Finite difference of the overpartition function

Larry X.W. Wang ${ }^{\text {a,* }}$, Gary Y.B. Xie ${ }^{\text {a }}$, Andy Q. Zhang ${ }^{\text {b }}$
${ }^{\text {a }}$ Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, PR China
${ }^{\mathrm{b}}$ College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, PR China

A R T I C L E I N F O

Article history:

Received 1 April 2016
Received in revised form 14 June
2017
Accepted 20 June 2017
Available online 18 July 2017

MSC:

05A20
11B68
Keywords:
Integer partition
Overpartition
Log-concave
Finite difference

A B S T R A C T

Let $p(n)$ denote the integer partition function. Good conjectured that $\Delta^{r} p(n)$ alternates in sign up to a certain value $n=n(r)$, and then it stays positive. Gupta showed that for any given r and sufficiently large $n, \Delta^{r} p(n)>0$. Odlyzko proved this conjecture and gave an asymptotic formula for $n(r)$. Then, Almkvist, Knessel and Keller gave many contributions for the exact value of $n(r)$. For the finite difference of $\log p(n)$, DeSalvo and Pak proved that $0 \leq$ $-\triangle^{2} \log p(n-1) \leq \log \left(1+\frac{1}{n}\right)$ and conjectured a sharper upper bound for $-\triangle^{2} \log p(n)$. Chen, Wang and Xie proved this conjecture and showed the positivity of $(-1)^{r-1} \triangle^{r} \log p(n)$, and further gave an upper bound for $(-1)^{r-1} \triangle^{r} \log p(n)$. As for the overpartition function $\bar{p}(n)$, Engel recently proved that $\bar{p}(n)$ is \log-concave for $n \geq 2$, that is, $-\triangle^{2} \log \bar{p}(n) \geq 0$ for $n \geq 2$. Motivated by these results, in this paper we will prove the positivity of finite differences of the overpartition function and give an upper bound for $\Delta^{r} \bar{p}(n)$. Then we show that for any given $r \geq 1$, there exists a positive number $n(r)$ such that $(-1)^{r-1} \triangle^{r} \log \bar{p}(n)>0$ for $n>n(r)$, where \triangle is the difference operator with respect to n. Moreover, we give an upper bound for $(-1)^{r-1} \triangle^{r} \log \bar{p}(n)$.
© 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose sum is n. Let $p(n)$ denote the number of partitions of n. In 1918, Hardy and Ramanujan [14] obtained the following asymptotic formula

$$
\begin{equation*}
p(n) \sim \frac{1}{4 \sqrt{3} n} e^{\pi \sqrt{\frac{2}{3} n}} \quad \text { as } n \rightarrow \infty \tag{1.1}
\end{equation*}
$$

For details, the Hardy-Ramanujan-Rademacher formula for $p(n)$ states that for $N \geq 1$,

$$
\begin{aligned}
p(n)= & \frac{\sqrt{12}}{24 n-1} \sum_{k=1}^{N} A_{k}(n) \sqrt{k}\left[\left(1-\frac{k}{\mu(n)}\right) e^{\mu(n) / k}+\left(1+\frac{k}{\mu(n)}\right) e^{-\mu(n) / k}\right] \\
& \quad+R_{2}(n, N)
\end{aligned}
$$

where $A_{k}(n)$ is an arithmetic function, $R_{2}(n, N)$ is the remainder term and

$$
\begin{equation*}
\mu(n)=\frac{\pi}{6} \sqrt{24 n-1} \tag{1.2}
\end{equation*}
$$

see, for example, Hardy and Ramanujan [14], Rademacher [23]. In 1937, Lehmer [18,19] gave the following error bound

$$
\left|R_{2}(n, N)\right|<\frac{\pi^{2} N^{-2 / 3}}{\sqrt{3}}\left[\left(\frac{N}{\mu(n)}\right)^{3} \sinh \frac{\mu(n)}{N}+\frac{1}{6}-\left(\frac{N}{\mu(n)}\right)^{2}\right]
$$

which is valid for all positive integers n and N.
From 1977, many mathematicians began to investigate the finite difference of $p(n)$. Good [12] conjectured that $\Delta^{r} p(n)$ alternates in sign up to a certain value $n=n(r)$, and then it stays positive, where \triangle is the difference operator denoted by $\triangle f(n)=$ $f(n+1)-f(n)$, and Δ^{r} is defined recursively in terms of Δ by $\Delta^{r}=\Delta\left(\Delta^{r-1}\right)$. Gupta [13] proved that for any given $r, \Delta^{r} p(n)>0$ for sufficiently large n. Odlyzko [22] proved this conjecture and gave an asymptotic formula for $n(r)$:

$$
\begin{equation*}
n(r) \sim \frac{6}{\pi^{2}} r^{2} \log ^{2} r \quad \text { as } r \rightarrow \infty \tag{1.3}
\end{equation*}
$$

Then, Knessl and Keller [16,17] used WKB method to obtain an approximation $n(r)^{\prime}$ for $n(r)$ for which $\left|n(r)^{\prime}-n(r)\right| \leq 2$ up to $r=75$. Moreover, Almkvist [2,3] proved that $n(r)$ satisfies certain equations.

Recently, using the Hardy-Ramanujan-Rademacher formula and Lehmer's error bound, DeSalvo and Pak [9] proved the following inequalities conjectured by Chen [4].

Theorem 1.1. For $n \geq 26$,

$$
\frac{p(n)}{p(n+1)}>\frac{p(n-1)}{p(n)}
$$

and for $n \geq 2$,

$$
\frac{p(n-1)}{p(n)}\left(1+\frac{1}{n}\right)>\frac{p(n)}{p(n+1)}
$$

They also proposed the following conjecture.

Conjecture 1.2. For $n \geq 45$, we have

$$
\frac{p(n-1)}{p(n)}\left(1+\frac{\pi}{\sqrt{24} n^{3 / 2}}\right)>\frac{p(n)}{p(n+1)} .
$$

Chen, Wang and Xie [6] proved this conjecture and further obtained the following theorem analogous to the positivity of $\triangle^{r} p(n)$ obtained by Gupta [13].

Theorem 1.3. For each $r \geq 1$, there exists a positive integer $n(r)$ such that for $n \geq n(r)$,

$$
\begin{equation*}
(-1)^{r-1} \triangle^{r} \log p(n)>0 \tag{1.4}
\end{equation*}
$$

They also gave the following upper bound for $(-1)^{r-1} \triangle^{r} \log p(n)$.
Theorem 1.4. For each $r \geq 1$, there exists a positive integer $n(r)$ such that for $n \geq n(r)$,

$$
\begin{equation*}
(-1)^{r-1} \triangle^{r} \log p(n)<\log \left(1+\frac{\sqrt{6} \pi}{6}\left(\frac{1}{2}\right)_{r-1} \frac{1}{(n+1)^{r-\frac{1}{2}}}\right) \tag{1.5}
\end{equation*}
$$

where $\left(\frac{1}{2}\right)_{r-1}$ is the rising factorial, namely, $\left(\frac{1}{2}\right)_{r-1}=\frac{1}{2}\left(\frac{1}{2}+1\right) \cdots\left(\frac{1}{2}+k-1\right)$ for $k \geq 1$.
In this paper, we extend these results to overpartitions. An overpartition of n is a partition of n for which the first occurrence (equivalently, the last occurrence) of a number may be overlined. For example, the eight overpartitions of 3 are $3, \overline{3}, 2+1, \overline{2}+1,2+$ $\overline{1}, \overline{2}+\overline{1}, 1+1+1, \overline{1}+1+1$. Overpartitions play an important role in hypergeometric series identities [20,21], supersymmetric functions and mathematical physics [10], representation theory and Lie algebras [15].

