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Let p(n) denote the integer partition function. Good
conjectured that Δrp(n) alternates in sign up to a certain 
value n = n(r), and then it stays positive. Gupta showed 
that for any given r and sufficiently large n, Δrp(n) > 0. 
Odlyzko proved this conjecture and gave an asymptotic 
formula for n(r). Then, Almkvist, Knessel and Keller gave 
many contributions for the exact value of n(r). For the finite 
difference of log p(n), DeSalvo and Pak proved that 0 ≤
−�2 log p(n −1) ≤ log(1 + 1

n
) and conjectured a sharper upper 

bound for −�2 log p(n). Chen, Wang and Xie proved this 
conjecture and showed the positivity of (−1)r−1�r log p(n), 
and further gave an upper bound for (−1)r−1�r log p(n). As 
for the overpartition function p(n), Engel recently proved that 
p(n) is log-concave for n ≥ 2, that is, −�2 log p(n) ≥ 0 for 
n ≥ 2. Motivated by these results, in this paper we will prove 
the positivity of finite differences of the overpartition function 
and give an upper bound for �rp(n). Then we show that for 
any given r ≥ 1, there exists a positive number n(r) such 
that (−1)r−1�r log p(n) > 0 for n > n(r), where � is the 
difference operator with respect to n. Moreover, we give an 
upper bound for (−1)r−1�r log p(n).
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1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers 
whose sum is n. Let p(n) denote the number of partitions of n. In 1918, Hardy and 
Ramanujan [14] obtained the following asymptotic formula

p(n) ∼ 1
4
√

3n
e
π
√

2
3n as n → ∞. (1.1)

For details, the Hardy–Ramanujan–Rademacher formula for p(n) states that for N ≥ 1,

p(n) =
√

12
24n− 1

N∑
k=1

Ak(n)
√
k

[(
1 − k

μ(n)

)
eμ(n)/k +

(
1 + k

μ(n)

)
e−μ(n)/k

]

+ R2(n,N),

where Ak(n) is an arithmetic function, R2(n, N) is the remainder term and

μ(n) = π

6
√

24n− 1, (1.2)

see, for example, Hardy and Ramanujan [14], Rademacher [23]. In 1937, Lehmer [18,19]
gave the following error bound

|R2(n,N)| < π2N−2/3
√

3

[(
N

μ(n)

)3

sinh μ(n)
N

+ 1
6 −

(
N

μ(n)

)2
]
,

which is valid for all positive integers n and N .
From 1977, many mathematicians began to investigate the finite difference of p(n). 

Good [12] conjectured that Δrp(n) alternates in sign up to a certain value n = n(r), 
and then it stays positive, where � is the difference operator denoted by �f(n) =
f(n + 1) − f(n), and Δr is defined recursively in terms of Δ by Δr = Δ(Δr−1). Gupta 
[13] proved that for any given r, Δrp(n) > 0 for sufficiently large n. Odlyzko [22] proved 
this conjecture and gave an asymptotic formula for n(r):

n(r) ∼ 6
π2 r

2 log2 r as r → ∞. (1.3)

Then, Knessl and Keller [16,17] used WKB method to obtain an approximation n(r)′
for n(r) for which |n(r)′ − n(r)| ≤ 2 up to r = 75. Moreover, Almkvist [2,3] proved that 
n(r) satisfies certain equations.

Recently, using the Hardy–Ramanujan–Rademacher formula and Lehmer’s error 
bound, DeSalvo and Pak [9] proved the following inequalities conjectured by Chen [4].
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Theorem 1.1. For n ≥ 26,

p(n)
p(n + 1) >

p(n− 1)
p(n) ,

and for n ≥ 2,

p(n− 1)
p(n)

(
1 + 1

n

)
>

p(n)
p(n + 1) .

They also proposed the following conjecture.

Conjecture 1.2. For n ≥ 45, we have

p(n− 1)
p(n)

(
1 + π√

24n3/2

)
>

p(n)
p(n + 1) .

Chen, Wang and Xie [6] proved this conjecture and further obtained the following 
theorem analogous to the positivity of �rp(n) obtained by Gupta [13].

Theorem 1.3. For each r ≥ 1, there exists a positive integer n(r) such that for n ≥ n(r),

(−1)r−1�r log p(n) > 0. (1.4)

They also gave the following upper bound for (−1)r−1�r log p(n).

Theorem 1.4. For each r ≥ 1, there exists a positive integer n(r) such that for n ≥ n(r),

(−1)r−1�r log p(n) < log
(

1 +
√

6π
6

(
1
2

)
r−1

1
(n + 1)r− 1

2

)
, (1.5)

where (1
2 )r−1 is the rising factorial, namely, (1

2 )r−1 = 1
2 (1

2 + 1) · · · (1
2 + k− 1) for k ≥ 1.

