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Abstract
Let p(n) denote the overpartition function. In this paper, we obtain an inequality for
the sequence A? log "/p(n —1)/(n — 1)* which states that

3n 11 + S« Py —
10g<1+4n—5/2 — ,11—1/4> < A’log "V/pn—1)/(n — 1)«

where « is a non-negative real number, N («) is a positive integer depending on
o, and A is the difference operator with respect to n. This inequality conse-
quently implies log-convexity of {(’/ﬁ(n) /n}n>19 and {.”/ﬁ(n)}n> 4+ Moreover, it

also establishes the asymptotic growth of A?log "/p(n — 1)/(n — 1)@ by show-

. . — 3
ing ,,llif;oAz log /p(n)/n% = yPEToh
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1 Introduction

An overpartition of n is a non-increasing sequence of natural numbers whose sum
is n in which the first occurrence of a number may be overlined and p(n) denotes
the number of overpartitions of n. For convenience, define p(0) = 1. For example,
there are 8 overpartitions of 3 enumerated by 3, 324 1,24 1,241,241, 141+
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1,14 1+ 1. Systematic study of overpartition began with the work of Corteel and
Lovejoy [4], although it has been studied under different nomenclatures that date back
to MacMahon. Analogous to Hardy—Ramanujan—Rademacher formula for partition
function (cf. [7], [10]), Zuckerman [13] gave a formula for p(n) that reads

I &~ & 0tk s d (sinh
) = —S Wk e 4 (2T, 1.1
pm Zn];f}g wh, k)¢ dn( I > 4.
e (=1

where
k—1
r( hr hr 1
h, k) = ] === -=
o exp(’”Ek(k {kJ 2))

for positive integers & and k. In somewhat a similar spirit as Lehmer [8] obtained an
error bound for the partition function, Engel [6] provided an error term for p(n)

wh k) dn\_ Jn
2k (h k) 1

. own
Tin h
Pn) = §:f §j b7 Zkhi(sm—k>+Rz(n,N>, (1.2)
k 1

where

N2 (wn
‘Rz(n,N)} < Py smh( N > (1.3)
A positive sequence {a, },>0 is called log-convex if forn > 1,
2
a, — dp—1ap4+1 = 0,
and it is called log-concave if forn > 1,
2
a, — ap—1dp+1 = 0.

Engel [6] proved that {p(n)},>2 is log-concave by using the asymptotic formula (1.2)
with N = 2 followed by (1.3). Prior to Engel’s work on overpartitions, log-concavity
of partition function p(n) and its associated inequalities has been studied in a broad
spectrum, for example see [1], [2], and [5]. Following the same line of studies, Liu
and Zhang [9] proved a list of inequalities for overpartition function.

Sun [11] initiated the study on log-convexity problems associated with p(n), later
settled by Chen and Zheng [3, Theorem 1.1-1.2]. In a more general setting, Chen and
Zheng studied log-convexity of {/p(1)/n%},>n(a) (cf. [3, Theorem 1.3]). Moreover,
they discovered the asymptotic growth of the sequence A2 log &/p(n) (cf. [3, Theorem
1.4]).
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The main objective of this paper is to prove all the theorems [3, Theorem 1.1-1.4] but
in the context of overpartitions. Our goal is to obtain a much more general inequality,
given in Theorem 1.1, which at once implies [3, Theorem 1.1-1.4] for p(n), presented
in Corollary 1.2-1.5. More explicitly, in Theorem 1.1, we get a somewhat symmetric
upper and lower bound of {/p(n)/n%, as shown in (1.4). We note that the lower bound
presented in (1.4) depicts a finer inequality than merely stating A% log &/p(n)/n® > 0
which implies log-convexity. In another direction, we note that (1.4) readily suggests

3m . . .
that — is the best possible constant so as to understand the asymptotic growth of

A?log /p(n)/n®, given in Corollary 1.5.
For o € Rxq, define ry(n) := /p(n)/n®.

Theorem 1.1 Let o € Rx¢ and

N(@) = max{[?";ﬂ]% {(W)ﬂ,ssos} ifa € Ry,

4522 ifa =0.
Then forn > N (),
log<l + S—H - M) < A? logre(n — 1) < log(l + 3—ﬂ> (1.4)
40572 /4 40572
Corollary 1.2 The sequence {3/p(n)/n® }nz N IS log-convex.
Proof From (1.4), it is immediate that

ra(n+ Drg(n — 1) 3 11 + 5«
> 1+

rg(n) 152~ e forall = N(a).

