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2-log-concavity

1. Introduction

A sequence (a,)n>0 is called log-concave if it satisfies a2 > an_1a,41 for all n > 1.
The binomial coefficients, the FEulerian numbers, the Stirling numbers are well known
combinatorial sequences which are log-concave. For a more detailed exposition on log-
concavity of sequences, we refer the reader to [2,22]. The study of log-concavity property
of sequences shares an intimate connection with zeros of polynomials. In this regard,
Newton proved the following theorem.
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Theorem 1.1. [11, p. 52] Let
P(x) = Z (n) a;x
=0 M

be a (real) polynomial with real zeros. Then for all1 <j<mn-—1

i+ 1\ /n—j+1
G? > aj_10j41 (] - )( J - ),
J n-—7

and in particular, (ax)o<k<n 5 log-concave.

Now we shall look at the log-concavity property of a sequence (ay, ), >0 from two differ-
ent directions, namely, real rootedness of Jensen polynomial associated with the sequence
and total positivity of the sequence. The Jensen polynomial of degree d associated with
a sequence (a,)n>o is defined by

JEn (z i() a(n+ j)z

J=

It is easy to observe that J2"(x) (resp. J>(x)) has all real roots if and only if (a5 )n>0
is log-concave (resp. satisfies the higher order Turén inequalities'). Before we introduce
the theory of total positivity of a sequence, let us describe the theory of total positivity
for matrices. A matrix A with entries in real number is called totally positive of order r
if the determinant of each of its minors of order t is nonnegative for all 1 <t < r and
the matrix is called totally positive if it is totally positive for all » > 1. For a sequence
(@n)n>0, define the associated Toeplitz matrix 7' = (75 ;)i j>0 = (ai—j)i,;j>0 with ag =0
for £ < 0, that is,

Qo
a; ag
7= a a

az a2 aip aop

Consequently, (a,)n>0 is called a totally positive sequence of order r (or Pélya frequency
sequence of order r) if its associated Toeplitz matrix is totally positive of order r. Note
that, a totally positive sequence of order 2 is log-concave. Moreover, (an),>0 is called
totally positive if it is totally positive of order r for any r» > 1. We end this short
discussing by stating a more general version of Newton’s result (cf. Theorem 1.1) due to
Aissen et al. [1].

! (an)n>o satisfies the higher order Turdn inequalities if disc, (J2™(z)) > 0.
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Theorem 1.2. Let P(x) = Z?:o ajmj be a real polynomial with nonnegative coefficients.
Then P(x) has only real zeros if and only if its coefficient sequence is a Pdlya frequency
sequence.

Consider the operator £ defined on a sequence a := (a,),>0 by L(a) = (a2 —

(n—1Gn+1)n>1. Hence the sequence (ay,)n>o is log-concave if and only if £(a) is a non-
negative sequence. The sequence (a,),>0 is called 2-log-concave if £7(a) is a nonnegative
sequence for all 0 < j < 2. The binomial coefficients are 2-log-concave. Note that, for the
Jensen polynomial of degree 4 associated with a sequence (a,)n>0, the corresponding
quartic binary form

has two invariants and one of them is

Io(n) i= —AnGny2Gnsa + a3 5+ ana? 3+ a2, 1ania — 2001100 120013
+ + +

Nonnegativity of I,(n) implies that (an)n>0 is 2-log-concave. From the framework of
total positivity, it is immediate that (an)n>0 is 2-log-concave if and only if it is totally
positive of order 3. The notion of 2-log-concavity of a sequence can be derived from Pélya
and Schur’s work [20] on multiplier sequence. For a more detailed study in this direction,
we refer the reader to [7].

