
Recent developments on log-concavity and
q-log-concavity of combinatorial polynomials

William Y.C. Chen

joint work with

Cindy C.Y. Gu, Sabrina X.M. Pang, Ellen X.Y. Qu, Robert L. Tang,
Carol J. Wang, Larry X.W. Wang, Ernest X.W. Xia, Arthur L.B. Yang

Center for Combinatorics
Nankai University

August 4th, 2010



Definitions

Let {ai}0≤i≤m be a positive sequence of real numbers.

Definition

{ai}0≤i≤m is unimodal if there exists k such that

a0 ≤ ⋅ ⋅ ⋅ ≤ ak ≥ ⋅ ⋅ ⋅ ≥ am,

and is strictly unimodal if

a0 < ⋅ ⋅ ⋅ < ak > ⋅ ⋅ ⋅ > am.

Example

For fixed m, {
(
m
0

)
,
(
m
1

)
, . . . ,

(
m
m

)
} is symmetric and unimodal.

Furthermore, it is strictly unimodal if m is even.
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Definitions

Definition

{ai}0≤i≤m is log-concave if

a2
i ≥ ai+1ai−1

for all 1 ≤ i ≤ m − 1, and is strictly log-concave if

a2
i > ai+1ai−1.

f (x)

Remark: A log-concave sequence is unimodal.

Example

For fixed m, {
(
m
0

)
,
(
m
1

)
, . . . ,

(
m
m

)
} is strictly log-concave. While

{1, 3, 5, 9, 5, 3, 1} is unimodal, but not log-concave.
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Definitions

Let f (q) = a0 + a1q + ⋅ ⋅ ⋅+ amqm be a polynomial with real coefficients.

Definition

f (q) is unimodal (or strictly unimodal) if {ai}0≤i≤m is unimodal (resp.
strictly unimodal).

Definition

f (q) is log-concave (or strictly log-concave) if {ai}0≤i≤m is log-concave
(resp. strictly log-concave).

Example

Let des(�) denote the number of descents of �. The Eulerian polynomial
Am(q) =

∑
�∈Sm

q1+des(�) is strictly log-concave.
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Definitions

Let {fi (q)}0≤i≤m be a sequence of polynomials with real coefficients.

Definition

For any two polynomials f (q) and g(q) with real coefficients, define
f (q) ≥q g(q) if and only if f (q)− g(q), as a polynomial in q, has all
nonnegative coefficients.

Definition

{fi (q)}0≤i≤m is q-log-concave if

fi (q)2 ≥q fi+1(q)fi−1(q), 1 ≤ i ≤ m − 1,

and is strongly q-log-concave if

fi (q)fj(q) ≥q fi+1(q)fj−1(q), i ≥ j ≥ 1.

5 / 1



Definitions

Example

The Gaussian binomial coefficients {
[
m
k

]
q
}0≤k≤m are strongly

q-log-concave.

∙ The q-log-concavity was conjectured by Butler (1987).

∙ The first proof was given by Butler (1990).

∙ Krattenthaler (1989) found an alternative combinatorial proof.

∙ Sagan (1992) gave an inductive proof.

Remark: Usually, a q-log-concave sequence is not strongly q-log-concave.

Example

The sequence {q2, q + q2, 1 + 2q + q2, 4 + q + q2} is q-log concave but
not strongly q-log concave.
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Definitions

Based on the q-log-concavity, it is natural to define the q-log-convexity.

Definition

{fi (q)}0≤i≤m is q-log-convex if

fi (q)2 ≤q fi+1(q)fi−1(q), 1 ≤ i ≤ m − 1,

and is strongly q-log-convex if

fi (q)fj(q) ≤q fi+1(q)fj−1(q), i ≥ j ≥ 1.

Example

The sequence
{2q + q2 + 3q3, q + 2q2 + 2q3, q + 2q2 + 2q3, 2q + q2 + 3q3} is
q-log-convex, but not strongly q-log-convex.
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Overview

I wish to report the following work on log-concavity and q-log-concavity
of combinatorial polynomials.

(1) the unimodality conjecture of Palmer, Read and Robinson on the
number of balanced coloring of the n-cube; a log-concavity theorem
for sufficiently large n.

(2) the ratio monotonicity, reverse ultra log-concavity and
2-log-concavity of the Boros-Moll polynomials; the combinatorial
proof of log-concavity of Boros-Moll polynomials; the
2-log-convexity of Apéry numbers;

(3) a symmetric function approach to the q-log-convexity conjectures,
due to Liu and Wang, on the Narayana polynomials of type A and
type B;
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Overview

(continued)

(4) the strong log-concavity of q-Narayana numbers and a conjecture of
McNamara and Sagan on the infinite q-log-concavity of the
Gaussian coefficients;

(5) a unified approach to the q-log-convexity of the Bell polynomials,
the Bessel polynomials, the Ramanujan polynomials and the Dowling
polynomials, based on a triangular recurrence relation.