We finish the proof by observing that

3 11 4+ 5«

1+ 4n3/2 ~  pli/a

> 1 forall n > N(w).

Corollary 1.3 The sequences {«"/ﬁ(n)/n}n>19 and {(’/ﬁ(n)}n>4 are log-convex.

Proof In order to prove { /p(n)/n}, _ o and {/p(n)}, _, are log-convex, after corol-
lary 1.2, it remains to check numerically for 19 < n < 5504 and 4 < n < 4521, which

is done in ‘Mathematica’ interface. O
Corollary 1.4 For all n > 2, we have

Vpn) <1+ 3 )> "Vp(n—1)
2 .

Vearo\ T 7)) T T e (4
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Proof 1t is an immediate implication of (1.4) as it is only left over to verify (1.5) for

2 < n <4522, which we did numerically in ‘Mathematica.’ O
Corollary 1.5
. 5/2 72 3
lim n”/“A“logry(n) = —. (1.6)
n— 00 4

Proof Multiplying both the sides of (1.4) by n/% and taking limit as n tends to infinity,
we get (1.6). O

2 Proof of theorem 1.1

In this section, we give a proof of Theorem 1.1. First, we state the Lemma 2.1 [3,
Lemma 2.1] of Chen and Zheng which will be useful in the proofs of Lemmas 2.2-2.4.
These lemmas further direct to get upper bound and lower bound of A%logr,(n),
respectively, in Lemma 2.5 and 2.6, finally results (1.4).

Lemma 2.1 [3, Lemma 2.1] Suppose f(x) has a continuous second derivative for
x € [n — 1,n + 1]. Then there exists c € (n — 1, n + 1) such that

AN fn—1)=fn+ D+ fin—1)=2f@m) = f" (). 2.1)
If f(x) has an increasing second derivative, then
ffa=1) <A fn—1)< f'(n+1). (2.2)
Conversely, if f(x) has a decreasing second derivative, then
f"m+1) < A2f(n—1) < f"(n—1). (2.3)

We start by laying out a brief outline of Engel’s primary set up [6] for proving log-
concavity of {p(n)},>2. Setting N = 3 in (1.2), we express p(n) as

P(n) =T (n) + R(n), (2.4)
where
— c 1 _
Tn) = ——(1—- =)™, 2.5
e E(n)z( ﬁ(n)>e 2
R(n) = l(l + _L>e“<"> + R>(n, 3) (2.6)
8n w(n)

with ¢ = % and ft(n) = m/n. In order to estimate the upper and lower bound of

A%logre(n — 1), it is necessary for us to express A% logry(n — 1) in the following
form
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Alogre(n — 1) = A? logp(n — 1) —a A? log(n — 1)
n—1 n—1
=A log7T(n—1)+ A"——
n—1 n—1
R(n — 1)) 5
logll+=——)—-a A log(n — 1).
g( T(n—1) p—q e =D
(2.7)
Define
_ R(n—1
E(n—1) =10g(1 +_(”—)) 2.8)
Tn—1)
and rewrite (2.7) as
2 2 | - ) 1 =
A“logry(n — 1) = A logT(n—1)+A“——Emn—1)
n—1 n—1
1
—a A? : log(n — 1) (2.9)

Therefore, in order to estimate A2 log ro (n — 1), it is sufficient to estimate each of the
three factors, appearing on the right-hand side of (2.9).

Lemma 2.2 Let

— 37 Slogu(n — 1)
G = — , 2.10
_ 3 3logu(n + 1) 4
G — — . 2.11
A O A RN | B e 10
Then for n > 2, we have
— 1 — _
Gi(n) < A? ] logT(n —1) < Ga(n). (2.12)
n—
Proof Using the definition of T (1) (2.5), we write
1 4
A? — logT(n—1)=Y A*g;(n—1), (2.13)

i=1
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where
70 = 2
n
3log
Bl = — 2D @
_ log@m - 1)
gy = 22D