In this paper, we extend these results to overpartitions. An overpartition of n is a 
partition of n for which the first occurrence (equivalently, the last occurrence) of a num-
ber may be overlined. For example, the eight overpartitions of 3 are 3, 3, 2 + 1, 2 + 1, 2 +
1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1. Overpartitions play an important role in hypergeometric 
series identities [20,21], supersymmetric functions and mathematical physics [10], repre-
sentation theory and Lie algebras [15].

Let p(n) denote the number of overpartitions of n. Hardy and Ramanujan [14] stated 
that

p(n) = 1
4π

d

dn

eπ
√
n

√
n

+
√

3
2π cos

(
2
3nπ − 1

6π
)

d

dn

(
eπ

√
n/3

√
n

)
+ · · · + O

(
n−1/4

)
. (1.6)
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Zuckerman [25] gave the following Rademacher-type convergent series

p(n) = 1
2π

∑
k≥1
2�k

√
k

∑
0≤h<k
(h,k)=1

ω(h, k)2

ω(2h, k)e
−2πihn/k d

dn

(
sinh(π

√
n/k)√

n

)
, (1.7)

where

ω(h, k) = exp
(
πi

k−1∑
r=1

r

k

(
hr

k
−

⌊
hr

k

⌋
− 1

2

))
. (1.8)

Recently, Engel [11] split p(n) into two parts for any integer N ≥ 1

p(n) = 1
2π

∑
k≥1
2�k

√
kÂk(n) d

dn

(
sinh(μ̂/k)√

n

)
(1.9)

= 1
2π

N∑
k≥1
2�k

√
kÂk(n) d

dn

(
sinh(μ̂/k)√

n

)
+ R2(n,N), (1.10)

and gave the following error bound

|R2(n,N)| ≤ N5/2

nμ̂
sinh

(
μ̂

N

)
, (1.11)

where

μ̂ = μ̂(n) = π
√
n,

Âk(n) =
∑

0≤h<k
(h,k)=1

ω(h, k)2

ω(2h, k)e
−2πihn/k. (1.12)

Using the error bound (1.11), Engel [11] deduced the log-concavity of p(n):

Theorem 1.5. The function p(n) is log-concave for n ≥ 2.

Motivated by these results, we shall give an exact formula for �rp(n) and show that 
for any given r, there exists n(r) such that �rp(n) is positive for n > n(r). We also 
give an upper bound for �rp(n) in Section 2. In Section 3, we shall show the positivity 
of (−1)r−1�r log p(n) for sufficiently large n. At last, we also give an upper bound for 
(−1)r−1�r log p(n).
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2. The positivity of �rp(n)

In this section, we will prove that for any given r ≥ 1, there is an integer n(r)
such that for n ≥ n(r), �rp(n) > 0, where � is the difference operator denoted by 
�f(n) = f(n +1) −f(n), and Δr is defined recursively in terms of Δ by Δr = Δ(Δr−1). 
This is analogous to the positivity of finite differences of the partition function, which 
has been extensively studied by Good [12], Gupta [13], Odlyzko [22], Knessl and Keller 
[16,17], and Almkvist [2,3].

Theorem 2.1. For each r ≥ 1, there exists a positive integer n(r) such that for n ≥ n(r),

�rp(n) > 0.

To prove the above theorem, we introduce an important theorem given by Almkvist [2].
First, let us introduce some notations. Let

Lν(x) =
∑
m≥0

xm

m!Γ(m + ν + 1) .

Consider the function

F (x) =
∞∑

n=1
a(n)xn,

where a(n) can be represented by the following form

a(n) =
∑
k≥1

∑
(h,k)=1

u(h, k)e−2πihn/kLν(dk(n + α)),

where ν and α are constants depending on F (x), and u(h, k) and dk are complex numbers. 
We assume that a(0) = 1, a(n) = 0 for n < 0.

Denote the function g(x) be the generating function of b(n), namely,

g(x) =
∑
n≥0

b(n)xn.

Define

S(x) = g(x)/F (x) =
∑
n≥0

e(n)xn,

and

Sn(x) =
n∑

e(m)xm.

m=0
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Almkvist [2] gave the following theorem.

Theorem 2.2. Let F (x) =
∑∞

0 a(n)xn be a function satisfying above conditions. Then 
we have

b(n) =
∞∑
k=1

∑
(h,k)=1

ω(h, k)e−2πihn/kSn

(
e−(D−2πih/k)

)
Lν(dk(n + α)),

where D is the differential operator d/dn.

Proof of Theorem 2.1. It is known that

L3/2(x) = 1√
π

d

dx

(
sinh(2

√
x)√

x

)
,

see Abramowitz and Stegun [1] or Chen, Wang and Xie [6]. Thus, we have

d

dx

(
sinh(π

√
x/k)√

x

)
=

√
π

8

(π
k

)3
L3/2

(
π2

4k2x

)
. (2.1)

Applying (2.1) to (1.7), we obtain that

p(n) = 1
16π

5
2
∑
k≥1
2�k

∑
0≤h<k
(h,k)=1

ω(h, k)2

ω(2h, k)e
−2πihn/kk−

5
2L3/2

(
π2

4k2n

)
.