A partition of a positive integer n is a nonincreasing sequence (A1, Az,...,A;) of
positive integers with A\; + Ao +--- 4+ A, = n and p(n) denotes the number of partitions
of n. The systematic study of partitions dates back to Euler. Rigorous analytic approach
comes into play in the theory of partitions since the foundational work of Hardy and
Ramanujan [12]. Hardy and Ramanujan employed the celebrated circle method in order
to explicitly describe the asymptotics of p(n), specifically, given by

1 ﬂ, 2n

p(n) ~ 4\/§n 3 (n— 00). (1.1)

Later Rademacher [21] refined the formulation of Hardy and Ramanujan to set a con-
vergent series expression for p(n) and an error bound was given due to Lehmer [16].
Log-concavity of p(n) has been studied independently by Nicolas [19] and by DeSalvo
and Pak [8] by confirming a conjecture of Chen [3]. Since then the study on inequalities
of the partition function from combinatorial analysis perspective has been documented
in the works of Chen et al. [4], [5]. More generally, Griffin, Ono, Rolen, and Zagier [10]
proved that Jg’"(m) has all real roots for sufficiently large n. Later Larson and Wagner
[15] provided an estimate for the cut off N(d) such that for all n > N(d), J"(x) has
all real roots. Jia and Wang [14] studied determinantal inequalities for p(n) arising from
the theory of total positivity.
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Theorem 1.3 (Theorem 1.5, [14]). Let p(n) denote the partition function and

p(n)  pn+1) p(n+2)
Ms(p(n)) = | p(n—1)  p(n)  p(n+1) (1.2)
p(n—2) pn—1)  p(n)

Then for all n > 222, we have
det M5(p(n)) > 0. (1.3)

As a corollary of Theorem 1.3, they proved 2 log-concavity of p(n). Independently,
Hou and Zhang [13] proved that (p(n)),>2920 is 2-log-concave.

Corteel and Lovejoy [6] initiated a broad generalization of partitions, called over-
partition that offers a panorama of combinatorial perspective of basic hypergeometric
series. An overpartition of n is a nonincreasing sequence of natural numbers whose
sum is n in which the first occurrence (equivalently, the final occurrence) of a num-
ber may be overlined and p(n) denotes the number of overpartitions of n. For con-
venience, define p(0) = 1. For example, there are 8 overpartitions of 3 enumerated by
3,3,24+1,2+1,2+1,2+1,1+1+1, T+1+1. Similar to the Hardy-Ramanujan-Rademacher
type formula for p(n), Zuckerman [25] showed that

%) k—1 s m/n

1 w(h,, k) 21\'7,71}1 d Slnh i
= — k —_— 1.4
271';1\[ hZ:o w(2h,k dn ( NG ’ (14)

e (hyk)=1

{12

for positive integers (h, k) € Z>¢ x Z>1. In order to prove log-concavity of H(n), Engel
[9] provided an error term for p(n) as follows:

where

N k—1 . T/n
_ 1 W(h,k’)Q _ 2minh d SIHhT
= S VR Y e L (T ke N,
) =33V Y e () R, 09)
Uk (hk)=1
where
|R2(n, N)| < —3s1nh(7r\/—) (1.6)
n3/2

Along the lines of works of Chen et al. in context of the partition function, somewhat
similar research works on inequalities for H(n) has already been recorded in [23] and [17].
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In this paper, our primary goal is to prove 2-log-concavity of p(n). In order to prove
this, we set up a similar device as that of Theorem 1.3 but in context of overpartitions.
In particular, we shall prove the following result.

Theorem 1.4. Let p(n) denote the overpartition function. Then for all n > 42, we have

p(n)  p(n+1)
p(n—1)  p(n) (n+1)| >0. (1.7)
p(n—=2) p(n—1)  p(n)

Remark 1.5. Two independent proofs of Theorem 1.4 can be found in [24, Theorem 5.3]
and [18, Corollary 1.7].