1
and gy4(n) = E.
n

It can be easily checked that for n > 3, §T n) < 0, gg’ (n) > 0, g;, (n) < 0, and
§: (n) < 0. As a consequence, for n > 3, §/1/ (n), E;(n), and §Z(n) are decreasing,
whereas §; (n) is increasing. Applying Lemma 2.1, we get for i € {1, 3, 4},

G+ <A’gn—1)<g (n—1) (2.14)
and
Zn—1) < A’g(n—1) < Zy(n+ 1). (2.15)

From (2.13) and (2.14)-(2.15), we obtain for all n > 3,

1 —_— " " " "
A?——logT(n —1) < g (1= D+ 801+ D+ 8301 — D+ 2400 = 1)
(2.16)
and
1 — _n " " "
A? —logT(n =D > g+ D+ 80— D +230+ D +240n + 1),
(2.17)
where
o 3
g(n) = YPLTZR (2.18)
_n 9 61lo ﬁ(n)
g,(n) = 3 i—3, (2.19)
) 2log(mi(n) — 1) 5t w2 2.20)
n) = — — , (2.
83 w3 @) — 1) a2 (@) — 1)?
_n 210g5
and g,(n) = 3 (2.21)
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We first estimate the upper bound of A? log T (n—1) by (2.16) and (2.18)-(2.21).

n—1
A2 logTn—1) <« — % 4 9
n—1 % An—132 " 21y
6logu(n+1)
(n+1)3
2log(e(n — 1) — 1) S5
(n—1)3 4(n— D32 (@(n — 1) — 1)
)
4(n — D2(m(n — 1) — 1)2
2logc
(n—1)3
__ T U U 222
—m“r 1(n) +Uz(n), (2.22)
where
— 6logu(n+1) 2log(w(n — 1) — 1)
U = - 2.23
v n+ 13 (n—1)3 223
— 9
and U2 = 50
_ St _ w2 N 2logc
dn—D2@m -1 —1) 4n—D2@n—-1)—D?  (n—1)3
(2.24)
It can be easily checked that for all n > 2,
Ua(n) 4 (2.25)
< —. .
SRR
For an upper bound of U, (n), we observe that for all n > 15,
2 3 _ _
1) < PR and log((n) — 1) < log(n + 1), (2.26)
that is,
2log(m(n — 1) — 1 3logt 1
og(p(n — 1) — 1) _ 3log m(n+1) 2.27)
(n—1)3 (n+1)3
Consequently for n > 15 we get,
_ 3logmt 1
Uiy < —o10grn+ D (2.28)

(n+ 1)3
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Invoking (2.25) and (2.28) into (2.22), we have for n > 15,

= 3 3log(n+1) 4 _
A? logT(n — 1 - =Go(n). (2.29
p1 D S T T Ty - - 22
1 _
For lower bound of A2 1 log T (n—1),using (2.17) and (2.18)-(2.21) we obtain
— 3 9 6log(n — 1
A? logT(n—1) > T 4 _ blog w(n )
n—1 4n+ D52 2(mn—1)3 (n—1)3
2log(k(n +1) — 1) S
(n+1)3 4n+ D 2(mmn+1) = 1)
w2
_ - (2.30)
4n+ D2 +1) —1)2
2logc
(n+1)3
T LT+ Ta)
= n n E)
dn+ 12 ! :
where
_ _ _610gﬁ(n —1)  2log(p(n+1)—1)
Li(n) = =17 D)7 (2.31)
— 9
and Ly(n) = m
Sm n? 2logc
_ - .(2.32
dn+ D@+ —1) 4+ D2@E0n+ 1) — 1)2 RPN (2.32)
Similarly as before, one can check that forn > 9,
Lo >0 and Ly(n) > — 18R =1 (2.33)

(n—1)3

(2.30) and (2.33) yield forn > 9,

AZ

_ 3 Slog7i(n — 1
logT(n—1) > il ogpn—1)

(2.29) and (2.34) together imply (2.12) for n > 15. We finish the proof by checking
(2.12) numerically for 2 < n < 14. O

Lemma 2.3 Forn > 38,

B -1
e 12 (2.35)

A2Lf(n—1)|<
n—1 n—1
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Proof Using (2.8), we get forn > 2,

A? nljf(n -1 = log(1+e(n + 1))

n—+1
—z log(1 +e(n)) + ! log(l +e(n — 1)), (2.36)
n n—1
where
_ R
e(n) = T(n)'