Let F (x) denote the generating function of overpartition p(n)

F (x) =
∑
n≥1

p(n)xn.

It is easy to see that

F (x) =
∏
n≥1

1 + xn

1 − xn
,

see Corteel and Lovejoy [8].
Based on the above formula, we can deduce that the generating function of �rp(n −r). 

We claim that the generating function g(n) of �rp(n − r) has the following form:

g(x) =
∑
n≥1

�rp(n− r)xn = (1 − x)r
∏
n≥1

1 + xn

1 − xn
. (2.2)

We prove it by induction on r. We assume that p(n) = 0 for n ≤ 0. For r = 1, it can be 
checked that
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∑
n≥1

�p(n− 1)xn =
∑
n≥1

(p(n) − p(n− 1))xn

=
∑
n≥1

p(n)xn − x
∑
n≥0

p(n− 1)xn−1

= (1 − x)
∏
n≥1

1 + xn

1 − xn
.

Suppose that (2.2) is true for r = k. Then

∑
n≥1

�k+1p(n− k − 1)xn =
∑
n≥0

(
�kp(n− k) −�kp(n− k − 1)

)
xn

=
∑
n≥1

�kp(n− k)xn − x
∑
n≥1

�kp(n− k − 1)xn−1

= (1 − x)k
∏
n≥1

1 + xn

1 − xn
− (1 − x)kx

∏
n≥1

1 + xn

1 − xn

= (1 − x)k+1
∏
n≥1

1 + xn

1 − xn
.

So (2.2) is true for r = k + 1. This shows that (2.2) is true for all positive integers n.
Then, we have

S(x) = g(x)
F (x) = (1 − x)r.

By the definition of Sn(x), we find that for n ≥ r,

Sn(x) = (1 − x)r.

Hence, by Theorem 2.2, we find that for n ≥ r,

�rp(n− r) = 1
16π

5
2
∑
k≥1
2�k

∑
0≤h<k
(h,k)=1

ω(h, k)2

ω(2h, k)e
−2πihn/kk−

5
2Sn

(
e−(D−2πih/k)

)
L3/2

(
π2

4k2n

)
.

Since

sinh D

2 =
∞∑

n=0

(D2 )2n+1

(2n + 1)! = D

2

(
1 + D2

24 + · · ·
)
,

we deduce that for n ≥ r,
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Sn(e−D) = (1 − e−D)r = 2re−rD/2
(

sinh D

2

)r

= e−rD/2Dr
(
1 + r

24D
2 + · · ·

)
.

It follows that for n ≥ r,

�rp(n− r) = 1
16π

5
2

(
e−rD/2Dr

(
1 + r

24D
2 + · · ·

)
(2.3)

+
∑
k≥3
2�k

∑
0≤h<k
(h,k)=1

ω(h, k)2

ω(2h, k)e
−2πihn/kk−

5
2Sn

(
e−(D−2πih/k)

))
L3/2

(
π2

4 n

)
.

By the definition of function Lν(n), it is easily verified that

DLν(n) = Lν+1(n),

so

DrL3/2

(
π2

4 n

)
=

(
π2

4

)r

Lr+3/2

(
π2

4 n

)
. (2.4)

And by Taylor’s theorem, we have that

e−rD/2Lν

(
π2

4 n

)
= Lν

(
π2

4

(
n− r

2

))
. (2.5)

Applying (2.4) and (2.5) to (2.3) and replacing n − r with n, we obtain that

�rp(n) = 1
16π

5
2

((
π2

4

)r

Lr+3/2

(
π2

4

(
n + r

2

))
+ r

24

(
π2

4

)r+2

Lr+7/2

(
π2

4

(
n + r

2

))
+ · · ·

)

+ 1
16π

5
2
∑
k≥3
2�k

∑
0≤h<k
(h,k)=1

ω(h, k)2

ω(2h, k)e
−2πih(n+r)/kk− 5

2 Sn

(
e−(D−2πih/k)

)
L3/2

(
π2

4 (n + r)
)
.

(2.6)

On the other hand, applying (2.1) to (1.9), we have

p(n) = 1
16π

5
2
∑
k≥1
2�k

Âk(n)k− 5
2L3/2

(
π2

4k2n

)
. (2.7)

Denote the kth term in (2.7) by fk(n), namely,

fk(n) = 1
π

5
2 Âk(n)k− 5

2L3/2

(
π2

2n

)
. (2.8)
16 4k
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Now we estimate the rth difference of fk(n). First, from the proof of Almkvist’s theorem, 
one can get that �rf1(n) is the first sum in (2.6), that is,

�rf1(n) = 1
16π

5
2

((
π2

4

)r

Lr+3/2

(
π2

4

(
n + r

2

))
+ r

24

(
π2

4

)r+2

Lr+7/2

(
π2

4

(
n + r

2

))
+ · · ·

)
.