Theorem 1.4 straight away implies the 2-log-concavity of p(n), precisely

Theorem 1.6. For all n > 42,

((n)* —p(n—1)p(n+1))* = (p(n—1)>~p(n—2)p(n)) (p(n+1)*>—p(n)p(n+2)) > 0. (1.8)

We organize this paper in the following format. In Section 2, we set up the premise first
by introducing an inequality for p(n) and reformulate Theorem 1.4, given in Theorem 2.5,
followed by the documentation of Theorem 2.6 and 2.7. This foundation enables us to
provide the proof of Theorem 2.5 in Section 3. In the end, we discuss how one can guess
an infinite number of inequalities for the overpartition function by considering totally
positive matrix of order k£ with k € Z>5, described in Problem 4.1.

2. Inequality for p(n) and its consequences

The principal aim of this section is to construct the machinery in order to prove
Theorem 1.4, the primary objective of this paper. To some extent, we follow a simi-
lar line of argument as described in the work of Jia and Wang [14]. We will see that
the Theorem 2.6 and 2.7 are the key tools to prove Theorem 2.5, a reprise version of
= % by showing its
upper and lower bound g(n) and f(n) respectively (cf. Theorem 2.3), derived from the

Theorem 1.4. First we need to estimate the quotient u,

inequality By (n) < p(n) < Bz(n) with Bj(n), Ba(n) given in (2.1) and as an immediate
consequence, we get the inequality (2.15) for s(n) = tup—1 4+ Up+1 — Un—1Un41 as follows;
for all n > 3,

s1(n) < s(n) < s2(n),
where s1(n) and sy(n) are combinations of f(n + 1), f(n —1),g(n + 1), and g(n — 1).

Therefore, to prove Theorem 2.6 and 2.7, the principal idea behind it is to approximate
sa(n) (cf. (2.14)) and s1(n)g(n)? — 2g(n) + 1 (cf. (2.45)) by rational functions in y (=
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y(n) = my/n) (cf. (2.40) and (2.58)). In order to arrive at such estimation to ease the
computation, it is necessary to bound the error term T'(n) by p(n)~2™ for some m € VAS
because our estimation turns out to get a suitable polynomial approximation of r, x, z
and w (cf. (2.18)) in terms of y. In our case, it is sufficient to consider m = 3, as stated
in Lemma 2.1.

We denote p(n) = my/n and define

et 1 1
) == (1= 56 ~ )
et (n) 1 1
B = 1-— . 2.1
and Bolm) =5, ( un) u(n)G> ®1)
Lemma 2.1. For all n > 94, we have
B1(n) < p(n) < Ba(n). (2.2)
Proof. From [17, eqn. (3.5)], it follows that
P RO 2.3
pn) = 5= (1= o+ T) (2.3)
where
~ - ]. 72/11(”) Sn

and Ry(n,2) is the error term of (1.4), given in (1.6). By [17, eqn. (3.6)], we have
IT(n)| < 10 e~ 2™, (2.4)
Now,

10 e 20 <

for all n > 275. 2.5

pu(n)° 29
(2.3)-(2.5) altogether imply (2.2) for all n > 275. We finish the proof by confirming (2.2)
by checking numerically in Mathematica for all 94 <n < 274. O

Remark 2.2. We note that the upper bound of the absolute value of error term T(n) can
be improved by considering a more generalized version of (2.5) of the following form:
there exists N(m) € Z>1, such that for all n > N(m),

10 e 2# < (2.6)

p(n)m



G. Mukherjee / Advances in Applied Mathematics 152 (2024) 102598 7

Let
p(n—1)p 1
up = BB+ ) 21)
p(n)
and consequently, denote
8(n) = Un—1 + Upt1 — Un—1Un+1. (2.8)