Let $\bar{p}(n)$ denote the number of overpartitions of n. Hardy and Ramanujan [14] stated that

$$
\begin{equation*}
\bar{p}(n)=\frac{1}{4 \pi} \frac{d}{d n} \frac{e^{\pi \sqrt{n}}}{\sqrt{n}}+\frac{\sqrt{3}}{2 \pi} \cos \left(\frac{2}{3} n \pi-\frac{1}{6} \pi\right) \frac{d}{d n}\left(\frac{e^{\pi \sqrt{n} / 3}}{\sqrt{n}}\right)+\cdots+O\left(n^{-1 / 4}\right) . \tag{1.6}
\end{equation*}
$$

Zuckerman [25] gave the following Rademacher-type convergent series

$$
\begin{equation*}
\bar{p}(n)=\frac{1}{2 \pi} \sum_{\substack{k \geq 1 \\ 2 \nmid k}} \sqrt{k} \sum_{\substack{0 \leq h<k \\(h, k)=1}} \frac{\omega(h, k)^{2}}{\omega(2 h, k)} e^{-2 \pi i h n / k} \frac{d}{d n}\left(\frac{\sinh (\pi \sqrt{n} / k)}{\sqrt{n}}\right), \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega(h, k)=\exp \left(\pi i \sum_{r=1}^{k-1} \frac{r}{k}\left(\frac{h r}{k}-\left\lfloor\frac{h r}{k}\right\rfloor-\frac{1}{2}\right)\right) . \tag{1.8}
\end{equation*}
$$

Recently, Engel [11] split $\bar{p}(n)$ into two parts for any integer $N \geq 1$

$$
\begin{align*}
\bar{p}(n) & =\frac{1}{2 \pi} \sum_{\substack{k \geq 1 \\
2 \nmid k}} \sqrt{k} \hat{A}_{k}(n) \frac{d}{d n}\left(\frac{\sinh (\hat{\mu} / k)}{\sqrt{n}}\right) \tag{1.9}\\
& =\frac{1}{2 \pi} \sum_{\substack{k \geq 1 \\
2 \nmid k}}^{N} \sqrt{k} \hat{A}_{k}(n) \frac{d}{d n}\left(\frac{\sinh (\hat{\mu} / k)}{\sqrt{n}}\right)+R_{2}(n, N), \tag{1.10}
\end{align*}
$$

and gave the following error bound

$$
\begin{equation*}
\left|R_{2}(n, N)\right| \leq \frac{N^{5 / 2}}{n \hat{\mu}} \sinh \left(\frac{\hat{\mu}}{N}\right) \tag{1.11}
\end{equation*}
$$

where

$$
\begin{gather*}
\hat{\mu}=\hat{\mu}(n)=\pi \sqrt{n} \\
\hat{A}_{k}(n)=\sum_{\substack{0 \leq h<k \\
(h, k)=1}} \frac{\omega(h, k)^{2}}{\omega(2 h, k)} e^{-2 \pi i h n / k} . \tag{1.12}
\end{gather*}
$$

Using the error bound (1.11), Engel [11] deduced the log-concavity of $\bar{p}(n)$:

Theorem 1.5. The function $\bar{p}(n)$ is log-concave for $n \geq 2$.

Motivated by these results, we shall give an exact formula for $\triangle^{r} \bar{p}(n)$ and show that for any given r, there exists $n(r)$ such that $\triangle^{r} \bar{p}(n)$ is positive for $n>n(r)$. We also give an upper bound for $\triangle^{r} \bar{p}(n)$ in Section 2. In Section 3, we shall show the positivity of $(-1)^{r-1} \triangle^{r} \log \bar{p}(n)$ for sufficiently large n. At last, we also give an upper bound for $(-1)^{r-1} \triangle^{r} \log \bar{p}(n)$.

2. The positivity of $\triangle^{r} \bar{p}(n)$

In this section, we will prove that for any given $r \geq 1$, there is an integer $n(r)$ such that for $n \geq n(r), \Delta^{r} \bar{p}(n)>0$, where \triangle is the difference operator denoted by $\Delta f(n)=f(n+1)-f(n)$, and Δ^{r} is defined recursively in terms of Δ by $\Delta^{r}=\Delta\left(\Delta^{r-1}\right)$. This is analogous to the positivity of finite differences of the partition function, which has been extensively studied by Good [12], Gupta [13], Odlyzko [22], Knessl and Keller [16,17], and Almkvist [2,3].

Theorem 2.1. For each $r \geq 1$, there exists a positive integer $n(r)$ such that for $n \geq n(r)$,

$$
\Delta^{r} \bar{p}(n)>0
$$

To prove the above theorem, we introduce an important theorem given by Almkvist [2]. First, let us introduce some notations. Let

$$
L_{\nu}(x)=\sum_{m \geq 0} \frac{x^{m}}{m!\Gamma(m+\nu+1)} .
$$

Consider the function

$$
F(x)=\sum_{n=1}^{\infty} a(n) x^{n}
$$

where $a(n)$ can be represented by the following form

$$
a(n)=\sum_{k \geq 1} \sum_{(h, k)=1} u(h, k) e^{-2 \pi i h n / k} L_{\nu}\left(d_{k}(n+\alpha)\right),
$$

where ν and α are constants depending on $F(x)$, and $u(h, k)$ and d_{k} are complex numbers. We assume that $a(0)=1, a(n)=0$ for $n<0$.

Denote the function $g(x)$ be the generating function of $b(n)$, namely,

$$
g(x)=\sum_{n \geq 0} b(n) x^{n}
$$

Define

$$
S(x)=g(x) / F(x)=\sum_{n \geq 0} e(n) x^{n}
$$

and

$$
S_{n}(x)=\sum_{m=0}^{n} e(m) x^{m} .
$$

Almkvist [2] gave the following theorem.
Theorem 2.2. Let $F(x)=\sum_{0}^{\infty} a(n) x^{n}$ be a function satisfying above conditions. Then we have

$$
b(n)=\sum_{k=1}^{\infty} \sum_{(h, k)=1} \omega(h, k) e^{-2 \pi i h n / k} S_{n}\left(e^{-(D-2 \pi i h / k)}\right) L_{\nu}\left(d_{k}(n+\alpha)\right)
$$

where D is the differential operator $d / d n$.
Proof of Theorem 2.1. It is known that

$$
L_{3 / 2}(x)=\frac{1}{\sqrt{\pi}} \frac{d}{d x}\left(\frac{\sinh (2 \sqrt{x})}{\sqrt{x}}\right)
$$

see Abramowitz and Stegun [1] or Chen, Wang and Xie [6]. Thus, we have

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{\sinh (\pi \sqrt{x} / k)}{\sqrt{x}}\right)=\frac{\sqrt{\pi}}{8}\left(\frac{\pi}{k}\right)^{3} L_{3 / 2}\left(\frac{\pi^{2}}{4 k^{2}} x\right) . \tag{2.1}
\end{equation*}
$$

Applying (2.1) to (1.7), we obtain that

$$
\bar{p}(n)=\frac{1}{16} \pi^{\frac{5}{2}} \sum_{\substack{k \geq 1 \\ 2 \nmid k}} \sum_{\substack{0 \leq h<k \\(h, k)=1}} \frac{\omega(h, k)^{2}}{\omega(2 h, k)} e^{-2 \pi i h n / k} k^{-\frac{5}{2}} L_{3 / 2}\left(\frac{\pi^{2}}{4 k^{2}} n\right) .
$$

Let $F(x)$ denote the generating function of overpartition $\bar{p}(n)$

$$
F(x)=\sum_{n \geq 1} \bar{p}(n) x^{n}
$$

It is easy to see that

$$
F(x)=\prod_{n \geq 1} \frac{1+x^{n}}{1-x^{n}}
$$

see Corteel and Lovejoy [8].
Based on the above formula, we can deduce that the generating function of $\triangle^{r} \bar{p}(n-r)$. We claim that the generating function $g(n)$ of $\triangle^{r} \bar{p}(n-r)$ has the following form:

$$
\begin{equation*}
g(x)=\sum_{n \geq 1} \triangle^{r} \bar{p}(n-r) x^{n}=(1-x)^{r} \prod_{n \geq 1} \frac{1+x^{n}}{1-x^{n}} \tag{2.2}
\end{equation*}
$$

We prove it by induction on r. We assume that $\bar{p}(n)=0$ for $n \leq 0$. For $r=1$, it can be checked that

$$
\begin{aligned}
\sum_{n \geq 1} \triangle \bar{p}(n-1) x^{n} & =\sum_{n \geq 1}(\bar{p}(n)-\bar{p}(n-1)) x^{n} \\
& =\sum_{n \geq 1} \bar{p}(n) x^{n}-x \sum_{n \geq 0} \bar{p}(n-1) x^{n-1} \\
& =(1-x) \prod_{n \geq 1} \frac{1+x^{n}}{1-x^{n}}
\end{aligned}
$$

