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Abstract

Let p(n) denote the overpartition function. In this paper, our primary goal is to study the
asymptotic behavior of the finite differences of the logarithm of the overpartition
function, i.e., (−1)r−1�r log p(n), by studying the inequality of the following form
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< log
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nr−1/2

)
for n ≥ N(r),

where C(r), C1(r), and N(r) are computable constants depending on the positive integer
r , determined explicitly. This solves a problem posed by Wang, Xie and Zhang in the
context of searching for a better lower bound of (−1)r−1�r log p(n) than 0. By settling
the problem, we are able to show that
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1 Introduction
An overpartition of a positive integer n is a nonincreasing sequence of positive integers
whose sum is n in which the first occurrence of a number may be overlined, p(n) denotes
the number of overpartitions of n, and we define p(0) = 1. For example, there are 8
overpartitions of 3 enumerated by 3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.
A thorough study of the overpartition function started with the work of Corteel and
Lovejoy [1], although it has been studied under different nomenclature that dates back
to MacMahon. Similar to the Hardy-Ramanujan-Rademacher formula for the partition
function (cf. [2,3]), Zuckerman’s [4] formula for p(n) states that
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2π
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for (h, k) ∈ Z≥0 × Z≥1. Engel [5] determined an error term for p(n) and found that
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πn3/2
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)
, (1.3)

similar to the work done by Lehmer [6] in order to obtain an error bound for the partition
function p(n).
A positive sequence {an}n≥0 is said to be log-concave (resp. log-convex) if for all n ≥ 1,

a2n ≥ an−1an+1 (resp. a2n ≤ an−1an+1), and it is said to be strictly log-concave (resp. strictly
log-convex) if the inequality is strict.
Using the notations above, Engel’s result [5] actually states that {p(n)}n≥1 is log-concave.

In fact, if one defines p(0) := 1, then {p(n)}n≥0 is actually also log-concave. Engel proved
that {p(n)}n≥4 is strictly log-concave by using the asymptotic formula (1.2) with N = 3,
and the error bound (1.3). Prior to Engel’s work on overpartitions, the log-concavity of
the partition function p(n) and its associated inequalities has been studied in a wider
spectrum, details can be found in [7–9]. On the other hand, Liu and Zhang [10] proved
a family of inequalities for the overpartition function. Higher order log-concavity and
log-convexity for the overpartition function has been studied in [11,12] respectively.
Chen, Guo and Wang [13] introduced the notion of ratio log-convexity of a sequence

and established that ratio log-convexity implies log-convexity under a certain initial con-
dition. A sequence {an}n≥k is called ratio log-convex if {an+1/an}n≥k is log-convex or,
equivalently, for n ≥ k + 1,

�3 log an−1 = log an+2 − 3 log an+1 + 3 log an − log an−1 ≥ 0,

where � be the difference operator defined by �f (n) = f (n + 1) − f (n). Chen, Guo, and
Wang relates the ratio log-convexity of a sequence, say {an}n≥k , with strict log-convexity
of the associated sequence { n√an}n≥k stated in the following theorem.

Theorem 1.1 [13, Theorem 3.6] Let k be a positive integer. If a sequence {an}n≥k is ratio
log-convex and

k+1√ak+1
k√ak

<
k+2√ak+2
k+1√ak+1

,

then the sequence { n√an}n≥k is strictly log-convex.

Similar to the work done by Chen et al. [8] for p(n), Wang, Xie and Zhang [14] proved
the following two theorems.

Theorem 1.2 [14, Theorem 3.1] For each r ≥ 1, there exists a positive number n(r) such
that for all n ≥ n(r),

(−1)r−1�r log p(n) > 0.



G. Mukherjee Res. Number Theory (2023) 9:9 Page 3 of 12 9

Theorem 1.3 [14, Theorem 4.1] For each r ≥ 1, there exists a positive number n(r) such
that for all n ≥ n(r),

(−1)r−1�r log p(n) <
π

2

(1
2

)
r−1

1
nr− 1

2
,

where (α)r := α · (α + 1) · · · (α + r − 1).

Remark 1.4 Following Theorem 1.3, we observe that log-concavity and ratio log-
convexity for p(n) correspond to the cases r = 2 and r = 3 respectively.

Wang, Xie, and Zhang raised the following question:

Problem 1.5 [14, Problem 3.4] Does there exist a positive number A such that

nr−1/2(−1)r−1�r log p(n) > A,

for any r ≥ 1 and all sufficiently large n?