Following the notations as given in [14], we set

r=pn—=2), z=pn-1), y=pn), z=pn+1), w=pn+2), (2.9)
and

6 _ 25 — 1)yl6(z0 — 25 — 1)

f(n) _ eac—2y+z (CL‘

28(y8 — b + 1)228 ’ (2.10)
g(n) = e=-2r+= 2 _;5(; 1_>g§56(_z 61)_2 ZZ; o (2.11)
As an immediate consequence of Lemma 2.1, we have the following theorem.
Theorem 2.3. For all n > 94,
f(n) <u, < g(n). (2.12)
We begin with the following setup. Define
sin)=fn—=1)+ f(n+1) —g(n —1)g(n+1), (2.13)
and
s2(n)=gn—1)+g(n+1)— f(n—1)f(n+1). (2.14)
As a corollary of Theorem 2.3, we arrive at the following inequality for s(n).
Corollary 2.4. For n > 94, we have
s1(n) < s(n) < sa2(n). (2.15)

Now we interpret the Theorem 1.4 in terms of a polynomial expression in s(n) and
uyn (cf. (2.7) and (2.8)), given as follows

Theorem 2.5. For all n > 42, we have

s(n)u? — 2u, +1>0. (2.16)
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To prove (2.16), first it is required to estimate upper bound of s(n), given by studying
s2(n), as follows;

Theorem 2.6. For all n > 3, we have
sa2(n) < 1. (2.17)
Proof. For n > 3, rewriting (2.9), we have
r=\y2—2r2, z=\y?—n2, 2=+ +n2, w=\y?+2n2 (2.18)

Expanding r, z, z and w in terms of y, it follows that

2 d 76 58 7pl0 21712 33714 1
rT=Y T T T 53 T 55 T T 9 1 13"’_O<T5)7
y 2y 2y 8y 8y 16y 16y Yy
2 d 76 58 710 21712 33714 +O( 1 )
= — — — — _ _ _ _ -
4 2y 8y3 16y5  128y7  256y° 1024yl 2048y!3 Y15/’
n 2 d n 76 58 n 710 21712 n 33714 n O( 1 )
z = — - — - —
4 2y 8y3  16y5  128y7  256y° 1024yl = 2048y!3 Y15/’

2 7 76 58 7pl0 21712 33714 1
+ +0( )

PR A R TOR R Ty )
It can be easily verified that for all n > 59,
ry <r <, (2.19)
1 < x < Ta, (2.20)
21 < z < 29, (2.21)
and
wy < w < wa, (2.22)
with
72 7 76 58 w0 21712 34pl4
=y — — — — = 2T _ _
VoY T T8 T o8 T sy 8y 16y 16y
2 7 76 58 7m0 21712 33714
o — ) — — — — 2T _ _
2TVT T8 T 25 T 8yt 8y 16y 16y
72 d 76 58 710 21712 34714
=Y — — — —— — _ _ _ _
1=y 2y  Sy3  16y>  128y7 25699 1024yl 2048y!3’
2 d 76 58 710 21712 33714
Ty=Y ==

2y  8y3  16y° 128y7  256y°  1024yll  2048y'3’
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n w2 7 n 76 58 n 710 21712
z1 = — - — _
LoV o) T8y T 16y 128y | 25640 1024yl
n 72 7 n 76 58 n 710 21712 n 33714
Zg = —_ - — _
2= 2y 8y 16y5  128y7T  256y° 1024yl 2048yl3’
n w2 7 n 76 58 n Trl0 21712
w = _—— — _— _—
1=Y y 273 | 25 8y7 8y? 16y1”
w2 d 76 5p8  7nl0 21712 3371
wy =Y+ — — +

PR VA VR T R

Following the definition of s3(n) given in (2.14), we see that it suffices to estimate f(n—1),
f(n+1), g(n—1) and g(n+1). Now, we observe that each of these four functions consists
of two factors, the exponential factor and the rational function in variables x,y and z
(cf. (2.10) and (2.11)). This suggests that it is enough to estimate e”~2*+v  ey=2z+w,
h(n —1), h(n+ 1), ¢(n — 1) and g(n + 1) individually, where

f(n) = e =h(n), g(n) ="~ *q(n), (2.23)
with
6 _ 25 _ 1)16(46 — 55 _ 1
h(n) = & ;(y(s )3;5 (jl)zzzs )’ (2.24)
and

(28 — 25 + 1)yt6(26 — 25 + 1)
q(n) = S = g —1)228 . (2.25)

First, let us consider the exponential factors e"~2*¥ and e¥~2**%. By (2.19)-(2.22), for
all n > 59, it follows that

e 2T NY o T 20 T2 2ty (2.26)

ey Rt QYT Retw gy 2zfwn (2.27)

Next, we estimate (2.26) and (2.27) by Taylor expansion of the exponential function in
order to get bounds in terms of rational function in y. For convenience, set

| ~+

)
)

(2.28)

1!