Suppose that (2.2) is true for $r=k$. Then

$$
\begin{aligned}
\sum_{n \geq 1} \triangle^{k+1} \bar{p}(n-k-1) x^{n} & =\sum_{n \geq 0}\left(\triangle^{k} \bar{p}(n-k)-\triangle^{k} \bar{p}(n-k-1)\right) x^{n} \\
& =\sum_{n \geq 1} \triangle^{k} \bar{p}(n-k) x^{n}-x \sum_{n \geq 1} \triangle^{k} \bar{p}(n-k-1) x^{n-1} \\
& =(1-x)^{k} \prod_{n \geq 1} \frac{1+x^{n}}{1-x^{n}}-(1-x)^{k} x \prod_{n \geq 1} \frac{1+x^{n}}{1-x^{n}} \\
& =(1-x)^{k+1} \prod_{n \geq 1} \frac{1+x^{n}}{1-x^{n}}
\end{aligned}
$$

So (2.2) is true for $r=k+1$. This shows that (2.2) is true for all positive integers n. Then, we have

$$
S(x)=\frac{g(x)}{F(x)}=(1-x)^{r} .
$$

By the definition of $S_{n}(x)$, we find that for $n \geq r$,

$$
S_{n}(x)=(1-x)^{r} .
$$

Hence, by Theorem 2.2, we find that for $n \geq r$,

$$
\triangle^{r} \bar{p}(n-r)=\frac{1}{16} \pi^{\frac{5}{2}} \sum_{\substack{k \geq 1 \\ 2 \nmid k}} \sum_{\substack{0 \leq h<k \\(h, k)=1}} \frac{\omega(h, k)^{2}}{\omega(2 h, k)} e^{-2 \pi i h n / k} k^{-\frac{5}{2}} S_{n}\left(e^{-(D-2 \pi i h / k)}\right) L_{3 / 2}\left(\frac{\pi^{2}}{4 k^{2}} n\right) .
$$

Since

$$
\sinh \frac{D}{2}=\sum_{n=0}^{\infty} \frac{\left(\frac{D}{2}\right)^{2 n+1}}{(2 n+1)!}=\frac{D}{2}\left(1+\frac{D^{2}}{24}+\cdots\right)
$$

we deduce that for $n \geq r$,

$$
\begin{aligned}
S_{n}\left(e^{-D}\right) & =\left(1-e^{-D}\right)^{r}=2^{r} e^{-r D / 2}\left(\sinh \frac{D}{2}\right)^{r} \\
& =e^{-r D / 2} D^{r}\left(1+\frac{r}{24} D^{2}+\cdots\right)
\end{aligned}
$$

It follows that for $n \geq r$,

$$
\begin{align*}
\triangle^{r} \bar{p}(n-r)= & \frac{1}{16} \pi^{\frac{5}{2}}\left(e^{-r D / 2} D^{r}\left(1+\frac{r}{24} D^{2}+\cdots\right)\right. \tag{2.3}\\
& \left.+\sum_{\substack{k \geq 3 \\
2 \nmid k}} \sum_{\substack{0 \leq h<k \\
(h, k)=1}} \frac{\omega(h, k)^{2}}{\omega(2 h, k)} e^{-2 \pi i h n / k} k^{-\frac{5}{2}} S_{n}\left(e^{-(D-2 \pi i h / k)}\right)\right) L_{3 / 2}\left(\frac{\pi^{2}}{4} n\right)
\end{align*}
$$

By the definition of function $L_{\nu}(n)$, it is easily verified that

$$
D L_{\nu}(n)=L_{\nu+1}(n)
$$

so

$$
\begin{equation*}
D^{r} L_{3 / 2}\left(\frac{\pi^{2}}{4} n\right)=\left(\frac{\pi^{2}}{4}\right)^{r} L_{r+3 / 2}\left(\frac{\pi^{2}}{4} n\right) . \tag{2.4}
\end{equation*}
$$

And by Taylor's theorem, we have that

$$
\begin{equation*}
e^{-r D / 2} L_{\nu}\left(\frac{\pi^{2}}{4} n\right)=L_{\nu}\left(\frac{\pi^{2}}{4}\left(n-\frac{r}{2}\right)\right) \tag{2.5}
\end{equation*}
$$

Applying (2.4) and (2.5) to (2.3) and replacing $n-r$ with n, we obtain that

$$
\begin{align*}
\triangle^{r} \bar{p}(n) & =\frac{1}{16} \pi^{\frac{5}{2}}\left(\left(\frac{\pi^{2}}{4}\right)^{r} L_{r+3 / 2}\left(\frac{\pi^{2}}{4}\left(n+\frac{r}{2}\right)\right)+\frac{r}{24}\left(\frac{\pi^{2}}{4}\right)^{r+2} L_{r+7 / 2}\left(\frac{\pi^{2}}{4}\left(n+\frac{r}{2}\right)\right)+\cdots\right) \\
& +\frac{1}{16} \pi^{\frac{5}{2}} \sum_{\substack{k \geq 3 \\
2 \nmid k}} \sum_{\substack{0 \leq h<k \\
(h, k)=1}} \frac{\omega(h, k)^{2}}{\omega(2 h, k)} e^{-2 \pi i h(n+r) / k} k^{-\frac{5}{2}} S_{n}\left(e^{-(D-2 \pi i h / k)}\right) L_{3 / 2}\left(\frac{\pi^{2}}{4}(n+r)\right) . \tag{2.6}
\end{align*}
$$

On the other hand, applying (2.1) to (1.9), we have

$$
\begin{equation*}
\bar{p}(n)=\frac{1}{16} \pi^{\frac{5}{2}} \sum_{\substack{k \geq 1 \\ 2 \nmid k}} \hat{A}_{k}(n) k^{-\frac{5}{2}} L_{3 / 2}\left(\frac{\pi^{2}}{4 k^{2}} n\right) . \tag{2.7}
\end{equation*}
$$

Denote the k th term in (2.7) by $f_{k}(n)$, namely,

$$
\begin{equation*}
f_{k}(n)=\frac{1}{16} \pi^{\frac{5}{2}} \hat{A}_{k}(n) k^{-\frac{5}{2}} L_{3 / 2}\left(\frac{\pi^{2}}{4 k^{2}} n\right) . \tag{2.8}
\end{equation*}
$$

Now we estimate the r th difference of $f_{k}(n)$. First, from the proof of Almkvist's theorem, one can get that $\triangle^{r} f_{1}(n)$ is the first sum in (2.6), that is,

$$
\triangle^{r} f_{1}(n)=\frac{1}{16} \pi^{\frac{5}{2}}\left(\left(\frac{\pi^{2}}{4}\right)^{r} L_{r+3 / 2}\left(\frac{\pi^{2}}{4}\left(n+\frac{r}{2}\right)\right)+\frac{r}{24}\left(\frac{\pi^{2}}{4}\right)^{r+2} L_{r+7 / 2}\left(\frac{\pi^{2}}{4}\left(n+\frac{r}{2}\right)\right)+\cdots\right)
$$

Then, we can estimate $\triangle^{r} f_{1}(n)$ as follow

$$
\begin{equation*}
\triangle^{r} f_{1}(n) \geq \frac{1}{16} \pi^{\frac{5}{2}}\left(\frac{\pi^{2}}{4}\right)^{r} L_{r+3 / 2}\left(\frac{\pi^{2}}{4}\left(n+\frac{r}{2}\right)\right) \tag{2.9}
\end{equation*}
$$

Now we turn to give a lower bound for $\left|\triangle^{r} f_{k}(n)\right|$ for $k \geq 3$. Since for any function $f(n)$,

$$
\begin{equation*}
\triangle^{r} f(n)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} f(n+k) \tag{2.10}
\end{equation*}
$$

thus, by (2.8) we have that

$$
\left|\triangle^{r} f_{k}(n)\right|=\frac{1}{16} \pi^{\frac{5}{2}} k^{-\frac{5}{2}}\left|\sum_{i=0}^{r}(-1)^{r-i}\binom{r}{i} \hat{A}_{k}(n+i) L_{3 / 2}\left(\frac{\pi^{2}}{4 k^{2}}(n+i)\right)\right| .
$$

It is easily seen that $L_{3 / 2}(x)$ increases with x, and $\left|\hat{A}_{k}(n)\right| \leq k$. So

$$
\begin{align*}
\left|\triangle^{r} f_{k}(n)\right| & \leq \frac{1}{16} \pi^{\frac{5}{2}} k^{-\frac{5}{2}} \cdot 2^{r} \cdot k L_{3 / 2}\left(\frac{\pi^{2}}{4 k^{2}}(n+r)\right) \\
& \leq \frac{1}{16} \pi^{\frac{5}{2}} 2^{r} \cdot k^{-\frac{3}{2}} L_{3 / 2}\left(\frac{\pi^{2}}{36}(n+r)\right) \tag{2.11}
\end{align*}
$$

