2.7) and (2.15). More specifically, we shall

proceed for a detail inquiry of the exact asymptotics for each of the factor present in

T̂ (n+ 1)/T̂ (n) explicitly by studying the Taylor expansion of the form
∑

m≥0 am(
√
n)−m

upto order 7 and bounding the error term. This will set up a stage for the proof of

Theorem 1.6 and 1.9.

Proof of Theorem 1.3. We recall the Equation (2.7):

T̂ (n+ 1)

T̂ (n)
=

µ̂(n + 1)− 1

µ̂(n)− 1
· µ̂(n)3

µ̂(n+ 1)3
· eµ̂(n+1)−µ̂(n).

By Taylor’s theorem, we get

µ̂(n+ 1)− 1

µ̂(n)− 1
= s

(1)
+ (n) +O

( 1

n4

)
,

where

s
(1)
+ (n) = 1 +

1

2n
+

1

2πn3/2
+
( 1

2π2
− 1

8

) 1

n2
+
( 1

2π3
− 1

8π

) 1

n5/2
+
( 1

16
+

1

2π4
− 1

8π2

) 1

n3

+
( 1

2π5
− 1

8π3
+

1

16π

) 1

n7/2
.

It is easy to observe that for n ≥ 1,

s
(1)
+ (n)− 2

n4
<

µ̂(n+ 1)− 1

µ̂(n)− 1
< s

(1)
+ (n) +

2

n4
. (3.1)

Similarly, for n ≥ 1, we obtain

s
(2)
+ (n)− 3

n4
<

µ̂(n)3

µ̂(n+ 1)3
< s

(2)
+ (n) +

3

n4
, (3.2)

where

s
(2)
+ (n) = 1− 3

2n
+

15

8n2
− 35

16n3
.

For the factor eµ̂(n+1)−µ̂(n), we first estimate µ̂(n + 1)− µ̂(n) as follows; for n ≥ 1,

s
(3,0)
+ (n) < µ̂(n+ 1)− µ̂(n) < s

(3,0)
+ (n) +

3

n4
, (3.3)

13



where

s
(3,0)
+ (n) =

π

2
√
n
− π

8n3/2
+

π

16n5/2
− 5π

128n7/2
.

Now, expanding es
(3,0)
+ (n) and truncate the infinite series at the order

1

n7/2
and bound the

error term that states for n ≥ 2,

e3/n
4

< 1 +
4

n4
and s

(3)
+ (n)− 1

n4
< es

(3,0)
+ (n) < s

(3)
+ (n) +

1

n4
, (3.4)

where

s
(3)
+ (n) =

7∑

m=0

s
(3)
+,m

( 1√
n

)m

with

s
(3)
+,0 = 1, s

(3)
+,1 =

π

2
, s

(3)
+,2 =

π2

8
, s

(3)
+,3 =

π(π2 − 6)

48
, s

(3)
+,4 =

π2(π2 − 24)

384
,

s
(3)
+,5 =

π(π4 − 60π2 + 240)

3840
, s

(3)
+,6 =

π2(π4 − 120π2 + 1800)

46080
,

s
(3)
+,7 =

π(π6 − 210π4 + 7560π2 − 25200)

645120
.

From (3.3) and (3.4), we get

(
s
(3)
+ (n)− 1

n4

)
< eµ̂(n+1)−µ̂(n) <

(
s
(3)
+ (n) +

1

n4

)(
1 +

4

n4

)
. (3.5)

It can be easily checked that for n ≥ 1,

1− 4 · 28
µ̂(n)8

> 1− 1

n4
and 1 +

6 · 28
µ̂(n)8

< 1 +
1

n4
. (3.6)

Hence, by (3.1), (3.2), (3.5), (3.6) and using (2.15) with m = 8, we obtain for all n ≥ 184,

L+(n) <
p(n + 1)

p(n)
< U+(n), (3.7)

where

U+(n) =
(
s
(1)
+ (n) +

2

n4

)(
s
(2)
+ (n) +

3

n4

)(
s
(3)
+ (n) +

1

n4

)(
1 +

4

n4

)(
1 +

1

n4

)
,

L+(n) =
(
s
(1)
+ (n)− 2

n4

)(
s
(2)
+ (n)− 3

n4

)(
s
(3)
+ (n)− 1

n4

)(
1− 1

n4

)
.