In other words, their problem reads “Moreover, we seek a sharp lower bound for
(−1)r−1�r log p(n)”.
The main motivation of this paper is to give an affirmative answer to the Problem 1.5 in

Theorems 1.6 and 1.8. This in turn clarifies the asymptotic growth of (−1)r−1�r log p(n),
seeCorollary 1.9. InCorollaries 1.10 and1.11,we recover the log-concavity and its (shifted)
companion inequality respectively.

Theorem 1.6 For n ≥ 26,

log
(
1 + π

2
√
n

)
< � log p(n) < log

(
1 + π

2
√
n

+ π2

40n

)
. (1.4)

Definition 1.7 For r ≥ 2, we define

N0(m) :=
⎧⎨
⎩
1, ifm = 1,

2m logm − m log logm, ifm ≥ 2,
(1.5)

N1(r) := max
{
85,
⌈

4
π2N

2
0 (2r + 2)

⌉}
, (1.6)
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andN (r) := max
{
N2(r), N3(r)

}
. (1.12)
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Theorem 1.8 For r ∈ Z≥2 and n ≥ N (r),

0 < log
(
1 + C(r)

nr−1/2 − 1 + C1(r)
nr

)
< (−1)r−1�r log p(n) < log

(
1 + C(r)

nr−1/2

)
,

(1.13)

where C(r) and C1(r) are given in (1.7)–(1.8).

Corollary 1.9 For r ∈ Z≥1,

lim
n→∞ nr−1/2(−1)r−1�r log p(n) = π

2

(1
2

)
r−1

. (1.14)

Proof Multiplying both sides of (1.4) (resp. (1.13)) by
√
n (resp. by nr−1/2) and taking

limits as n tends to infinity, we obtain (1.14). 	

Corollary 1.10 [5, Theorem 1.2] For n ≥ 4, p(n)2 ≥ p(n − 1)p(n + 1).

Proof Observe that N (2) = 344 and from the lower bound of (1.13), we observe that
{p(n)}n≥344 is log-concave and for the remaining cases 5 ≤ n ≤ 343, we confirm by
numerical checking in Mathematica. 	

Consider the shifted versionofCorollary 1.10, namely, forn ≥ 3,p(n+1)2 ≥ p(n)p(n+2).

Analogous to [10, Equation (1.6)], we obtain the (shifted) companion inequality in the
following form.

Corollary 1.11 For n ≥ 1,

p(n)
p(n + 1)

(
1 + π

4n3/2
)

>
p(n + 1)
p(n + 2)

. (1.15)

Proof Using (1.13) with r = 2 directly gives (1.15). 	

Corollary 1.12 For n ≥ 18, �3 log p(n − 1) > 0.

Proof Applying (1.13) with r = 3, we observe that for n ≥ 1486 = N (3), �3 log p(n) > 0,
which is equivalent to say that for n ≥ 1487, �3 log p(n− 1) > 0. For the remaining cases
18 ≤ n ≤ 1486, we confirm the inequality �3 log p(n − 1) > 0 by numerical checking in
Mathematica. 	

Define r(n) := n

√
p(n).

Corollary 1.13 [11, Corollary 1.3] For n ≥ 4, r(n)2 < r(n − 1)r(n + 1).

Proof From Corollary 1.12, we have {p(n)}n≥18 is ratio log-convex. Now applying Theo-
rem 1.1 with k = 18, and checking numerically

19
√
p(19)

18
√
p(18)

<
20
√
p(20)

19
√
p(19)

,

we conclude that {r(n)}n≥18 is strictly log-convex; i.e., for all n ≥ 18, r(n)2 < r(n −
1)r(n+ 1), and for the remaining cases 4 ≤ n ≤ 17, we confirm by numerical checking in
Mathematica. 	

Thispaper is organizedas follows.Apreliminary setup fordecomposing (−1)r−1�r log p(n)

= Hr +Gr (cf. see (2.4), (2.5), and (2.6)), as done in [14], and estimations for bothHr and
Gr are given in Sect. 2. Proofs of Theorems 1.6 and 1.8 are given in Sect. 3.
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2 preliminary lemmas
Following the notations given in Engel [5] and Wang et al. [14], split p(n) as

p(n) = T̂ (n)
(
1 + R̂(n)

T̂ (n)

)
, (2.1)

where

T̂ (n) = 1
8n

(
1 − 1

μ̂(n)

)
eμ̂(n) (2.2)

andR̂(n) = 1
8n

(
1 + 1

μ̂(n)

)
e−μ̂(n) + R2(n, 3) (2.3)

with μ̂(n) = π
√
n.