Thus, summing $\left|\triangle^{r} f_{k}(n)\right|$ over all k is odd and $k \geq 3$, we arrive at

$$
\begin{equation*}
\sum_{k \geq 3,2 \nmid k}\left|\triangle^{r} f_{k}(n)\right| \leq \frac{1}{16} \pi^{\frac{5}{2}} 2^{r} \zeta(3 / 2) L_{3 / 2}\left(\frac{\pi^{2}}{36}(n+r)\right) \tag{2.12}
\end{equation*}
$$

where $\zeta(x)$ is the Riemann zeta function.
Comparing (2.12) with (2.9), we claim that there exists a positive integer $n_{1}(r)$ such that for $n \geq n_{1}(r)$,

$$
\begin{equation*}
\triangle^{r} f_{1}(n)>\sum_{k \geq 3,2 \nmid k}\left|\triangle^{r} f_{k}(n)\right| \tag{2.13}
\end{equation*}
$$

For convenience, we denote the right hand side of (2.9) and (2.12) by $g(n)$ and $h(n)$, respectively. That is,

$$
\begin{gather*}
f(n)=\frac{1}{16} \pi^{\frac{5}{2}}\left(\frac{\pi^{2}}{4}\right)^{r} L_{r+3 / 2}\left(\frac{\pi^{2}}{4}\left(n+\frac{r}{2}\right)\right), \tag{2.14}\\
h(n)=\frac{1}{16} \pi^{\frac{5}{2}} 2^{r} \zeta(3 / 2) L_{3 / 2}\left(\frac{\pi^{2}}{36}(n+r)\right) \tag{2.15}
\end{gather*}
$$

By the definition of $L_{\nu}(x)$, we have that for any given r,

$$
\begin{align*}
L_{r+3 / 2}\left(\frac{\pi^{2}}{4}\left(n+\frac{r}{2}\right)\right) & =\sum_{m \geq 0} \frac{\pi^{2 m}}{4^{m} m!\Gamma(m+r+5 / 2)}\left(n+\frac{r}{2}\right)^{m} \tag{2.16}\\
L_{3 / 2}\left(\frac{\pi^{2}}{36}(n+r)\right) & =\sum_{m \geq 0} \frac{\pi^{2 m}}{4^{m} m!\Gamma(m+5 / 2)}\left(\frac{n}{9}+\frac{r}{9}\right)^{m} \tag{2.17}
\end{align*}
$$

It is easily seen that $L_{r+3 / 2}\left(\frac{\pi^{2}}{4}\left(n+\frac{r}{2}\right)\right)$ and $L_{3 / 2}\left(\frac{\pi^{2}}{36}(n+r)\right)$ both increase with n. Thus, by the definition of $g(n)$ and $h(n)$, we get that both of them increase with n. For large $n, g(n)$ and $h(n)$ are dominated by $(n+r / 2)^{m} / \Gamma(m+r+5 / 2)$ and $(n / 9+$ $r / 9)^{m} / \Gamma(m+5 / 2)$, respectively, and $(n+r / 2)^{m} / \Gamma(m+r+5 / 2)>(n / 9+r / 9)^{m} / \Gamma(m+5 / 2)$ for large n. Thus $g(n)$ is larger than $h(n)$ for sufficiently large n, that is, for $n \geq n_{1}(r)$,

$$
\begin{equation*}
\triangle^{r} f_{1}(n) \geq \sum_{k \geq 3,2 \nmid k}\left|\triangle^{r} f_{k}(n)\right| \tag{2.18}
\end{equation*}
$$

where $n_{1}(r)$ may be taken to be the solution of the equation $g(n)=h(n)$, i.e., the solution of

$$
\begin{equation*}
2^{r} \zeta(3 / 2) L_{3 / 2}\left(\frac{\pi^{2}}{36}(n+r)\right)=\left(\frac{\pi^{2}}{4}\right)^{r} L_{r+3 / 2}\left(\frac{\pi^{2}}{4}\left(n+\frac{r}{2}\right)\right) \tag{2.19}
\end{equation*}
$$

One can obtain an approximate solution of the above equation by using Newton-Raphson method.

Summing up, for each $r \geq 1$, let $n(r)=\max \left\{r, n_{1}(r)+1\right\}$, we conclude that for $n \geq n(r)$, we have $\triangle^{r} \bar{p}(n)>0$. This completes the proof.

Up to now, we have shown the positivity of the $\triangle^{r} \bar{p}(n)$. In fact, using the inequality (2.11), we can also give the following upper bound for $\Delta^{r} \bar{p}(n)$.

Theorem 2.3. For $r \geq 1$,

$$
\triangle^{r} \bar{p}(n) \leq 2^{r-3}\left(1-2^{-\frac{3}{2}}\right) \zeta(3 / 2) \frac{e^{\pi \sqrt{n+r}}}{n+r}
$$

Proof. Recall that inequality (2.11) states that for $r \geq 1$ and $k \geq 1$,

$$
\left|\triangle^{r} f_{k}(n)\right| \leq \frac{1}{16} \pi^{\frac{5}{2}} 2^{r} \cdot k^{-\frac{3}{2}} L_{3 / 2}\left(\frac{\pi^{2}}{4}(n+r)\right)
$$

Thus, we find that for $r \geq 1$,

$$
\begin{aligned}
\triangle^{r} \bar{p}(n) & \leq \sum_{k \geq 1,2 \nmid k}\left|\triangle^{r} f_{k}(n)\right| \\
& \leq \frac{1}{16} \pi^{\frac{5}{2}} 2^{r} L_{3 / 2}\left(\frac{\pi^{2}}{4}(n+r)\right)\left(\sum_{k \geq 1} k^{-\frac{3}{2}}-\sum_{k \geq 1,2 \mid k} k^{-\frac{3}{2}}\right) \\
& \leq \frac{1}{16} \pi^{\frac{5}{2}} 2^{r} L_{3 / 2}\left(\frac{\pi^{2}}{4}(n+r)\right)\left(\zeta(3 / 2)-2^{-\frac{3}{2}} \zeta(3 / 2)\right) \\
& \leq \frac{1}{16} \pi^{\frac{5}{2}} 2^{r}\left(1-2^{-\frac{3}{2}}\right) \zeta(3 / 2) L_{3 / 2}\left(\frac{\pi^{2}}{4}(n+r)\right) .
\end{aligned}
$$

Using the following inequality due to Almkvist [3]

$$
L_{3 / 2}(x) \leq \frac{1}{2 \sqrt{\pi}} \frac{e^{2 \sqrt{x}}}{x}
$$

we obtain that

$$
\begin{aligned}
\triangle^{r} \bar{p}(n) & \leq \frac{1}{16} \pi^{\frac{5}{2}} 2^{r}\left(1-2^{-\frac{3}{2}}\right) \zeta(3 / 2) \frac{1}{2 \sqrt{\pi}} \frac{e^{2 \sqrt{\pi^{2}(n+r) / 4}}}{\pi^{2}(n+r) / 4} \\
& \leq 2^{r-3}\left(1-2^{-\frac{3}{2}}\right) \zeta(3 / 2) \frac{e^{\pi \sqrt{n+r}}}{n+r}
\end{aligned}
$$

This completes the proof.
Note that $\triangle^{r} \bar{p}(n)$ really grow exponentially. Hence, as a conclusion of this section, we propose the following open problem.

Problem 2.4. Find a sharp lower bound for $\triangle^{r} \bar{p}(n)$.

3. The positivity of $(-1)^{r-1} \triangle^{r} \log \bar{p}(n)$

In this section, we shall prove that for any given $r \geq 1$, there exists a positive number $n(r)$ such that for $n>n(r),(-1)^{r-1} \triangle^{r} \log \bar{p}(n)$ is positive.