1 —
Taking absolute value of A? —lE(n — 1) in (2.36), we obtain for all n > 2,
n—

1 — 1
|A? nTlE(n -l = e [log(1 4+ e(n + 1))]

2
+-log(1 +e(m)| + —[log(l +&(n — 1)I. (2.37)

Therefore, it is enough to estimate |e(n)|. Before proceeding to estimate, let us recall
the bound of Engel [6](cf. (1.3)) for N = 3 that yields forn > 1,

RNERPTYE

[R2(n, 3)] < = )

(2.38)

X

by making use of the fact that sinh(x) < % for x > 0. Recalling the definitions in
(2.5)-(2.6), we obtain

1
14 —
o)
(n) 8n (n)
1
(1 5m)
< K (1") o 0V e P (by (2.38)
(1 B ﬁ(n)> W)<1 T
—2Em)/3 -
= e_(nl; - [(u(n) + 1)e M3 4 36@}
o—T/12 B - -
= ﬁ[((ﬁ(n) +1)e 4R/ 4 36«/3)@“(")/2:|e"(”)/ 12 (239
fi(n) —
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It can be easily checked that

—TA/12
——— <1 foralln>1 (2.40)
) —1
and
((ﬁ(n) + 1) Em/3 4 3éﬁ)e—ﬁ<">/2 <1 foralln>7. (2.41)

Invoking (2.40) and (2.41) into (2.39), we obtain for n > 7

le(n)| < e FW/12 (2.42)
and consequently for n > 38,
e Hm/12 % (2.43)

Putting together (2.42) and (2.43), we get for all n > 38,

1
le(n)| < 3 (2.44)
Next we note that for all n > 38,
_ le(n)] 5 _
log(1 < — < - 2.45
[Tog(1 +200)| = =7 < § oG] (2.45)
because of the fact that, for |x| < 1,
x|
[log(l 4+ x)| < .
I — x|

From (2.37) and (2.45), we obtain for n > 38,

I — 5 le(n+ 1) le(n)|  le(n — 1)
A2 Emn-—1 -( 2 ) 2.46
A% B =Dl < (5 e (246)
Plugging (2.42) into (2.46), we have for n > 38,
, 1 - 5 e~ Rn+1)/12 e M/12 —(n=1)/12
gy < ) )
i n—1 (n )|<4 n—+1 + n + n—1
-2 -2 (2.47)
n—1
L a2 ~ -
because the sequence {— e R/ } | is decreasing. O
n n>
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Lemma24 Fora € Rogandn > 17,

2alog(n — 1) 3a ) 2o log(n + 1)
- < —u A logln — 1) < —————
(n—1)3 n—1)3 n—1 (n+1)3
+ 3o (2.48)
(n+1)3 '
Proof We observe that, forn > 7,
logn\ 11 61
_logn) 11 6logn
n n* n*
. logn . .
Setting f(n) := — and applying Lemma 2.1, we obtain for n > 7,
21 -1 3 1 21 1
_2logn — 1) e iogn— 1) < 208D
(n—1)3 (n—1)3 n—1 (n+1)3
3
z 2.49
+ (n+1)3 249)
Since « is a positive real number, from (2.49), we obtain (2.48). m|
Lemma2.5 Fora € R>g and n > 4021,
A2l 1 < log(1 4 =X 2.50
ogry(n —1) <log +4n_5/2' (2.50)
Proof Using (2.12), (2.35), and (2.48) into (2.9), we obtain for n > 38,
un—1)
— ———— 2alog(n+1) 3a
A%l -1 <G 12 - .
ogry(n ) < 2(”)+n_le (n+1)3 (n+1)3
(2.51)
Note that for all n > 4,
2alog(n + 1) 3
— <0 2.52
(n+1)3 +(n+1)3_ 252)
and for n > 4021,
5 k-1
12 —_— 2.53
n—1° S -1y 2.53)
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Therefore from (2.52)-(2.53), for all n > 4021, it follows that

3 3logp(n+1) 9
A%1 -1 - . 2.54
ogre(n —1) < TPEE TN 1) (2.54)
Apparently, for all n > 93,
3 3log 1 9 3 972
b1 _ 3log mmn+1) - T 9 ' (255
4(n — 1)3/2 (n+1)3 (n—1)3 " 4n52  32n5