Remark 2.1 The splitting for p(n) used here is actually slightly different from what is
found in [5,14].

Taking the logarithmonboth sides of (2.1) and plugging the definitions from (2.2)–(2.3),
we obtain

log p(n) = log
π2

8
− 3 log μ̂(n) + log(μ̂(n) − 1) + μ̂(n) + log

(
1 + R̂(n)

T̂ (n)

)
.

Therefore,

(−1)r−1�r log p(n) = Hr + Gr, (2.4)

where

Hr = (−1)r−1�r(−3 log μ̂(n) + log(μ̂(n) − 1) + μ̂(n)) (2.5)

Gr = (−1)r−1�r log
(
1 + R̂(n)

T̂ (n)

)
. (2.6)

Then we have that for r ≥ 1,

Hr − |Gr | ≤ (−1)r−1�r log p(n) ≤ Hr + |Gr |. (2.7)

To estimate the bounds for (−1)r−1�r log p(n), we need to establish bounds for Hr and
|Gr |. Our first goal is to determine a bound for |Gr | for r ≥ 1 and then we further proceed
with Hr but splitting into cases, namely, for r = 1 and r ≥ 2.

Lemma 2.2 [12, Lemma 2.1] For any integer m ≥ 1 and x ≥ N0(m),

xme−x < 1,

where N0(m) is defined in (1.5).

Recall that N1(r) = max
{
85,
⌈

4
π2N

2
0 (2r + 2)

⌉}
(cf. (1.6)).

Lemma 2.3 For all n ≥ N1(r) and r ≥ 1,

|Gr | <
1

nr+1 . (2.8)
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Proof Define ê(n) := R̂(n)
T̂ (n) . From the definition of R̂(n) and T̂ (n) (cf. Equations (2.2)–(2.3)),

we have

|̂e(n)| = |̂R(n)|
|T̂ (n)|

=
∣∣∣∣∣

1
8n

(
1 + 1

μ̂(n)

)
e−μ̂(n) + R2(n, 3)

1
8n

(
1 − 1

μ̂(n)

)
eμ̂(n)

∣∣∣∣∣

<
μ̂(n) + 1
μ̂(n) − 1

e−2μ̂(n) + 36
√
3

μ̂(n) − 1
e−2μ̂(n)/3

(
using N = 3 in (1.3 and sinh(x) <

ex

2
for x > 0

)

= 1
μ̂(n) − 1

e−μ̂(n)/2
(
(μ̂(n) + 1)e−3μ̂(n)/2 + 36

√
3 e−μ̂(n)/6

)
. (2.9)

Since for all n ≥ 85,

(μ̂(n) + 1)e−3μ̂(n)/2 + 36
√
3 e−μ̂(n)/6 <

1
2
and

1
μ̂(n) − 1

< 1,

from (2.9), it follows that for all n ≥ 85,

|̂e(n)| <
1
2
e−μ̂(n)/2. (2.10)

Therefore, for all n ≥ 85,

|Gr | =
∣∣∣(−1)r−1�r log (1 + ê(n))

∣∣∣ (by (2.6)

=
∣∣∣∣∣

r∑
i=0

(−1)r−i
(
r
i

)
log (1 + ê(n + i))

∣∣∣∣∣

≤
r∑

i=0

(
r
i

)∣∣∣log (1 + ê(n + i))
∣∣∣

≤
r∑

i=0

(
r
i

) |̂e(n + i)|
1 − |̂e(n + i)|

(
since | log(1 + x)| ≤ |x|

1 − |x| for |x| < 1
)

≤ 2
r∑

i=0

(
r
i

)
|̂e(n + i)|

(
as

x
1 − x

≤ 2x for 0 < x ≤ 1
2

)

<

r∑
i=0

(
r
i

)
e−μ̂(n+i)/2 (by (2.10)

≤
r∑

i=0

(
r
i

)
e−μ̂(n)/2

(
since {e−μ̂(n)/2}n≥1 is a decreasing sequence

)

= 2re−μ̂(n)/2. (2.11)

Now applying Lemma 2.2 with m = 2r + 2 and assigning x �→ μ̂(n)
2 , it follows that for

n ≥
⌈

4
π2N

2
0 (2r + 2)

⌉
,

e−μ̂(n)/2 <
( 2

π

)2r+2 1
nr+1 =⇒ 2re−μ̂(n)/2 <

(2√2
π

)2r+2 1
nr+1 <

1
nr+1 . (2.12)
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Before we state the bounds forHr , we recall the following result due to Odlyzko [15] on
the relation between the higher order differences of a smooth function and its derivatives.
The following proposition can be proved using elementary techniques such as the mean
value theorem.