Then, we can estimate �rf1(n) as follow

�rf1(n) ≥ 1
16π

5
2

(
π2

4

)r

Lr+3/2

(
π2

4

(
n + r

2

))
. (2.9)

Now we turn to give a lower bound for |�rfk(n)| for k ≥ 3. Since for any function f(n),

�rf(n) =
r∑

k=0

(−1)r−k

(
r

k

)
f(n + k), (2.10)

thus, by (2.8) we have that

|�rfk(n)| = 1
16π

5
2 k−

5
2

∣∣∣∣∣
r∑

i=0
(−1)r−i

(
r

i

)
Âk(n + i)L3/2

(
π2

4k2 (n + i)
)∣∣∣∣∣ .

It is easily seen that L3/2(x) increases with x, and |Âk(n)| ≤ k. So

|�rfk(n)| ≤ 1
16π

5
2 k−

5
2 · 2r · kL3/2

(
π2

4k2 (n + r)
)

≤ 1
16π

5
2 2r · k− 3

2L3/2

(
π2

36 (n + r)
)
. (2.11)

Thus, summing |�rfk(n)| over all k is odd and k ≥ 3, we arrive at

∑
k≥3,2�k

|�rfk(n)| ≤ 1
16π

5
2 2rζ(3/2)L3/2

(
π2

36 (n + r)
)
, (2.12)

where ζ(x) is the Riemann zeta function.
Comparing (2.12) with (2.9), we claim that there exists a positive integer n1(r) such 

that for n ≥ n1(r),

�rf1(n) >
∑

k≥3,2�k

|�rfk(n)|. (2.13)

For convenience, we denote the right hand side of (2.9) and (2.12) by g(n) and h(n), 
respectively. That is,
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f(n) = 1
16π

5
2

(
π2

4

)r

Lr+3/2

(
π2

4

(
n + r

2

))
, (2.14)

h(n) = 1
16π

5
2 2rζ(3/2)L3/2

(
π2

36 (n + r)
)
. (2.15)

By the definition of Lν(x), we have that for any given r,

Lr+3/2

(
π2

4

(
n + r

2

))
=

∑
m≥0

π2m

4mm!Γ(m + r + 5/2)

(
n + r

2

)m

, (2.16)

L3/2

(
π2

36 (n + r)
)

=
∑
m≥0

π2m

4mm!Γ(m + 5/2)

(n
9 + r

9

)m

. (2.17)

It is easily seen that Lr+3/2

(
π2

4
(
n + r

2
))

and L3/2

(
π2

36 (n + r)
)

both increase with n. 
Thus, by the definition of g(n) and h(n), we get that both of them increase with n. 
For large n, g(n) and h(n) are dominated by (n + r/2)m/Γ(m + r + 5/2) and (n/9 +
r/9)m/Γ(m +5/2), respectively, and (n +r/2)m/Γ(m +r+5/2) > (n/9 +r/9)m/Γ(m +5/2)
for large n. Thus g(n) is larger than h(n) for sufficiently large n, that is, for n ≥ n1(r),

�rf1(n) ≥
∑

k≥3,2�k

|�rfk(n)|, (2.18)

where n1(r) may be taken to be the solution of the equation g(n) = h(n), i.e., the 
solution of

2rζ(3/2)L3/2

(
π2

36 (n + r)
)

=
(
π2

4

)r

Lr+3/2

(
π2

4

(
n + r

2

))
. (2.19)

One can obtain an approximate solution of the above equation by using Newton–Raphson 
method.

Summing up, for each r ≥ 1, let n(r) = max{r, n1(r) + 1}, we conclude that for 
n ≥ n(r), we have �rp(n) > 0. This completes the proof. �

Up to now, we have shown the positivity of the �rp(n). In fact, using the inequality 
(2.11), we can also give the following upper bound for �rp(n).

Theorem 2.3. For r ≥ 1,

�rp(n) ≤ 2r−3
(
1 − 2− 3

2

)
ζ(3/2)e

π
√
n+r

n + r
.

Proof. Recall that inequality (2.11) states that for r ≥ 1 and k ≥ 1,

|�rfk(n)| ≤ 1
π

5
2 2r · k− 3

2L3/2

(
π2

(n + r)
)
.
16 4
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Thus, we find that for r ≥ 1,

�rp(n) ≤
∑

k≥1,2�k

|�rfk(n)|

≤ 1
16π

5
2 2rL3/2

(
π2

4 (n + r)
)⎛
⎝∑

k≥1

k−
3
2 −

∑
k≥1,2|k

k−
3
2

⎞
⎠

≤ 1
16π

5
2 2rL3/2

(
π2

4 (n + r)
)(

ζ(3/2) − 2− 3
2 ζ(3/2)

)

≤ 1
16π

5
2 2r

(
1 − 2− 3

2

)
ζ(3/2)L3/2

(
π2

4 (n + r)
)
.