6
o)=Y
1=0

and

T
o =3 o (2.29)
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For t € Ry,
B(t) < et < d(2). (2.30)
We note that

4 (10397r10 + 65178y? 4 42070y* + 28070 + 1927%y8 + 128y10)

ro —2r1 +Yy = — 512,18 <0
and for all n > 2,

774 (10567T10 — 651782 + 42070y — 280m4y® + 19272y — 128y10)
y—2z +wy = 51275 <0.
Putting (2.30) into (2.26) and (2.27), we get for n > 59,

P(r1 — 2x9 +y) < €2 < B(ry — 221 +y), (2.31)
and
Dy — 229 +w1) < ¥7FETY < By — 2z, + wy). (2.32)

Finally, it remains to estimate h(n—1), h(n+1), g(n—1) and g(n+1). We rewrite these
four functions as

h(n —1) = %)(ig) h(n+1):%m7
q(n—1) = ng) g(n+1) = W)((;’)
where
a(t) =t 5+ 1 and B(t) =15 —1° — 1. (2.33)

Using (2.19)-(2.22), for n > 59, we put down a list of inequalities as follows

Ot 41 < a(r

) <r® —rprt 41,
2% — 202t +1 < a(r) <2 -z + 1,
¢ (2) <

z—z2z4—|—1 < alz z—zlz +1,

w® — wow? +1 < a(w) < w® —wyw + 1,
0 —rort —1 < B(r) <r® —rirt —1,
(x)

28 —aozt —1 < B(z) <28 —zat —1,
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28— 202" —1 < B(2) <2%— 212 — 1,
w® — wow® — 1 < B(w) < w® —wiw* -1,
22 = 22020 4+ 210 4 225 — 2352t + 1 < a(r)? < 21?2 = 22920 + 210 4 225 — 2042 + 1,

212 = 220210 4 219 1226 92020 41 < a(z)? < 212 — 220210 4 210 4 226 —22,2% 41,
o' = 22010 4 210 — 22% 4 2212 +1 < B(2)? < 2% — 22120 + 210 — 220 4 2200 + 1,
(2)> <z

212 9225210 4 210 9,6 4 22124 +1<pB(z 12950210 4 510 9,6 4 2z2z4 + 1.