Theorem 3.1. For each $r \geq 1$, there exists a positive integer $n(r)$ such that for $n \geq n(r)$,

$$
(-1)^{r-1} \triangle^{r} \log \bar{p}(n)>0
$$

Proof. The case $r=1$ is trivial since $\bar{p}(n+1)>\bar{p}(n)$ for $n \geq 1$. For $r=2$, Engel [11] has shown that $\bar{p}(n)$ is log-concave for $n \geq 2$, namely, for $n \geq 2$,

$$
-\triangle^{2} \log \bar{p}(n) \geq 0
$$

We now consider the case $r \geq 3$. Notice that

$$
\begin{aligned}
\frac{d}{d n}\left(\frac{\sinh (\hat{\mu}(n) / k)}{\sqrt{n}}\right) & =\frac{\pi}{2 k n}\left(\cosh \left(\frac{\hat{\mu}(n)}{k}\right)-\frac{k}{\hat{\mu}(n)} \sinh \left(\frac{\hat{\mu}(n)}{k}\right)\right) \\
& =\frac{\pi}{4 k n}\left(\left(1+\frac{k}{\hat{\mu}(n)}\right) e^{\frac{-\hat{\mu}(n)}{k}}+\left(1-\frac{k}{\hat{\mu}(n)}\right) e^{\frac{\hat{\mu}(n)}{k}}\right)
\end{aligned}
$$

where $\hat{\mu}(n)=\pi \sqrt{n}$, we can rewrite (1.9) as

$$
\begin{equation*}
\bar{p}(n)=\frac{1}{8 n} \sum_{\substack{k \geq 1 \\ 2 \nmid k}} \frac{1}{\sqrt{k}} \hat{A}_{k}(n)\left(\left(1+\frac{k}{\hat{\mu}(n)}\right) e^{\frac{-\hat{\mu}(n)}{k}}+\left(1-\frac{k}{\hat{\mu}(n)}\right) e^{\frac{\hat{\mu}(n)}{k}}\right) . \tag{3.1}
\end{equation*}
$$

Recall that $\hat{A}_{1}(n)=1$ in (1.12), we split $\bar{p}(n)$ into two terms as Engel [11]

$$
\begin{equation*}
\bar{p}(n)=\hat{T}(n)+\hat{R}(n) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{gather*}
\hat{T}(n)=\frac{1}{8 n}\left(e^{-\hat{\mu}(n)}+\left(1-\frac{1}{\hat{\mu}(n)}\right) e^{\hat{\mu}(n)}\right), \tag{3.3}\\
\hat{R}(n)=\frac{e^{-\hat{\mu}(n)}}{8 n \hat{\mu}(n)}+R_{2}(n, 2) . \tag{3.4}
\end{gather*}
$$

Restate (3.2) as

$$
\begin{equation*}
\bar{p}(n)=\hat{T}(n)\left(1+\frac{\hat{R}(n)}{\hat{T}(n)}\right) \tag{3.5}
\end{equation*}
$$

Applying (3.3) to (3.5) and taking the logarithm of both sides, we have that

$$
\begin{aligned}
\log \bar{p}(n)=\log & \frac{\pi^{2}}{8}-3 \log \hat{\mu}(n)+\log (\hat{\mu}(n)-1)+\hat{\mu}(n) \\
& +\log \left(1+\frac{\hat{\mu}(n)}{\hat{\mu}(n)-1} e^{-2 \hat{\mu}(n)}\right)+\log \left(1+\frac{\hat{R}(n)}{\hat{T}(n)}\right)
\end{aligned}
$$

Hence, $(-1)^{r-1} \triangle^{r} \log \bar{p}(n)$ can be expressed as

$$
\begin{equation*}
(-1)^{r-1} \triangle^{r} \log \bar{p}(n)=H_{r}+F_{1}+F_{2} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{align*}
& H_{r}=(-1)^{r-1} \triangle^{r}(-3 \log \hat{\mu}(n)+\log (\hat{\mu}(n)-1)+\hat{\mu}(n)) \tag{3.7}\\
& F_{1}=(-1)^{r-1} \triangle^{r} \log \left(1+\frac{\hat{\mu}(n)}{\hat{\mu}(n)-1} e^{-2 \hat{\mu}(n)}\right) \tag{3.8}\\
& F_{2}=(-1)^{r-1} \triangle^{r} \log \left(1+\frac{\hat{R}(n)}{\hat{T}(n)}\right) \tag{3.9}
\end{align*}
$$

Let

$$
\begin{equation*}
G_{r}=F_{1}+F_{2}, \tag{3.10}
\end{equation*}
$$

then we have that for $r \geq 1$,

$$
\begin{equation*}
(-1)^{r-1} \triangle^{r} \log \bar{p}(n) \geq H_{r}-\left|G_{r}\right| \tag{3.11}
\end{equation*}
$$

To estimate the lower bound for $(-1)^{r-1} \triangle^{r} \log \bar{p}(n)$, we shall give a lower bound for H_{r} and an upper bound for $\left|G_{r}\right|$. We first concern with $\left|G_{r}\right|$ and get the following upper bound for $\left|G_{r}\right|$.

Lemma 3.2. For $n \geq 225$, we have

$$
\begin{equation*}
\left|G_{r}\right| \leq 2^{r+1} e^{-\frac{\hat{\mu}(n)}{2}} \tag{3.12}
\end{equation*}
$$

To prove Lemma 3.2, we need to give upper bounds for $\left|F_{1}\right|$ and $\left|F_{2}\right|$. Recall that for any function $f(n)$,

$$
\triangle^{r} f(n)=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} f(n+k)
$$

we have that

$$
F_{1}=\sum_{k=0}^{r}(-1)^{k+1}\binom{r}{k} \log \left(1+\frac{\hat{\mu}(n+k)}{\hat{\mu}(n+k)-1} e^{-2 \hat{\mu}(n+k)}\right) .
$$

So,

$$
\begin{equation*}
\left|F_{1}\right| \leq \sum_{k=0}^{r}\binom{r}{k} \log \left(1+\frac{\hat{\mu}(n+k)}{\hat{\mu}(n+k)-1} e^{-2 \hat{\mu}(n+k)}\right) \tag{3.13}
\end{equation*}
$$

It is easily seen that $1+\frac{\hat{\mu}(n)}{\hat{\mu}(n)-1} e^{-2 \hat{\mu}(n)}$ decreases with n for $n \geq 1$. Thus, we have that for $n \geq 1$ and $0 \leq k \leq r$,

$$
\begin{equation*}
\log \left(1+\frac{\hat{\mu}(n+k)}{\hat{\mu}(n+k)-1} e^{-2 \hat{\mu}(n+k)}\right) \leq \log \left(1+\frac{\hat{\mu}(n)}{\hat{\mu}(n)-1} e^{-2 \hat{\mu}(n)}\right) \tag{3.14}
\end{equation*}
$$

Applying (3.14) to (3.13), we obtain that for $n \geq 1$,

$$
\begin{equation*}
\left|F_{1}\right| \leq 2^{r} \log \left(1+\frac{\hat{\mu}(n)}{\hat{\mu}(n)-1} e^{-2 \hat{\mu}(n)}\right) \tag{3.15}
\end{equation*}
$$

It is easily verified that for $x \geq 0$,

$$
\begin{equation*}
\log (1+x) \leq x \tag{3.16}
\end{equation*}
$$

So we have that for $n \geq 1$,

$$
\begin{equation*}
\left|F_{1}\right| \leq 2^{r} \frac{\hat{\mu}(n)}{\hat{\mu}(n)-1} e^{-2 \hat{\mu}(n)} \tag{3.17}
\end{equation*}
$$

Now we turn to $\left|F_{2}\right|$. Let us first find appropriate bounds for $\hat{R}(n)$ and $\hat{T}(n)$, which will be used in the estimation of $\left|F_{2}\right|$. By (1.11) and (3.4), we have

$$
\begin{align*}
|\hat{R}(n)| & \leq\left|\frac{e^{-\hat{\mu}(n)}}{8 n \hat{\mu}(n)}\right|+\left|R_{2}(n, 2)\right| \\
& \leq \frac{e^{-\hat{\mu}(n)}}{8 n \hat{\mu}(n)}+\frac{2^{5 / 2}}{n \hat{\mu}(n)} \sinh \left(\frac{\hat{\mu}(n)}{2}\right) \\
& \leq \frac{\left(\frac{e^{-\frac{\hat{\mu}(n)}{2}}}{8}-1\right) e^{-\frac{\hat{\mu}(n)}{2}}+2^{3 / 2} e^{\frac{\hat{\mu}(n)}{2}}}{n \hat{\mu}(n)} \\
& \leq \frac{2^{3 / 2}}{n \hat{\mu}(n)} e^{\frac{\hat{\mu}(n)}{2}} . \tag{3.18}
\end{align*}
$$