Using the following inequality due to Almkvist [3]

L3/2(x) ≤ 1
2
√
π

e2
√
x

x
,

we obtain that

�rp(n) ≤ 1
16π

5
2 2r

(
1 − 2− 3

2

)
ζ(3/2) 1

2
√
π

e2
√

π2(n+r)/4

π2(n + r)/4

≤ 2r−3
(
1 − 2− 3

2

)
ζ(3/2)e

π
√
n+r

n + r
.

This completes the proof. �
Note that �rp(n) really grow exponentially. Hence, as a conclusion of this section, we 

propose the following open problem.

Problem 2.4. Find a sharp lower bound for �rp(n).

3. The positivity of (−1)r−1�r log p(n)

In this section, we shall prove that for any given r ≥ 1, there exists a positive number 
n(r) such that for n > n(r), (−1)r−1�r log p(n) is positive.

Theorem 3.1. For each r ≥ 1, there exists a positive integer n(r) such that for n ≥ n(r),

(−1)r−1�r log p(n) > 0.

Proof. The case r = 1 is trivial since p(n + 1) > p(n) for n ≥ 1. For r = 2, Engel [11]
has shown that p(n) is log-concave for n ≥ 2, namely, for n ≥ 2,
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−�2 log p(n) ≥ 0.

We now consider the case r ≥ 3. Notice that

d

dn

(
sinh(μ̂(n)/k)√

n

)
= π

2kn

(
cosh

(
μ̂(n)
k

)
− k

μ̂(n) sinh
(
μ̂(n)
k

))

= π

4kn

((
1 + k

μ̂(n)

)
e

−μ̂(n)
k +

(
1 − k

μ̂(n)

)
e

μ̂(n)
k

)
,

where μ̂(n) = π
√
n, we can rewrite (1.9) as

p(n) = 1
8n

∑
k≥1
2�k

1√
k
Âk(n)

((
1 + k

μ̂(n)

)
e

−μ̂(n)
k +

(
1 − k

μ̂(n)

)
e

μ̂(n)
k

)
. (3.1)

Recall that Â1(n) = 1 in (1.12), we split p(n) into two terms as Engel [11]

p(n) = T̂ (n) + R̂(n), (3.2)

where

T̂ (n) = 1
8n

(
e−μ̂(n) +

(
1 − 1

μ̂(n)

)
eμ̂(n)

)
, (3.3)

R̂(n) = e−μ̂(n)

8nμ̂(n) + R2(n, 2). (3.4)

Restate (3.2) as

p(n) = T̂ (n)
(

1 + R̂(n)
T̂ (n)

)
. (3.5)

Applying (3.3) to (3.5) and taking the logarithm of both sides, we have that

log p(n) = log π2

8 − 3 log μ̂(n) + log(μ̂(n) − 1) + μ̂(n)

+ log
(

1 + μ̂(n)
μ̂(n) − 1e

−2μ̂(n)
)

+ log
(

1 + R̂(n)
T̂ (n)

)
.

Hence, (−1)r−1�r log p(n) can be expressed as

(−1)r−1�r log p(n) = Hr + F1 + F2, (3.6)

where
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Hr = (−1)r−1�r(−3 log μ̂(n) + log(μ̂(n) − 1) + μ̂(n)), (3.7)

F1 = (−1)r−1�r log
(

1 + μ̂(n)
μ̂(n) − 1e

−2μ̂(n)
)
, (3.8)

F2 = (−1)r−1�r log
(

1 + R̂(n)
T̂ (n)

)
. (3.9)

Let

Gr = F1 + F2, (3.10)

then we have that for r ≥ 1,

(−1)r−1�r log p(n) ≥ Hr − |Gr|. (3.11)

To estimate the lower bound for (−1)r−1�r log p(n), we shall give a lower bound for Hr

and an upper bound for |Gr|. We first concern with |Gr| and get the following upper 
bound for |Gr|.

Lemma 3.2. For n ≥ 225, we have

|Gr| ≤ 2r+1e−
μ̂(n)

2 . (3.12)

To prove Lemma 3.2, we need to give upper bounds for |F1| and |F2|. Recall that for 
any function f(n),

�rf(n) =
r∑

k=0

(−1)r−k

(
r

k

)
f(n + k),

we have that

F1 =
r∑

k=0

(−1)k+1
(
r

k

)
log

(
1 + μ̂(n + k)

μ̂(n + k) − 1e
−2μ̂(n+k)

)
.