(6) Some open problems on log-concavity and q-log-concavity of
polynomials.
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Outline
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Background

Let Qn be the n-dimensional cube represented by a graph whose vertices
are sequences of 1’s and −1’s of length n, where two vertices are
adjacent if they differ only at one position.
Let Vn denote the set of vertices of Qn, namely,

Vn = {(�1, �2, . . . , �n) ∣ �i = −1 or 1, 1 ≤ i ≤ n}.

By a 2-coloring of the Qn we mean an assignment of weights 1 or 0 to
the vertices of Qn.
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Background

The weight of a 2-coloring is the sum of weights or the numbers of
vertices with weight 1.
The center of mass of a coloring f with w(f ) ∕= 0 is the point whose
coordinates are given by

1

w(f )

∑
(�1, �2, . . . , �n),

where the sum ranges over all black vertices. If w(f ) = 0, we take the
center of mass to be the origin.
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Background

A 2-coloring is balanced if its center of mass coincides with the origin. A
pair of vertices of the n-cube is called an antipodal pair if it is of the
form (v ,−v). A 2-coloring is said to be antipodal if any vertex v and its
antipodal have the same color.
Let ℬn,2k denote the set of balanced 2-colorings of the n-cube with
exactly 2k black vertices and Bn,2k = ∣ℬn,2k ∣.

Conjecture (Palmer-Read-Robinson, J. Algebraic Combin. (1992))

The sequence {Bn,2k}0≤k≤2n−1 is unimodal with the maximum at
k = 2n−2 for any n ≥ 1.

13 / 1



Refinement of Balanced Colorings

Example: When n = 4, the sequence {Bn,2k} reads

1, 8, 52, 152, 222, 152, 52, 8, 1,

which is a unimodal sequence.
Let ℬn,2k,i denote the set of the balanced 2-colorings in ℬn,2k containing
exactly i antipodal pairs of black vertices.

Theorem (Chen-Wang, J. Algebraic Combin. (2010))

For 0 ≤ i ≤ k and 0 ≤ k ≤ 2n−2 − 1, we have

(2n−1 − 2k + i)∣ℬn,2k,i ∣ = (i + 1)∣ℬn,2k+2,i+1∣. (1)
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Proof of the Palmer-Read-Robinson Conjecture

This theorem implies that ∣ℬn,2k,i ∣ < ∣ℬn,2k+2,i+1∣ for 0 ≤ k ≤ 2n−2 − 1.
Thus we have

Bn,2k =
k∑

i=0

∣ℬn,2k,i ∣ <
k+1∑
i=1

∣ℬn,2k+2,i ∣ ≤
k+1∑
i=0

∣ℬn,2k+2,i ∣ = Bn,2k+2,

for 0 ≤ k ≤ 2n−2 − 1. Since {Bn,2k}0≤k≤2n−1 is symmetric for any n ≥ 1,
the Palmer-Read-Robinson Conjecture is true.
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Log-concavity Conjecture

The sequence {Bn,2k}0≤k≤2n−1 not log-concave in general.
Example: B5,0 = 1, B5,2 = 16 and B5,4 = 320, we have
B2

5,2 − B5,0B5,4 < 0.
However, we observed that {Bn,2k}n is log-concave for small k.

Conjecture (Chen-Wang, J. Algebraic Combin. (2010))

When 0 ≤ k ≤ 2n−1, we have

B2
n,2k ≥ Bn−1,2kBn+1,2k .

Applying the probabilistic method, we shall show that this conjecture
holds for sufficiently large n.
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Probabilistic Method

Theorem (Canfield-Gao-Greenhill-McKay-Robinson, 2009, arXiv)

If 0 ≤ k ≤ o(2n/2), then

Bn,2k =

(
2k

k

)n (
1− O

(
k2

2n

))
/(2k)!.

Theorem (Chen-Wang, J. Algebraic Combin. (2010))

Let cn,k be the real number such that

Bn,2k =

(
2k

k

)n (
1− cn,k

(
k2

2n

))
/(2k)!. (2)

Then, for k ≥ 3 and n > 5 log 4
3

k + log 4
3

96, we have cn,k > cn+1,k .
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Probabilistic Method

Applying the theorem above, we arrive at the following result by a direct
calculation.

Theorem (Chen-Wang, J. Algebraic Combin. (2010))

When n ≥ 5 log 4
3

k + log 4
3

96, we have

B2
n,2k > Bn−1,2kBn+1,2k .
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Outline
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Boros-Moll Polynomials

Boros and Moll explored the following quartic integral.