Proposition 2.4 Let r be a positive integer. Suppose that f (t) is a function with continuous
derivatives for t ≥ 1, and (−1)k−1f (k)(t) > 0 for k ≥ 1. Then for r ≥ 1, x ≥ 1,

(−1)r−1f (r)(x + r) ≤ (−1)r−1�r f (x) ≤ (−1)r−1f (r)(x).

Lemma 2.5 For all n ≥ 1,

L(1)(n) ≤ H1 ≤ U (1)(n), (2.13)

where

U (1)(n) = π

2
√
n

− 3
2(n + 1)

+ π

2
√
n(μ̂(n) − 1)

(2.14)

and L(1)(n) = π

2
√
n + 1

− 3
2n

+ π

2
√
n + 1(μ̂(n + 1) − 1)

. (2.15)

Proof Equation (2.13) follows immediately by applying Proposition 2.4 on each of the
factors in Hr being presented in (2.5) for r = 1. 	


Lemma 2.6 For r ≥ 2 and n ≥ 2r2,
C(r)
nr− 1

2
− C1(r)

nr
< Hr <

C(r)
nr− 1

2
− (r − 1)!

2r nr
+ C2(r)

nr+ 1
2
, (2.16)

where C(r), C1(r), and C2(r) are given by (1.7)–(1.9).

Proof Rewrite (2.5) as

Hr = (−1)r−1�r(μ̂(n) − 2 log μ̂(n)) −
∞∑
k=1

(−1)r−1�r
( 1
kμ̂(n)k

)
(2.17)

and applying Proposition 2.4, we get
π

2

(1
2

)
r−1

1
(n + r)r− 1

2
− (r − 1)!

nr

+
∞∑
k=1

1
kπk

(k
2

)
r

1

(n + r)r+ k
2

≤ Hr

≤ π

2

(1
2

)
r−1

1
nr− 1

2
− (r − 1)!

(n + r)r
+

∞∑
k=1

1
kπk

(k
2

)
r

1

nr+ k
2
.

(2.18)

Since for all positive integers n, r and k ,
∞∑
k=1

1
kπk

(k
2

)
r

1

(n + r)r+ k
2

> 0.

Therefore,
π

2

(1
2

)
r−1

1
(n + r)r− 1

2
− (r − 1)!

nr
< Hr

≤ π

2

(1
2

)
r−1

1
nr− 1

2
− (r − 1)!

(n + r)r
+

∞∑
k=1

1
kπk

(k
2

)
r

1

nr+ k
2
. (2.19)
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Now we further investigate the lower bound of Hr , given in (2.19).

Hr ≥ π

2

(1
2

)
r−1

1
(n + r)r− 1

2
− (r − 1)!

nr

= π

2

(1
2

)
r−1

1
nr− 1

2

(
1 + r

n

)−r+ 1
2 − (r − 1)!

nr

= π

2

(1
2

)
r−1

1
nr− 1

2
+ π

2

(1
2

)
r−1

1
nr− 1

2

∞∑
m=1

(− 2r−1
2

m

)( r
n

)m − (r − 1)!
nr

. (2.20)

To bound the infinite series in (2.20), we proceed as follows
∣∣∣∣∣

∞∑
m=1

(− 2r−1
2

m

)( r
n

)m∣∣∣∣∣

=
∣∣∣∣∣

∞∑
m=1

(−1)m

4m

(2r+2m−2
r+m−1

)(r+m−1
r−1
)

(2r−2
r−1
)

( r
n

)m∣∣∣∣∣

≤
∞∑

m=1

1
4m

(2r+2m−2
r+m−1

)(r+m−1
r−1
)

(2r−2
r−1
)

( r
n

)m

≤
∞∑

m=1

2
√
r − 1√

π (r + m − 1)

(
r + m − 1

r − 1

)( r
n

)m

(
since

4k

2
√
k

≤
(
2k
k

)
≤ 4k√

πk
∀ k ≥ 1

)

<
2r
n

∞∑
m=0

(
r + m
r − 1

)( r
n

)m

≤ 2r
n

∞∑
m=0

rm+1
( r
n

)m (
as
(
r + m
r − 1

)
≤ rm+1 ∀r ≥ 1

)