So,

|F1| ≤
r∑

k=0

(
r

k

)
log

(
1 + μ̂(n + k)

μ̂(n + k) − 1e
−2μ̂(n+k)

)
. (3.13)

It is easily seen that 1 + μ̂(n)
μ̂(n)−1e

−2μ̂(n) decreases with n for n ≥ 1. Thus, we have that 
for n ≥ 1 and 0 ≤ k ≤ r,

log
(

1 + μ̂(n + k)
e−2μ̂(n+k)

)
≤ log

(
1 + μ̂(n)

e−2μ̂(n)
)
. (3.14)
μ̂(n + k) − 1 μ̂(n) − 1
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Applying (3.14) to (3.13), we obtain that for n ≥ 1,

|F1| ≤ 2r log
(

1 + μ̂(n)
μ̂(n) − 1e

−2μ̂(n)
)
. (3.15)

It is easily verified that for x ≥ 0,

log(1 + x) ≤ x. (3.16)

So we have that for n ≥ 1,

|F1| ≤ 2r μ̂(n)
μ̂(n) − 1e

−2μ̂(n). (3.17)

Now we turn to |F2|. Let us first find appropriate bounds for R̂(n) and T̂ (n), which 
will be used in the estimation of |F2|. By (1.11) and (3.4), we have

|R̂(n)| ≤
∣∣∣∣ e−μ̂(n)

8nμ̂(n)

∣∣∣∣ + |R2(n, 2)|

≤ e−μ̂(n)

8nμ̂(n) + 25/2

nμ̂(n) sinh
(
μ̂(n)

2

)

≤

(
e−

μ̂(n)
2

8 − 1
)
e−

μ̂(n)
2 + 23/2e

μ̂(n)
2

nμ̂(n)

≤ 23/2

nμ̂(n)e
μ̂(n)

2 . (3.18)

Recall that

T̂ (n) = 1
8n

(
e−μ̂(n) +

(
1 − 1

μ̂(n)

)
eμ̂(n)

)
.

Since μ̂(n) > π, we have that

T̂ (n) > 1
8n

(
1 − 1

μ̂(n)

)
eμ̂(n)

>
1
8n

(
1 − 1

π

)
eμ̂(n)

>
1

16ne
μ̂(n) > 1. (3.19)

Thus, by (3.18) and (3.19), we see that for n ≥ 3,

0 <
|R̂(n)|
ˆ ≤ 211/2

μ̂
e−

μ̂
2 < 1. (3.20)
T (n)
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Now we proceed to estimate |F2|. By (3.9) and (2.10), we have

|F2| ≤
r∑

k=0

(
r

k

) ∣∣∣∣∣log
(

1 + R̂(n + k)
T̂ (n + k)

)∣∣∣∣∣ . (3.21)

For 0 < x < 1, it can be easily checked that

| log(1 ± x)| ≤ − log(1 − x). (3.22)

Then we deduce that for n ≥ 3,
∣∣∣∣∣log

(
1 + R̂(n + k)

T̂ (n + k)

)∣∣∣∣∣ ≤ − log
(

1 − |R̂(n + k)|
T̂ (n + k)

)
. (3.23)

Thus, for n ≥ 3,

|F2| ≤ −
r∑

k=0

(
r

k

)
log

(
1 − |R̂(n + k)|

T̂ (n + k)

)
. (3.24)

Since − log(1 − x) is increasing for x > −1, combining (3.20) and (3.24), we get that for 
n ≥ 3,

|F2| ≤ −
r∑

k=0

(
r

k

)
log

(
1 − 211/2

μ̂(n + k)e
− μ̂(n+k)

2

)
. (3.25)

It can be checked that 211/2

μ̂(n+k)e
− μ̂(n+k)

2 decreases with n. Thus we have that for n ≥ 3,

|F2| ≤ −2r log
(

1 − 211/2

μ̂(n) e
− μ̂(n)

2

)
. (3.26)

In view of the fact that for 0 < x < 1,

log(1 − x) ≥ −x

1 − x
, (3.27)

from (3.26), we get that for n ≥ 3,

|F2| ≤ 2r
⎛
⎝ 211/2

μ̂(n) e
− μ̂(n)

2

1 − 211/2

μ̂(n) e
− μ̂(n)

2

⎞
⎠ = 2re−

μ̂(n)
2

(
211/2

μ̂(n) − 211/2e−
μ̂(n)

2

)
. (3.28)

Since μ̂(n) increases with n and e−
μ̂(n)

2 decreases with n, it can be checked that for 
n ≥ 225,
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0 <
211/2

μ̂(n) − 211/2e−
μ̂(n)

2
< 1. (3.29)

So we have that for n ≥ 225,

|F2| ≤ 2re−
μ̂(n)

2 . (3.30)

Combining (3.17) and (3.30), we obtain that for n ≥ 225,

|Gr| ≤ |F1| + |F2|

≤ 2r μ̂(n)
μ̂(n) − 1e

−2μ̂(n) + 2re−
μ̂(n)

2

≤ 2re−
μ̂(n)

2

(
μ̂(n)

μ̂(n) − 1e
− 3μ̂(n)

2 + 1
)

≤ 2r+1e−
μ̂(n)

2 . (3.31)

This completes the proof. �
To estimate Hr, we introduce the following proposition due to Odlyzko [22].