Recall that

$$
\hat{T}(n)=\frac{1}{8 n}\left(e^{-\hat{\mu}(n)}+\left(1-\frac{1}{\hat{\mu}(n)}\right) e^{\hat{\mu}(n)}\right) .
$$

Since $\hat{\mu}(n)>\pi$, we have that

$$
\begin{align*}
\hat{T}(n) & >\frac{1}{8 n}\left(1-\frac{1}{\hat{\mu}(n)}\right) e^{\hat{\mu}(n)} \\
& >\frac{1}{8 n}\left(1-\frac{1}{\pi}\right) e^{\hat{\mu}(n)} \\
& >\frac{1}{16 n} e^{\hat{\mu}(n)}>1 . \tag{3.19}
\end{align*}
$$

Thus, by (3.18) and (3.19), we see that for $n \geq 3$,

$$
\begin{equation*}
0<\frac{|\hat{R}(n)|}{\hat{T}(n)} \leq \frac{2^{11 / 2}}{\hat{\mu}} e^{-\frac{\hat{\mu}}{2}}<1 . \tag{3.20}
\end{equation*}
$$

Now we proceed to estimate $\left|F_{2}\right|$. By (3.9) and (2.10), we have

$$
\begin{equation*}
\left|F_{2}\right| \leq \sum_{k=0}^{r}\binom{r}{k}\left|\log \left(1+\frac{\hat{R}(n+k)}{\hat{T}(n+k)}\right)\right| \tag{3.21}
\end{equation*}
$$

For $0<x<1$, it can be easily checked that

$$
\begin{equation*}
|\log (1 \pm x)| \leq-\log (1-x) \tag{3.22}
\end{equation*}
$$

Then we deduce that for $n \geq 3$,

$$
\begin{equation*}
\left|\log \left(1+\frac{\hat{R}(n+k)}{\hat{T}(n+k)}\right)\right| \leq-\log \left(1-\frac{|\hat{R}(n+k)|}{\hat{T}(n+k)}\right) . \tag{3.23}
\end{equation*}
$$

Thus, for $n \geq 3$,

$$
\begin{equation*}
\left|F_{2}\right| \leq-\sum_{k=0}^{r}\binom{r}{k} \log \left(1-\frac{|\hat{R}(n+k)|}{\hat{T}(n+k)}\right) \tag{3.24}
\end{equation*}
$$

Since $-\log (1-x)$ is increasing for $x>-1$, combining (3.20) and (3.24), we get that for $n \geq 3$,

$$
\begin{equation*}
\left|F_{2}\right| \leq-\sum_{k=0}^{r}\binom{r}{k} \log \left(1-\frac{2^{11 / 2}}{\hat{\mu}(n+k)} e^{-\frac{\hat{\mu}(n+k)}{2}}\right) \tag{3.25}
\end{equation*}
$$

It can be checked that $\frac{2^{11 / 2}}{\hat{\mu}(n+k)} e^{-\frac{\hat{\mu}(n+k)}{2}}$ decreases with n. Thus we have that for $n \geq 3$,

$$
\begin{equation*}
\left|F_{2}\right| \leq-2^{r} \log \left(1-\frac{2^{11 / 2}}{\hat{\mu}(n)} e^{-\frac{\hat{\mu}(n)}{2}}\right) \tag{3.26}
\end{equation*}
$$

In view of the fact that for $0<x<1$,

$$
\begin{equation*}
\log (1-x) \geq \frac{-x}{1-x} \tag{3.27}
\end{equation*}
$$

from (3.26), we get that for $n \geq 3$,

$$
\begin{equation*}
\left|F_{2}\right| \leq 2^{r}\left(\frac{\frac{2^{11 / 2}}{\hat{\mu}(n)} e^{-\frac{\hat{\mu}(n)}{2}}}{1-\frac{2^{11 / 2}}{\hat{\mu}(n)} e^{-\frac{\hat{\mu}(n)}{2}}}\right)=2^{r} e^{-\frac{\hat{\mu}(n)}{2}}\left(\frac{2^{11 / 2}}{\hat{\mu}(n)-2^{11 / 2} e^{-\frac{\mu(n)}{2}}}\right) \tag{3.28}
\end{equation*}
$$

Since $\hat{\mu}(n)$ increases with n and $e^{-\frac{\hat{\mu}(n)}{2}}$ decreases with n, it can be checked that for $n \geq 225$,

$$
\begin{equation*}
0<\frac{2^{11 / 2}}{\hat{\mu}(n)-2^{11 / 2} e^{-\frac{\mu(n)}{2}}}<1 \tag{3.29}
\end{equation*}
$$

So we have that for $n \geq 225$,

$$
\begin{equation*}
\left|F_{2}\right| \leq 2^{r} e^{-\frac{\hat{\mu}(n)}{2}} . \tag{3.30}
\end{equation*}
$$

Combining (3.17) and (3.30), we obtain that for $n \geq 225$,

$$
\begin{align*}
\left|G_{r}\right| & \leq\left|F_{1}\right|+\left|F_{2}\right| \\
& \leq 2^{r} \frac{\hat{\mu}(n)}{\hat{\mu}(n)-1} e^{-2 \hat{\mu}(n)}+2^{r} e^{-\frac{\hat{\mu}(n)}{2}} \\
& \leq 2^{r} e^{-\frac{\hat{\mu}(n)}{2}}\left(\frac{\hat{\mu}(n)}{\hat{\mu}(n)-1} e^{-\frac{3 \hat{\mu}(n)}{2}}+1\right) \\
& \leq 2^{r+1} e^{-\frac{\hat{\mu}(n)}{2}} . \tag{3.31}
\end{align*}
$$

This completes the proof.
To estimate H_{r}, we introduce the following proposition due to Odlyzko [22].
Proposition 3.3. Let r be a positive integer. Suppose that $f(x)$ is a function with infinite continuous derivatives for $x \geq 1$, and $(-1)^{k-1} f^{(k)}(x)>0$ for $k \geq 1$. Then for $r \geq 1$,

$$
\begin{equation*}
(-1)^{r-1} f^{(r)}(x+r) \leq(-1)^{r-1} \triangle^{r} f(x) \leq(-1)^{r-1} f^{(r)}(x) \tag{3.32}
\end{equation*}
$$

We are ready to estimate H_{r}. Since for $n \geq 1$,

$$
\log (\hat{\mu}(n)-1)-\log \hat{\mu}(n)=-\sum_{k=1}^{\infty} \frac{1}{k \hat{\mu}(n)^{k}}
$$

equality (3.7) can be rewritten as

$$
\begin{equation*}
H_{r}=(-1)^{r-1} \triangle^{r}(\hat{\mu}(n)-2 \log \hat{\mu}(n))-\sum_{k=1}^{\infty}(-1)^{r-1} \triangle^{r}\left(\frac{1}{k \hat{\mu}(n)^{k}}\right) \tag{3.33}
\end{equation*}
$$

It is easily seen that the r th derivatives of $\hat{\mu}(x)=\pi \sqrt{x}, \log \hat{\mu}(x)$ and $\hat{\mu}(x)^{-k}$ are given as follows

$$
\begin{align*}
\hat{\mu}^{(r)}(x) & =\frac{\pi}{2}(-1)^{r-1}\left(\frac{1}{2}\right)_{r-1} \frac{1}{x^{r-\frac{1}{2}}}, \tag{3.34}\\
\log ^{(r)} \hat{\mu}(x) & =\frac{1}{2}(-1)^{r-1} \frac{(r-1)!}{x^{r}}, \tag{3.35}\\
\left(\frac{1}{\hat{\mu}(x)^{k}}\right)^{(r)} & =\frac{1}{\pi^{k}}(-1)^{r}\left(\frac{k}{2}\right)_{r} \frac{1}{x^{r+\frac{k}{2}}} . \tag{3.36}
\end{align*}
$$

Hence, by Proposition 3.3, we find that for $r \geq 1$ and $k \geq 1$,

$$
\begin{align*}
H_{r} & \geq \frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{(n+r)^{r-\frac{1}{2}}}-\frac{(r-1)!}{n^{r}}+\sum_{k=1}^{\infty} \frac{1}{k \pi^{k}}\left(\frac{k}{2}\right)_{r} \frac{1}{(n+r)^{r+\frac{k}{2}}} \\
& \geq \frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{(n+r)^{r-\frac{1}{2}}}-\frac{(r-1)!}{n^{r}} \tag{3.37}
\end{align*}
$$