= 2r2

n

∞∑
m=0

( r2
n

)m ≤ 4r2

n
for all n ≥ 2r2. (2.21)

From (2.20) and (2.21), it follows that for n ≥ 2r2,

Hr ≥ π

2

(1
2

)
r−1

1
nr− 1

2
− π

2

(1
2

)
r−1

4r2

nr+ 1
2

− (r − 1)!
nr

>
π

2

(1
2

)
r−1

1
nr− 1

2
−
(
(r − 1)! + 2πr2

(1
2

)
r−1

) 1
nr

. (2.22)

This finishes the estimation of the lower bound for Hr .
For the upper bound estimation of Hr , we start with (2.19) in the following way

Hr ≤ C(r)
nr− 1

2
− (r − 1)!

(n + r)r
+

∞∑
k=1

1
kπk

(
k
2

)

r

1

nr+ k
2

<
C(r)
nr− 1

2
− (r − 1)!

(2n)r
+

∞∑
k=1

1
kπk

(
k
2

)

r

1

nr+ k
2

(
since,

1
(n + r)r

>
1

(2n)r
∀ n > r

)

= C(r)
nr− 1

2
− (r − 1)!

(2n)r
+ 1

nr+ 1
2

2r−2∑
k=0

1
(k + 1)πk+1

(
k + 1
2

)

r

1
√
nk

+ 1
nr+ 1

2

∞∑
k=2r

1
kπk

(
k
2

)

r

1
√
nk−1
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≤ C(r)
nr− 1

2
− (r − 1)!

(2n)r
+ 1

nr+ 1
2

2r−2∑
k=0

1
(k + 1)πk+1

(
k + 1
2

)

r

1
rk

︸ ︷︷ ︸
:=Ĉ2(r)

+ r
nr+ 1

2

∞∑
k=2r

1
kπk

(
k
2

)

r

1
rk

︸ ︷︷ ︸
:=S(r)(

since
1

√
nk

≤ 1
rk

∀ n ≥ r2
)
. (2.23)

In order to estimate the infinite series S(r), we need to give an upper bound of
(k
2

)
r
by

rewriting as

(k
2

)
r
=
(k
2

)r r−1∏
i=0

(
1 + 2i

k

)
:=
(k
2

)r
P(r, k).

Now,

log P(r, k) =
r−1∑
i=0

log
(
1 + 2i

k

)
<

r−1∑
i=0

2i
k

= r(r − 1)
k

=⇒ P(r, k) < e
r(r−1)

k . (2.24)

Using (2.24), we obtain

S(r) <

∞∑
k=2r

1
kπk

(k
2

)r
e
r(r−1)

k
1
rk

≤ e
r−1
2

2r
∞∑

k=2r

kr−1

(πr)k
(
since e

r(r−1)
k ≤ e

r−1
2 ∀ k ≥ 2r

)
. (2.25)

Moreover, kr−1 < rk for all r ≥ 2 and k ≥ 2r. To observe this fact, note that kr−1 < rk is
equivalent to

r − 1
log r

<
k

log k
. (2.26)

Define f (x) := x
log x

and observe that f (x) is strictly increasing for all x > e. As k ≥ 2r ≥

4 > e, it follows that f (k) > f (2r) and the fact that f (2r) >
r − 1
log r

for r ≥ 2, we conclude

(2.26).
Applying (2.26) in (2.25), we get

S(r) <
e
r−1
2

2r
∞∑

k=2r

1
πk = π√

e(π − 1)

( √
e

2 π2

)r
<

1
10r

. (2.27)

Hence, by (2.27) and (2.23), we obtain for all n ≥ r2,

Hr <
C(r)
nr− 1

2
− (r − 1)!

2r nr
+ Ĉ2(r)

nr+ 1
2

+ r
10r nr+ 1

2

= C(r)
nr− 1

2
− (r − 1)!