Proposition 3.3. Let r be a positive integer. Suppose that f(x) is a function with infinite 
continuous derivatives for x ≥ 1, and (−1)k−1f (k)(x) > 0 for k ≥ 1. Then for r ≥ 1,

(−1)r−1f (r)(x + r) ≤ (−1)r−1�rf(x) ≤ (−1)r−1f (r)(x). (3.32)

We are ready to estimate Hr. Since for n ≥ 1,

log(μ̂(n) − 1) − log μ̂(n) = −
∞∑
k=1

1
kμ̂(n)k ,

equality (3.7) can be rewritten as

Hr = (−1)r−1�r(μ̂(n) − 2 log μ̂(n)) −
∞∑
k=1

(−1)r−1�r

(
1

kμ̂(n)k

)
. (3.33)

It is easily seen that the rth derivatives of μ̂(x) = π
√
x, log μ̂(x) and μ̂(x)−k are given 

as follows

μ̂(r)(x) = π

2 (−1)r−1
(

1
2

)
r−1

1
xr− 1

2
, (3.34)

log(r) μ̂(x) = 1
2(−1)r−1 (r − 1)!

xr
, (3.35)

(
1

k

)(r)

= 1
k
(−1)r

(
k
)

1
r+ k . (3.36)
μ̂(x) π 2 r x 2
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Hence, by Proposition 3.3, we find that for r ≥ 1 and k ≥ 1,

Hr ≥ π

2

(
1
2

)
r−1

1
(n + r)r− 1

2
− (r − 1)!

nr
+

∞∑
k=1

1
kπk

(
k

2

)
r

1
(n + r)r+ k

2

≥ π

2

(
1
2

)
r−1

1
(n + r)r− 1

2
− (r − 1)!

nr
. (3.37)

Observe that for n ≥ r,

1
(n + r)r− 1

2
≥ 1

(2n)r− 1
2
.

It follows that for n ≥ r,

Hr ≥ a1

nr− 1
2
− (r − 1)!

nr
, (3.38)

where

a1 = π

2r+ 1
2

(
1
2

)
r−1

.

Up to now, we have given an upper bound for |Gr| and a lower bound for Hr. We 
proceed to focus on (−1)r−1�r log p(n). Applying (3.12) and (3.38) to (3.11) yields that 
for n ≥ max{225, r},

(−1)r−1�r log p(n) ≥ Hr − |Gr| ≥
a1

nr− 1
2
− (r − 1)!

nr
− 2r+1e−

μ̂(n)
2 .

It can be seen that for n ≥ 4((r+1)!)2
a2
1

+ 1,

(r − 1)!
nr

<
a1

2nr− 1
2
.

Thus, we get that for n ≥ max
{

225, r, 4((r+1)!)2
a2
1

+ 1
}

,

(−1)r−1�r log p(n) > a1

2nr− 1
2
− 2r+1e−

μ̂(n)
2 . (3.39)

To prove the positivity of (−1)r−1�r log p(n), we consider the following equation

a1

2xr− 1
2

= 2r+1e−
μ̂(x)

2 . (3.40)

We claim the equation has two real roots
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x1 = 4(2r − 1)2

π2

⎛
⎝W0

⎛
⎝− π

4(2r − 1)

(
π

8
√

2

(
1
2

)
r−1

) 1
2r−1

⎞
⎠
⎞
⎠

2

, (3.41)

x2 = 4(2r − 1)2

π2

⎛
⎝W−1

⎛
⎝− π

4(2r − 1)

(
π

8
√

2

(
1
2

)
r−1

) 1
2r−1

⎞
⎠
⎞
⎠

2

, (3.42)

where W0(z) and W−1(z) are two branches of Lambert W function W (z), see Corless, 
Gonnet, Hare, Jeffrey and Knuth [7].

By the property of Lambert W function, we know that for any Lambert W function 
W (z), W (z) has two real values W0(z) and W−1(z) for −1

e < z < 0. Using the following 
inequality given by Robbins [24]

r! <
√

2πrr+ 1
2 e−r+ 1

12r , (3.43)

we obtain that

−1
e
< − π

4(2r − 1)

(
π

8
√

2

(
1
2

)
r−1

) 1
2r−1

< 0. (3.44)

So equation (3.40) has two real roots. Let b = max{x1, x2} be the larger real root. It 
follows that for n ≥ b + 1,

a1

2nr− 1
2
− 2r+1e−

μ̂(n)
2 > 0. (3.45)

Let

n(r) = max
{

225, r, 4((r + 1)!)2

a2
1

+ 1, b + 1
}
.

Combining (3.39) and (3.45), we conclude that for n ≥ n(r),

(−1)r−1�r log p(n) > 0.

This completes the proof. �
Note that Theorem 3.1 means that for any r, there exists n′(r) such that for n > n′(r)

we have 1
p(n) is log-monotonic of order r. (For more background for log-monotonic 

sequences, see [5].) Furthermore, we also wish to seek for a sharp lower bound for 
(−1)r−1�r log p(n).

Problem 3.4. If there exists a positive number A such that

(−1)r−1�r log p(n)
n− r−1

2
> A,

for any r and sufficiently large n?
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4. An upper bound for (−1)r−1�r log p(n)

In this section, we give an upper bound for (−1)r−1�r log p(n).