In the similar way stated before, we obtain for n ≥ 184,

L−(n) <
p(n− 1)

p(n)
< U−(n), (3.8)
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where

U−(n) =
(
s
(1)
− (n) +

1

n4

)(
s
(2)
− (n) +

3

n4

)(
s
(3)
− (n) +

1

n4

)(
1 +

1

n4

)
,

L−(n) =
(
s
(1)
− (n)− 1

n4

)(
s
(2)
− (n)

)(
s
(3)
− (n)

)(
1− 1

n4

)2
,

with

s
(1)
− (n) = 1− 1

2n
− 1

2πn3/2
−
( 1

2π2
+

1

8

) 1

n2
−
( 1

2π3
+

1

8π

) 1

n5/2

−
( 1

16
+

1

2π4
+

1

8π2

) 1

n3
−
( 1

2π5
+

1

8π3
+

1

16π

) 1

n7/2
,

s
(2)
− (n) = 1 +

3

2n
+

15

8n2
+

35

16n3
,

s
(3)
− (n) =

7∑

m=0

s
(3)
−,m

( 1√
n

)m
,

along with

s
(3)
−,0 = 1, s

(3)
−,1 = −π

2
, s

(3)
−,2 =

π2

8
, s

(3)
−,3 = −π(π2 + 6)

48
, s

(3)
−,4 =

π2(π2 + 24)

384
,

s
(3)
−,5 = −π(π4 + 60π2 + 240)

3840
, s

(3)
−,6 =

π2(π4 + 120π2 + 1800)

46080
,

s
(3)
−,7 = −π(π6 + 210π4 + 7560π2 + 25200)

645120
.

Now by (3.7) and (3.8), it follows that for n ≥ 184,

L+(n) · L−(n) < u(n) < U+(n) · U−(n). (3.9)

It can be readily checked that for n ≥ 2,

U+(n) · U−(n) < s(n) +
20

n4
and L+(n) · L−(n) > s(n)− 15

n4
.

This finishes the proof of (1.6) for n ≥ 184. For the rest 37 ≤ n ≤ 183, one can check

numerically in Mathematica.

Proof of Corollary 1.4. It is easy to check that sn +
20
n4 < 1 for n ≥ 5 and therefore from

(1.6), can conclude that un < 1 for n ≥ 37 which is equivalent to say that {p(n)}n≥37 is

log-concave. For 4 ≤ n ≤ 37, we did numerical checking in Mathematica.

15



Proof of Corollary 1.5. Note that for n ≥ 5

(
sn −

15

n4

)(
1 +

π

4n3/2

)
> 1

and therefore from (1.6), it follows that for n ≥ 37

un

(
1 +

π

4n3/2

)
> 1

which is equivalent to (1.7). For 2 ≤ n ≤ 37, we did numerical checking in Mathematica.

Define

Un := sn +
20

n4
and Ln := sn −

15

n4
. (3.10)

Proof of Theorem 1.6. Using (1.6) from Theorem 1.3, it follows that for n ≥ 37,

(1− Un)
2

U2
n(1− Ln−1)(1− Ln+1)

<
(1− un)

2

u2
n(1− un−1)(1− un+1)

<
(1− Ln)

2

L2
n(1− Un−1)(1− Un+1)

. (3.11)

Moreover, it can be readily checked that for n ≥ 29,

(1− Ln)
2

L2
n(1− Un−1)(1− Un+1)

< tn +
120

n5/2
,

(1− Un)
2

U2
n(1− Ln−1)(1− Ln+1)

> tn −
120

n5/2
.

We conclude the proof of (1.8) by checking numerically for 27 ≤ n ≤ 36 in Mathematica.

Proof of Corollary 1.7. It is equivalent to show that for n ≥ 42

(1− un)
2

u2
n(1− un−1)(1− un+1)

> 1.

From the fact that for all n ≥ 99,

tn −
120

n5/2
> 1

and by (1.8), the proof is finished after the numerical verification for 42 ≤ n ≤ 98 in

Mathematica.
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Proof of Corollary 1.8. Since for all n ≥ 1176,

tn +
120

n5/2
< 1 +

π

2n3/2
.

By (1.8), we conclude the proof. For the rest, we can check numerically (1.9) for 52 ≤
n ≤ 1175 in Mathematica.

Proof of Theorem 1.9. Following the definition given before and by (1.6) of Theorem 1.3,

it follows that for n ≥ 37,

4(1− Un)(1− Un+1)

(1− LnLn+1)2
<

4(1− un)(1− un+1)

(1− unun+1)2
<

4(1− Ln)(1− Ln+1)

(1− UnUn+1)2
. (3.12)

It is easy to observe that for n ≥ 99,

4(1− Ln)(1− Ln+1)

(1− UnUn+1)2
< vn +

101

n5/2
,

4(1− Un)(1− Un+1)

(1− LnLn+1)2
> vn −

120

n5/2
.

We conclude the proof of (1.10) by checking numerically for 2 ≤ n ≤ 98 in Mathematica.

Proof of Corollary 1.10. We observe that vn − 120

n5/2
> 1 for all n ≥ 180 and hence by

(1.10), it follows immediately that {p(n)}n≥180 satisfies higher order Turán inequality and

for 16 ≤ n ≤ 179, we verified numerically in Mathematica.

Proof of Corollary 1.11. It is straightforward to check that vn +
101

n5/2
< 1 +

π

4n3/2
for all

n ≥ 4179 in (1.10). To finish the proof of (1.11), it remains to verify for 2 ≤ n ≤ 4178,

which was done by numerical verification in Mathematica.
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