Observe that for $n \geq r$,

$$
\frac{1}{(n+r)^{r-\frac{1}{2}}} \geq \frac{1}{(2 n)^{r-\frac{1}{2}}}
$$

It follows that for $n \geq r$,

$$
\begin{equation*}
H_{r} \geq \frac{a_{1}}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{n^{r}} \tag{3.38}
\end{equation*}
$$

where

$$
a_{1}=\frac{\pi}{2^{r+\frac{1}{2}}}\left(\frac{1}{2}\right)_{r-1}
$$

Up to now, we have given an upper bound for $\left|G_{r}\right|$ and a lower bound for H_{r}. We proceed to focus on $(-1)^{r-1} \triangle^{r} \log \bar{p}(n)$. Applying (3.12) and (3.38) to (3.11) yields that for $n \geq \max \{225, r\}$,

$$
(-1)^{r-1} \triangle^{r} \log \bar{p}(n) \geq H_{r}-\left|G_{r}\right| \geq \frac{a_{1}}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{n^{r}}-2^{r+1} e^{-\frac{\mu(n)}{2}}
$$

It can be seen that for $n \geq \frac{4((r+1)!)^{2}}{a_{1}^{2}}+1$,

$$
\frac{(r-1)!}{n^{r}}<\frac{a_{1}}{2 n^{r-\frac{1}{2}}}
$$

Thus, we get that for $n \geq \max \left\{225, r, \frac{4((r+1)!)^{2}}{a_{1}^{2}}+1\right\}$,

$$
\begin{equation*}
(-1)^{r-1} \triangle^{r} \log \bar{p}(n)>\frac{a_{1}}{2 n^{r-\frac{1}{2}}}-2^{r+1} e^{-\frac{\mu(n)}{2}} \tag{3.39}
\end{equation*}
$$

To prove the positivity of $(-1)^{r-1} \triangle^{r} \log \bar{p}(n)$, we consider the following equation

$$
\begin{equation*}
\frac{a_{1}}{2 x^{r-\frac{1}{2}}}=2^{r+1} e^{-\frac{\hat{\mu}(x)}{2}} . \tag{3.40}
\end{equation*}
$$

We claim the equation has two real roots

$$
\begin{gather*}
x_{1}=\frac{4(2 r-1)^{2}}{\pi^{2}}\left(W_{0}\left(-\frac{\pi}{4(2 r-1)}\left(\frac{\pi}{8 \sqrt{2}}\left(\frac{1}{2}\right)_{r-1}\right)^{\frac{1}{2 r-1}}\right)\right)^{2} \tag{3.41}\\
x_{2}=\frac{4(2 r-1)^{2}}{\pi^{2}}\left(W_{-1}\left(-\frac{\pi}{4(2 r-1)}\left(\frac{\pi}{8 \sqrt{2}}\left(\frac{1}{2}\right)_{r-1}\right)^{\frac{1}{2 r-1}}\right)\right)^{2} \tag{3.42}
\end{gather*}
$$

where $W_{0}(z)$ and $W_{-1}(z)$ are two branches of Lambert W function $W(z)$, see Corless, Gonnet, Hare, Jeffrey and Knuth [7].

By the property of Lambert W function, we know that for any Lambert W function $W(z), W(z)$ has two real values $W_{0}(z)$ and $W_{-1}(z)$ for $-\frac{1}{e}<z<0$. Using the following inequality given by Robbins [24]

$$
\begin{equation*}
r!<\sqrt{2 \pi} r^{r+\frac{1}{2}} e^{-r+\frac{1}{12 r}} \tag{3.43}
\end{equation*}
$$

we obtain that

$$
\begin{equation*}
-\frac{1}{e}<-\frac{\pi}{4(2 r-1)}\left(\frac{\pi}{8 \sqrt{2}}\left(\frac{1}{2}\right)_{r-1}\right)^{\frac{1}{2 r-1}}<0 \tag{3.44}
\end{equation*}
$$

So equation (3.40) has two real roots. Let $b=\max \left\{x_{1}, x_{2}\right\}$ be the larger real root. It follows that for $n \geq b+1$,

$$
\begin{equation*}
\frac{a_{1}}{2 n^{r-\frac{1}{2}}}-2^{r+1} e^{-\frac{\mu(n)}{2}}>0 . \tag{3.45}
\end{equation*}
$$

Let

$$
n(r)=\max \left\{225, r, \frac{4((r+1)!)^{2}}{a_{1}^{2}}+1, b+1\right\}
$$

Combining (3.39) and (3.45), we conclude that for $n \geq n(r)$,

$$
(-1)^{r-1} \triangle^{r} \log \bar{p}(n)>0
$$

This completes the proof.
Note that Theorem 3.1 means that for any r, there exists $n^{\prime}(r)$ such that for $n>n^{\prime}(r)$ we have $\frac{1}{\bar{p}(n)}$ is log-monotonic of order r. (For more background for \log-monotonic sequences, see [5].) Furthermore, we also wish to seek for a sharp lower bound for $(-1)^{r-1} \triangle^{r} \log \bar{p}(n)$.

Problem 3.4. If there exists a positive number A such that

$$
\frac{(-1)^{r-1} \triangle^{r} \log \bar{p}(n)}{n^{-\frac{r-1}{2}}}>A
$$

for any r and sufficiently large n ?

4. An upper bound for $(-1)^{r-1} \triangle^{r} \log \bar{p}(n)$

In this section, we give an upper bound for $(-1)^{r-1} \triangle^{r} \log \bar{p}(n)$.
Theorem 4.1. For each $r \geq 1$, there exists a positive integer $n(r)$ such that for $n \geq n(r)$,

$$
\begin{equation*}
(-1)^{r-1} \triangle^{r} \log \bar{p}(n)<\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}} \tag{4.1}
\end{equation*}
$$

Proof. First, we treat the case $r=1$, which states that for $n \geq 36$

$$
\triangle \log \bar{p}(n)<\frac{\pi}{2 \sqrt{n}}
$$

Since the upper bound for $\left|G_{r}\right|$ has been given in (3.12). We only need to find an appropriate upper bound for H_{r} for $r=1$. By Proposition 3.3, we have

$$
\begin{equation*}
H_{1} \leq \frac{\pi}{2 \sqrt{n}}-\frac{3}{2(n+1)}+\frac{\pi}{2 \sqrt{n}(\pi \sqrt{n}-1)} \tag{4.2}
\end{equation*}
$$

Combining (4.2) and the upper bound for $\left|G_{1}\right|$ in (3.12) leads to that for $n \geq 1$,

$$
\begin{equation*}
\triangle \log \bar{p}(n) \leq H_{1}+\left|G_{1}\right| \leq \frac{\pi}{2 \sqrt{n}}-\frac{3}{2(n+1)}+\frac{\pi}{2 \sqrt{n}(\pi \sqrt{n}-1)}+4 e^{-\frac{\mu(n)}{2}} \tag{4.3}
\end{equation*}
$$

We proceed to estimate the last three terms of the right hand side of (4.3). For the second term, it is easily seen that for $n \geq 1$,

$$
\begin{equation*}
-\frac{3}{2(n+1)} \leq-\frac{3}{4 n} \tag{4.4}
\end{equation*}
$$

For the third term of the right hand side of (4.3). Since $\pi \sqrt{n}>4$ for $n \geq 2$, we have that for $n \geq 2$,

$$
\begin{equation*}
\frac{\pi}{2 \sqrt{n}(\pi \sqrt{n}-1)}=\frac{1}{2 n\left(1-\frac{1}{\pi \sqrt{n}}\right)}<\frac{2}{3 n} \tag{4.5}
\end{equation*}
$$

For the last term of the right hand side of (4.3). Notice that for $n \geq 36$,

$$
\begin{equation*}
4 e^{-\frac{\hat{\mu}(n)}{2}}<\frac{1}{12 n} \tag{4.6}
\end{equation*}
$$

Combining (4.3)-(4.6), we see that for $n \geq 36$,

$$
\triangle \log \bar{p}(n)<\frac{\pi}{2 \sqrt{n}}
$$

We now turn to the case $r \geq 2$. Recall that

$$
(-1)^{r-1} \triangle^{r} \log \bar{p}(n)=H_{r}+G_{r}
$$

thus for $n \geq 1$,

$$
\begin{equation*}
(-1)^{r-1} \triangle^{r} \log \bar{p}(n) \leq H_{r}+\left|G_{r}\right| . \tag{4.7}
\end{equation*}
$$