Theorem 4.1. For each r ≥ 1, there exists a positive integer n(r) such that for n ≥ n(r),

(−1)r−1�r log p(n) < π

2

(
1
2

)
r−1

1
nr− 1

2
. (4.1)

Proof. First, we treat the case r = 1, which states that for n ≥ 36

� log p(n) < π

2
√
n
.

Since the upper bound for |Gr| has been given in (3.12). We only need to find an appro-
priate upper bound for Hr for r = 1. By Proposition 3.3, we have

H1 ≤ π

2
√
n
− 3

2(n + 1) + π

2
√
n(π

√
n− 1)

. (4.2)

Combining (4.2) and the upper bound for |G1| in (3.12) leads to that for n ≥ 1,

� log p(n) ≤ H1 + |G1| ≤
π

2
√
n
− 3

2(n + 1) + π

2
√
n(π

√
n− 1)

+ 4e−
μ̂(n)

2 . (4.3)

We proceed to estimate the last three terms of the right hand side of (4.3). For the 
second term, it is easily seen that for n ≥ 1,

− 3
2(n + 1) ≤ − 3

4n. (4.4)

For the third term of the right hand side of (4.3). Since π
√
n > 4 for n ≥ 2, we have 

that for n ≥ 2,

π

2
√
n(π

√
n− 1)

= 1
2n(1 − 1

π
√
n
)
<

2
3n. (4.5)

For the last term of the right hand side of (4.3). Notice that for n ≥ 36,

4e−
μ̂(n)

2 <
1

12n. (4.6)

Combining (4.3)–(4.6), we see that for n ≥ 36,

� log p(n) < π√ .

2 n
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We now turn to the case r ≥ 2. Recall that

(−1)r−1�r log p(n) = Hr + Gr,

thus for n ≥ 1,

(−1)r−1�r log p(n) ≤ Hr + |Gr|. (4.7)

Now we need an upper bound for Hr. Applying Proposition 3.3 to (3.33), we get

Hr ≤ π

2

(
1
2

)
r−1

1
nr− 1

2
− (r − 1)!

(n + r)r +
∞∑
k=1

1
kπk

(
k

2

)
r

1
nr+ k

2
. (4.8)

Notice that for n ≥ r,

1
(n + r)r ≥ 1

(2n)r ,

1
nr+ k

2
≤ 1

nr+ 1
2
· 1
r

k
2− 1

2
,

we have that for n ≥ r,

Hr ≤ π

2

(
1
2

)
r−1

1
nr− 1

2
− (r − 1)!

2rnr
+ a2

nr+ 1
2
, (4.9)

where

a2 =
∞∑
k=1

1
kπk

(
k

2

)
r

1
r

k
2− 1

2
.

Obviously, a2 is convergent and hence a finite number. It can be checked that for n ≥
4a2

24
r

((r−1)!)2 + 1,

a2

nr+ 1
2
<

(r − 1)!
2r+1nr

. (4.10)

Combining (4.9) and (4.10) yields that for n ≥ max
{
r,

4a2
24

r

((r−1)!)2 + 1
}

,

Hr ≤ π

2

(
1
2

)
r−1

1
nr− 1

2
− (r − 1)!

2r+1nr
.

So we have that for n ≥ max
{

225, r, 4a2
24

r

2 + 1
}

,
((r−1)!)
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(−1)r−1�r log p(n) ≤ Hr + |Gr|

≤ π

2

(
1
2

)
r−1

1
nr− 1

2
− (r − 1)!

2r+1nr
+ 2r+1e

−μ̂(n)
2 . (4.11)

It can be checked that for sufficiently large n,

(r − 1)!
2r+1nr

> 2r+1e
−μ̂(n)

2 .

Thus, from (4.11), we assert that for sufficiently large n,

(−1)r−1�r log p(n) < π

2

(
1
2

)
r−1

1
nr− 1

2
.

In order to estimate n(r), we proceed to consider the following equation

(r − 1)!
2r+1xr

= 2r+1e
−μ̂(x)

2 . (4.12)

Similar to (3.40), the solution of (4.12) has the following form

x = 16r2

π2

(
W

(
− π

8r

(
(r − 1)!

4

) 1
2r
))2

. (4.13)

By (3.43), we obtain that for r ≥ 2,

−1
e
< − π

8r

(
(r − 1)!

4

) 1
2r

< 0. (4.14)

Thus, (4.12) has two real roots. Let x1 be the larger real root. Thus, for n ≥ x1 + 1,

(r − 1)!
2r+1nr

> 2r+1e
−μ̂(n)

2 . (4.15)

Combining (4.15) and (4.11), we conclude that (4.1) holds for n ≥ n(r), where

n(r) = max
{

225, r, 4a2
24r

((r − 1)!)2 + 1, x1 + 1
}
.

This completes the proof of Theorem 4.1. �
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