(2.34)
By application of the above inequalities, it follows that
6 _ gt _ 1) 16(y0 — of — 1
hin—1) > (rZ—rar” = Do (y" —y" — 1) : (2.35)
r8y8 (212 — 221210 + 210 4 226 — 2xy 2% 4+ 1)
(U)6 _ w2w4 _ 1)216(y6 _ y5 _ 1)
h(n+1) > , 2.36
(n+1) wlyd(212 — 221210 + 210 226 — 22,24 + 1) (2.36)
(r® —rirt + D)at0(y® — 95 + 1)
q(n —1) < 15— 10 1 710 _ 9,6 1 ’ (2.37)
r8y8(x 2x9x10 + 1 228 + 2124 4+ 1)
(w8 —wir* + 1)216(y5 —9® + 1)
1 . 2.38
aln+1) < r8yd(212 — 229210 4 210 — 226 4 22124 + 1) (2:38)
Invoking (2.31)-(2.32) and (2.35)-(2.38) into (2.23), for n > 59, we have
rO — it 4 D6y — 5 + 1) P(ry — 221 +y
g(n—1)<R1(y)=( 88 (12 ) 1(0 10 )6( 1 )’
r8y8 (21?2 — 29210 + 210 — 226 4+ 2z124 + 1)
(w® —wyr* +1)2"%(y° — y° + 1)P(y — 221 + wy)
1 R =
g(n+1) < Raly) wdyB(212 — 229210 4+ 210 — 226 4 22124 4 1) 7’
6 —rort — D)a16(yS — o5 — D)p(r1 — 220+ y
f(n—1)>R3(y)=( 8,8(, 12 ) 15) 10 )6( 1 )’
r8y8(x12 — 221210 + 210 + 226 — 22122 + 1)
(w® — wow* —1)2"%(y° — y° — 1)op(y — 22 + wy)
1 R =
fin+1)> Raly) wdyB(212 — 221210 + 210 4 226 — 22,24 + 1)
By definition of sy(n) (cf. (2.14)), it suffices to prove that
Ri(y) + Ra(y) — Ra(y)Ra(y) —1 <0 (2.39)
We can reduce R;(y) + Ra(y) — R3(y)Ra(y) — 1 into a rational function in y; i.e.,
Ni(y
Ru(y) + Bafy) ~ Ro(w)Raly) ~ 1= 0, (2.40)

where Np(y) and D;(y) are polynomials in y with respective degree 324 and 330. In
order to prove (2.39), it is equivalent to prove Ni(y)D1(y) < 0. We write
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654 )
Ni(y)Di(y) = Y ay', (2.41)
=0

where

agse = 2°48.38 . 5% 71 (28 — %) < 0.
We observe that if a polynomial, say P(z) = Y.",a;z’ € R[z] of degree m with its
leading coefficient a,, € R<q, then P(x) is a decreasing function in = and consequently,
P(z) < 0 for all x > xy where xy € R. So the only undetermined factor left over is the
explicit value of yy such that Ny (y)D1(y) < 0 for all y > yo, checked with Mathematica

that yo = 6. We conclude the proof by numerical verification that se(n) < 1 holds for
3<n<59. 0O

Next, using the bound of sa(n) given in Theorem 2.6, we propose an upper bound for
g(n) in terms of a function of s(n) that enables us to get into the proof of Theorem 2.5.

Theorem 2.7. Fort € (0,1), define

plt) = ——. (2.42)
Then for all n > 30, we have
g(n) < p(s(n)). (2.43)

Proof. We observe that for ¢ € (0,1), ¢(t) is an increasing function in ¢. From Corol-
lary 2.4 and Theorem 2.6, it suggests that we need to prove for n > 91,

g9(n) < p(s1(n)), (2.44)

or equivalently,
s1(n)g(n)* —2g(n) +1 > 0. (2.45)

Recalling the definition of a(t) and S(¢) (cf. (2.33)), s1(n)g(n)? —2g(n)+1 can be written
in the following form

_gler+w—2y + 926w+2$—3y + g3 — 2g4ex—2y+z + g5er—3y+2z
s1(n)g(n)? —2g(n) +1 = :
7“8’11)83}16216(1}6 — 5 1)2<y6 _ y5 _ 1)4<2’6 — 5 1)2

(2.46)

with
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g1 = 2% % a(r)a(w)a(z) a(y)®a(z)?, (2.47)
g2 = r°y* 210 B(w) B(x) () B(y) B(2)?, (2.48)
g3 = riws 210 B(x)? By) " B(2)%, (2.49)
g4 = w2’y a(2)B(2)*B(y)*a(2) B(2)*, (2.50)
g5 = wiz 'y B(r)B(x)* B(y) B(2)*a(2)*. (2.51)

Since the denominator of (2.46) is a perfect square and hence positive, therefore it is
required to prove that

G(y) == —gre" 7% 4 gpe 27 4 gy — 294" 4 gee” W S 0. (252)

Following a similar method as used in Theorem 2.6, we first estimate the exponential
terms in (2.52). It is straightforward to observe that

74 (2178 + 1074y* + 8y®)

Ty +wy — 2y = — Syl <0,

7 (17710 + 6937m8y? — 42075y* + 3607%y5 — 1927298 + 384410
w1 + 21 — 3y = — ( 512y13 )<0
for n>1,
(2178 + 407ty + 128y8)
To — 2y + 20 = 512y11 <0,
9 3y - (1088710 4 6937°%y* + 420m5y* + 3607y +1927%y° + 384y'7)
LT Ty = 51251
< 0.