Now we need an upper bound for H_{r}. Applying Proposition 3.3 to (3.33), we get

$$
\begin{equation*}
H_{r} \leq \frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{(n+r)^{r}}+\sum_{k=1}^{\infty} \frac{1}{k \pi^{k}}\left(\frac{k}{2}\right)_{r} \frac{1}{n^{r+\frac{k}{2}}} . \tag{4.8}
\end{equation*}
$$

Notice that for $n \geq r$,

$$
\begin{gathered}
\frac{1}{(n+r)^{r}} \geq \frac{1}{(2 n)^{r}}, \\
\frac{1}{n^{r+\frac{k}{2}}} \leq \frac{1}{n^{r+\frac{1}{2}}} \cdot \frac{1}{r^{\frac{k}{2}-\frac{1}{2}}}
\end{gathered}
$$

we have that for $n \geq r$,

$$
\begin{equation*}
H_{r} \leq \frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{2^{r} n^{r}}+\frac{a_{2}}{n^{r+\frac{1}{2}}} \tag{4.9}
\end{equation*}
$$

where

$$
a_{2}=\sum_{k=1}^{\infty} \frac{1}{k \pi^{k}}\left(\frac{k}{2}\right)_{r} \frac{1}{r^{\frac{k}{2}-\frac{1}{2}}} .
$$

Obviously, a_{2} is convergent and hence a finite number. It can be checked that for $n \geq$ $\frac{4 a_{2}^{2} 4^{r}}{((r-1)!)^{2}}+1$,

$$
\begin{equation*}
\frac{a_{2}}{n^{r+\frac{1}{2}}}<\frac{(r-1)!}{2^{r+1} n^{r}} \tag{4.10}
\end{equation*}
$$

Combining (4.9) and (4.10) yields that for $n \geq \max \left\{r, \frac{4 a_{2}^{2} 4^{r}}{((r-1)!)^{2}}+1\right\}$,

$$
H_{r} \leq \frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{2^{r+1} n^{r}}
$$

So we have that for $n \geq \max \left\{225, r, \frac{4 a_{2}^{2} 4^{r}}{((r-1)!)^{2}}+1\right\}$,

$$
\begin{align*}
(-1)^{r-1} \triangle^{r} \log \bar{p}(n) & \leq H_{r}+\left|G_{r}\right| \\
& \leq \frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{2^{r+1} n^{r}}+2^{r+1} e^{\frac{-\hat{\mu}(n)}{2}} \tag{4.11}
\end{align*}
$$

It can be checked that for sufficiently large n,

$$
\frac{(r-1)!}{2^{r+1} n^{r}}>2^{r+1} e^{\frac{-\hat{\mu}(n)}{2}}
$$

Thus, from (4.11), we assert that for sufficiently large n,

$$
(-1)^{r-1} \triangle^{r} \log \bar{p}(n)<\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}}
$$

In order to estimate $n(r)$, we proceed to consider the following equation

$$
\begin{equation*}
\frac{(r-1)!}{2^{r+1} x^{r}}=2^{r+1} e^{\frac{-\tilde{\mu}(x)}{2}} \tag{4.12}
\end{equation*}
$$

Similar to (3.40), the solution of (4.12) has the following form

$$
\begin{equation*}
x=\frac{16 r^{2}}{\pi^{2}}\left(W\left(-\frac{\pi}{8 r}\left(\frac{(r-1)!}{4}\right)^{\frac{1}{2 r}}\right)\right)^{2} . \tag{4.13}
\end{equation*}
$$

By (3.43), we obtain that for $r \geq 2$,

$$
\begin{equation*}
-\frac{1}{e}<-\frac{\pi}{8 r}\left(\frac{(r-1)!}{4}\right)^{\frac{1}{2 r}}<0 \tag{4.14}
\end{equation*}
$$

Thus, (4.12) has two real roots. Let x_{1} be the larger real root. Thus, for $n \geq x_{1}+1$,

$$
\begin{equation*}
\frac{(r-1)!}{2^{r+1} n^{r}}>2^{r+1} e^{\frac{-\hat{\mu}(n)}{2}} \tag{4.15}
\end{equation*}
$$

Combining (4.15) and (4.11), we conclude that (4.1) holds for $n \geq n(r)$, where

$$
n(r)=\max \left\{225, r, \frac{4 a_{2}^{2} 4^{r}}{((r-1)!)^{2}}+1, x_{1}+1\right\}
$$

This completes the proof of Theorem 4.1.

Acknowledgments

This work was supported by the 973 Project and the National Science Foundation of China.

References

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Function, Dover, New York, 1965.
[2] G. Almkvist, Exact asymptotic formulas for the coefficients of nonmodular functions, J. Number Theory 38 (1991) 145-160.
[3] G. Almkvist, On the differences of the partition function, Acta Arith. 61 (1992) 173-181.
[4] W.Y.C. Chen, Recent developments on log-concavity and q-log-concavity of combinatorial polynomials, in: DMTCS Proceedings of 22nd International Conference on Formal Power Series and Algebraic Combinatorics, 2010.
[5] W.Y.C. Chen, J.J.F. Guo, L.X.W. Wang, Infinitely log-monotonic combinatorial sequences, Adv. in Appl. Math. 52 (2014) 99-120.
[6] W.Y.C. Chen, L.X.W. Wang, G.Y.B. Xie, Finite differences of the logarithm of the partition function, Math. Comp. 85 (2016) 825-847.
[7] R.M. Corless, G.H. Gonnet, D.E. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert W function, Adv. Comput. Math. 5 (1996) 329-359.
[8] S. Corteel, J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (2004) 1623-1635.
[9] S. DeSalvo, I. Pak, Log-concavity of the partition function, Ramanujan J. 38 (1) (2015) 61-73.
[10] P. Desrosiers, L. Lapointe, P. Mathieu, Jack superpolynomials, superpartition ordering and determinantal formulas, Comm. Math. Phys. 233 (2003) 383-402.
[11] B. Engel, Log-concavity of the overpartition function, Ramanujan J. (2014) 1-13.
[12] I.J. Good, The difference of the partition function, Problem 6137, Amer. Math. Monthly 84 (1997) 141.
[13] H. Gupta, Finite differences of the partition function, Math. Comp. 32 (1978) 1241-1243.
[14] G.H. Hardy, S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. Lond. Math. Soc. 17 (1918) 75-115.
[15] S.-J. Kang, J.-H. Kwon, Crystal bases of the Fock space representations and string functions, J. Algebra 280 (2004) 313-349.
[16] C. Knessl, J.B. Keller, Partition asymptotics from recursion equations, SIAM J. Appl. Math. 50 (1990) 323-338.
[17] C. Knessl, J.B. Keller, Asymptotic behavior of high order differences of the partition function, Comm. Pure Appl. Math. 44 (1991) 1033-1045.
[18] D.H. Lehmer, On the series for the partition function, Trans. Amer. Math. Soc. 43 (1938) 271-292.
[19] D.H. Lehmer, On the remainders and convergence of the series for the partition function, Trans. Amer. Math. Soc. 46 (1939) 362-373.
[20] J. Lovejoy, Gordon's theorem for overpartitions, J. Combin. Theory Ser. A 103 (2003) 393-401.
[21] J. Lovejoy, O. Mallet, Overpartition pairs and two classes of basic hypergeometric series, Adv. Math. 217 (2008) 386-418.
[22] A.M. Odlyzko, Differences of the partition function, Acta Arith. 49 (1988) 237-254.
[23] H. Rademacher, A convergent series for the partition function $p(n)$, Proc. Nat. Acad. Sci. 23 (1937) 78-84.
[24] H. Robbins, A remark on Stirling's formula, Amer. Math. Monthly 62 (1) (1955) 26-29.
[25] H.S. Zuckerman, On the coefficients of certain modular forms belonging to subgroups of the modular group, Trans. Amer. Math. Soc. 45 (2) (1939) 298-321.

[^0]: * Corresponding author.

 E-mail addresses: wsw82@nankai.edu.cn (L.X.W. Wang), xieyibiao@mail.nankai.edu.cn (G.Y.B. Xie), zhang605@cuit.edu.cn (A.Q. Zhang).