2r nr
+
(
Ĉ2(r) + r

10r
)

︸ ︷︷ ︸
=C2(r)

1
nr+ 1

2
. (2.28)

	


3 Proof of Theorem 1.6 and 1.8
Proof of Theorem 1.6 Applying (2.13) and (2.8) in (2.7), we have for n ≥ 85 = N1(1),

L(1)(n) − 1
n2

< � log p(n) < U (1)(n) + 1
n2

. (3.1)
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It is straightforward to show that for n ≥ 457,

− 3
2(n + 1)

+ π

2
√
n(μ̂(n) − 1)

+ 1
n2

< − π2

10n
(3.2)

and therefore

U (1)(n) + 1
n2

<
π

2
√
n

− π2

10n
. (3.3)

Define cn := π

2
√
n

− π2

10n
and dn := π

2
√
n

+ π2

40n
. It can be easily checked that for n ≥ 3,

cn < dn − d2n
2

+ d3n
3

− d4n
4

< log(1 + dn) (3.4)

since log(1 + x) > x − x2

2
+ x3

3
− x4

4
for x > 0. Invoking (3.3) and (3.4) in (3.1), we get

for n ≥ 457,

� log p(n) < log
(
1 + π

2
√
n

+ π2

40n

)
. (3.5)

Similarly as before, it can be readily shown that for n ≥ 79,

L(1)(n) − 1
n2

>
π

2
√
n

− π2

8n
+ π3

24n3/2
(3.6)

and

π

2
√
n

− π2

8n
+ π3

24n3/2
> log

(
1 + π

2
√
n

)
(3.7)

as log(1 + x) < x − x2

2
+ x3

3
for x > 0. Applying (3.6) and (3.7) into (3.1), it follows that

for n ≥ 85,

� log p(n) > log
(
1 + π

2
√
n

)
. (3.8)

Equations (3.5) and (3.8) conclude the proof of Theorem 1.6 except for 26 ≤ n ≤ 456,
which we confirm by numerical checking in Mathematica. 	


Proof of Theorem 1.8 Applying (2.8) and (2.16) to the lower bound of (2.7), it follows that
for n ≥ max{N1(r), 2r2},

(−1)r−1�r log p(n) >
C(r)
nr− 1

2
− C1(r)

nr
− 1

nr+1 >
C(r)
nr− 1

2
− 1 + C1(r)

nr
. (3.9)

Werecall from (1.10) thatN2(r) =
⌈(

1 + C1(r)
C(r)

)2⌉
. Then for alln ≥ max{N1(r), 2r2, N2(r)},

it follows that

(−1)r−1�r log p(n) >
C(r)
nr− 1

2
− 1 + C1(r)

nr
> log

(
1 + C(r)

nr− 1
2

− 1 + C1(r)
nr

)
> 0.(3.10)

For the upper bound estimation, putting (2.8) and (2.16) together into the upper bound
of (2.7), it follows that for n ≥ max{N1(r), 2r2},

(−1)r−1�r log p(n) <
C(r)
nr− 1

2
− (r − 1)!

2r nr
+ C2(r)

nr+ 1
2

+ 1
nr+1
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<
C(r)
nr− 1

2
− (r − 1)!

2r nr
+ C2(r) + 1

nr+ 1
2

. (3.11)

Next, our goal is to show for n ≥ N3(r),

− (r − 1)!
2r nr

+ C2(r) + 1
nr+ 1

2
< − C(r)2

2 n2r−1 ,

which is equivalent to

C(r)2

2
< nr−1

[
(r − 1)!

2r
− C2(r) + 1√

n

]
. (3.12)

Note that for all n ≥
⌈(2r+1

(
C2(r) + 1

)

(r − 1)!

)2⌉
,
(r − 1)!
2r+1 − C2(r) + 1√

n
> 0 and therefore

nr−1
[
(r − 1)!

2r
− C2(r) + 1√

n

]
= nr−1

[
(r − 1)!
2r+1

+ (r − 1)!
2r+1 − C2(r) + 1√

n

]
> nr−1 (r − 1)!

2r+1 . (3.13)

Hence, to prove (3.12), it is sufficient to prove

nr−1 (r − 1)!
2r+1 >

C(r)2

2
which holds for all n ≥

⌈
r−1

√√√√
(
2rC(r)2

(r − 1)!

)⌉
. (3.14)

Recall that

N3(r) = max
{
N1(r), 2r2,

⌈(2r+1
(
C2(r) + 1

)

(r − 1)!

)2⌉
,
⌈

r−1

√√√√
(
2rC(r)2

(r − 1)!

)⌉}
(cf. (1.11).

From (3.11) and (3.12), it follows that for n ≥ N3(r),

(−1)r−1�r log p(n) <
C(r)
nr− 1

2
− C(r)2

2 n2r−1 < log
(
1 + C(r)

nr−1/2

)
. (3.15)

Equations (3.10) and (3.15) together imply that for n ≥ max{N2(r), N3(r)} = N (r), (1.13)
holds. 	
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