2
Using the fact that for x > 0, log(1 +x) > x — %, from (2.54) and (2.55), we finally

arrive at

3
2
A“logry(n — 1) < log(l + 4}1_5/2) (2.56)

O

Lemma2.6 Foroa > Q0andn > max”@] +2, RW)T, 5505},

o

3 11 + 5«
A’logre(n —1) > log(l + 5 W) (2.57)
Proof Using (2.12), (2.35), and (2.48) into (2.9), we obtain for n > 38,
nn—1)
A2lo ( 1= Gi(n) 7MT 2clog(n — 1) 3
re(n —1) > n) — e — .
Ela ! P nn— 1) n— 1)
(2.58)
3490
It is easy to check that for n > max{ [—] +2, 4522} = Ni(a),
(07
mn—1)
*MT N 3a 3a 10470 (2.59)
— e > — > .
n—1 n—1)3 n—13 @m—-14
Therefore for all n > Ni(«),
37 Slogu(n — 1) 2alog(n — 1)
A1 —1 — — 2.60
ogratn =1 > TR T T 1) n—1p - 20
It is immediate that forn > 11,
logz(n — 1) < log(n — 1) (2.61)
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and for n > 5505,
log(n — 1) < (n — H4, (2.62)

Putting (2.61) and (2.62) into (2.60), we obtain for n > max{Nj(«), 5505},

3 54+ 2a
2 _ _
A“logry(n —1) > It D2 DA (2.63)
It remains to show that
3 54 2« 3 11 + 5«
dn+ 152 (n— /A Z Az s (2.64)
15w 4/3
For n > max _— ,51 := Ny(a), it follows that
8@+ 1)
11+ Sc 5+ 2« e 157 3n (1 2 65
A = DA 25 a7 82 21 4 2 g o2 )&
From (2.63) and (2.64), we obtain for n > max{Nl (), Na(a), 5505},
3 11 + 5«
Az lOgl’a(l’l — 1) > m — an (266)
4(11 + 5a) \4
It is easy to check that for n > RM) —‘ = N3(a),
3
3r 11 + 5«

and using the fact that for x > 0, x > log(l + x), we finally get for n >
max{N; (), N3(a), 5505} (since, Ni(@) > No(a) fora > o),

3 1145
T + “) (2.68)

Azlogra(n -1 > 10g<1 + W - ’11—1/4

m}

Proof of Theorem 1.1 For a € R.g, from (2.50) and (2.57) we obtain for all n >
3490 4(11 + S5a)\4
max{ [222] 4.2, [(2E5522) . ssos),
o 3

3m 11+ 5a 3
10g<1 + W — nl—l/4> < Az logra(n — 1) < 10g<1 + 4}15/2)' (269)
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For o = 0, we have already seen that for n > 4021,

5 3
A“logry(n — 1) < log 1+4n—5/2 .

For o = 0, using (2.12) and (2.35) into (2.9), we get for n > 38,

pr—1)
e 12

A’logre(n —1) > G1(n) — .
n_

Following the same approach, it can be checked that for n > 4522,

an—1)
T 10470

n—1 T

and consequently for n > 476,

10470 3n 11
n—1F a2 pl/a

G (n) — > 0.

So, for @ = 0, by (2.71)-(2.73), we obtain for n > 4522,
2 3 11
A logra(n—1)>log 1+4n_5/2_nl_1/4 .

Putting (2.70) and (2.74), for n > 4522, it follows that

(2.70)

2.71)

(2.72)

(2.73)

(2.74)

) | 3 11 A2 1 oo | ) | 3
og +_4n5/2__n”/4 < n_logp(n— ) < log +_4n5/2'

This finishes the proof.

3 Conclusion

We conclude this paper by considering the following problem:

(2.75)

O

Problem 3.1 Let o be a non-negative real number. Then for each r > 1, does there
exists a positive integer N(r,a) so that for all n > N(r,«), one can obtain both
upper bound and lower bound of (—1)" A" log r, (n) that finally shows the asymptotic

growth of (—1)" A" logr,(n) as n tends to infinity?

For r = 2, we have already seen that one can estimate (—1)" A" log ry (1), as given in

Theorem 1.4 and its asymptotic growth is reflected in Corollary 1.5.
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