As a consequence, by (2.19)-(2.22) and the monotonicity property of the exponential
function, for n > 59 we have

T2 < gt P(py 4wy — 2y), (2.53)

eTTET < o2t B2 B gy + 2y — 2y), (2.54)
W23y 5 qwit21=3Y S Gy 4 90y — 3y), (2.55)
e T2 B 5 e A2B By S g 4 00 3y, (2.56)

Substituting (2.53)-(2.56) into (2.52) implies that for n > 59,

G(y) > —q1®(ra+we—2y)+god(w1+221—3y) +93—294P(v2+22—2y) +g50(r1+221 —3y).

(2.57)
The right hand side of the above equation can be simplified further by obtaining its lower
bound with the aid of employing (2.34) and (2.18) into the definition of {gs}1<¢<5. More
precisely, we have that for n > 59,
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Na(y) o Efi% biy'
Dy(y)  2101.32.5.7 4119

G(y) > (2.58)

where bgyg = 2101.32.5. 7.

Due to similar remark as before; i.e., if a polynomial, say P(z) = Y i~ a;z’ € Rlz] of
degree m with its leading coefficient a,, € R~g, then P(z) is an increasing function in x
and consequently, P(x) > 0 for all > xy where xg € R. As an immediate consequence,
we note that G(y) > 0 by verifying that No(y) > 0 for all y > 5 or equivalently for
n > 3. It remains to prove (2.43) for 30 < n < 91 which is done by numerical checking
in Mathematica. O

3. Proof of Theorem 2.5

Proof of Theorem 2.5. By Corollary 2.4 and Theorem 2.6, we have s(n) < 1 for n > 91.
Define

Q(t) = s(n)t?> — 2t + 1. (3.1)
To establish (2.16), we prove that for n > 91,

Q(un) > 0. (3.2)

The quadratic equation Q(t) = 0 has two solutions, namely

1—+/1—s5s(n) 1+ +/1—s5(n)

0 , an 1 s(n)

Thus Q(t) > 0 when ¢ < ¢o or ¢ > ¢;. From Theorem 2.3 and 2.7, we have that for
n > 91,

un < @(s(n)) (3.3)

Set tg = ¢(s(n)) and conclude that (3.2) holds for n > 91. To confirm (2.5) for 42 <n <
91, we can directly verify by checking numerically in Mathematica. 0O

4. Conclusion

We conclude the paper by undertaking a brief study on totally positive matrices with
entries from sequences of overpartitions. Due to Engel [9], we know that for n > 2,

det Ma(p(m) = et (00 PEAD) >0

Theorem 1.4 states that det M3(p(n)) > 0 for n > 42, more specifically it is worthwhile
to observe that for n > 3, the determinant of each 2 x 2 minor of the matrix M3(p(n)) is



G. Mukherjee / Advances in Applied Mathematics 152 (2024) 102598 15

nonnegative. This construction leads to the question whether one can always construct a
matrix My (p(n)) of order k with positive determinant if we already know its all minors
(of lower order) are totally positive. More precisely,

Problem 4.1. For a given k € Z >4, does there exist a n(k) € Z>1 such that for n > n(k),

det (p(n — i+ j))i<ij<k >0, (4.1)
and if (4.1) holds true, then what is the asymptotic growth of n(k)?

An affirmative answer to Problem 4.1 for the case k = 4 is recently settled by Wang
and Yang [24, Theorem 5.5].
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