Theorem (Moll, Notices Amer. Math. Soc. (2002))

For any a > −1 and any nonnegative integer m,∫ ∞
0

1

(x4 + 2ax2 + 1)m+1
dx =

�Pm(a)

2m+3/2(a + 1)m+1/2
,

where

Pm(a) =
∑
j,k

(
2m + 1

2j

)(
m − j

k

)(
2k + 2j

k + j

)
(a+ 1)j(a− 1)k

23(k+j)
.

Proof. It follows from Wallis’s integral formula.
The polynomials Pm(a) will be called the Boros-Moll polynomials.
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Boros-Moll Polynomials

It is not clear that the polynomial Pm(a) has positive coefficients from
the above double summation formula.
Ramanujan’s Master Theorem yields the following formula.

Theorem (Moll, Notices Amer. Math. Soc. (2002))

For any m,

Pm(a) = 2−2m
∑
k

2k

(
2m − 2k

m − k

)(
m + k

k

)
(a + 1)k . (3)

21 / 1



Boros-Moll Polynomials

Let di (m) be given by Pm(a) =
m∑
i=0

di (m)ai .

From (??), it follows that

di (m) = 2−2m
m∑
k=i

2k

(
2m − 2k

m − k

)(
m + k

k

)(
k

i

)
. (4)
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Unimodality and Log-concavity

Theorem (Boros and Moll, J. Math. Anal. Appl. (1999))

The sequence {di (m)}0≤i≤m is unimodal and the maximum element
appears in the middle. In other words,

d0(m) < ⋅ ⋅ ⋅ < d[m
2 ](m) > d[m

2 ]+1(m) > ⋅ ⋅ ⋅ > dm(m).

Theorem (Kauers and Paule, Proc. Amer. Math. Soc. (2007))

The sequence {di (m)}0≤i≤m is log-concave.

Remark. This was conjectured by Moll (2002). Proof is based on
recurrence relations obtained by symbolic computations.
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Recurrences of Kauers and Paule

Kauers and Paule (2007) utilized the RISC package MultiSum to derive
the following recurrences: for 0 ≤ i ≤ m

di (m + 1) =
m + i

m + 1
di−1(m) +

(4m + 2i + 3)

2(m + 1)
di (m), 0 ≤ i ≤ m + 1, (5)

di (m + 1) =
(4m − 2i + 3)(m + i + 1)

2(m + 1)(m + 1− i)
di (m)− i(i + 1)di+1(m)

(m + 1)(m + 1− i)
, (6)

di (m + 2) =
−4i2 + 8m2 + 24m + 19

2(m + 2− i)(m + 2)
di (m + 1)

− (m + i + 1)(4m + 3)(4m + 5)

4(m + 2− i)(m + 1)(m + 2)
di (m), , (7)

di−2(m) =
(i − 1)(2m + 1)di−1(m)

(m + 2− i)(m + i − 1)
− i(i − 1)di (m)

(m + 2− i)(m + i − 1)
. (8)
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The Ratio Monotone Property

A sequence {ai}0≤i≤m of positive numbers is said to be spiral if

am ≤ a0 ≤ am−1 ≤ a1 ≤ ⋅ ⋅ ⋅ ≤ a[m
2 ].

A sequence {ai}0≤i≤m of positive numbers is said to be ratio monotone if

a0

am−1
≤ a1

am−2
≤ ⋅ ⋅ ⋅ ≤ ai−1

am−i
≤ ai

am−1−i
≤ ⋅ ⋅ ⋅ ≤

a[m2 ]−1

am−[m2 ]
≤ 1,

am
a0

≤ am−1

a1
≤ ⋅ ⋅ ⋅ ≤ am−i

ai
≤ am−1−i

ai+1
≤ ⋅ ⋅ ⋅ ≤

am−[m−1
2 ]

a[m−1
2 ]

≤ 1.

If the above inequalities become strict, we say that the sequence is
strictly ratio monotone. It is easy to see that the ratio monotonicity
implies log-concavity and spiral property.
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The Ratio Monotone Property

Theorem (Chen-Xia, Math. Comput. (2009))

The Boros-Moll sequence {di (m)}0≤i≤m satisfies the strictly ratio
monotone property.

Proof. We mainly use the four recurrence relations given by Kauers and
Paule and the following lower and upper bounds of di (m + 1)/di (m).
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Lower Bound

Theorem (Chen-Xia, Math. Comput. (2009))

Let m ≥ 2. We have for 1 ≤ i ≤ m − 1,

di (m + 1) >
4m2 + 7m + i + 3

2(m + 1− i)(m + 1)
di (m), (9)

and

d0(m + 1) =
4m + 3

2(m + 1)
d0(m), (10)

dm(m + 1) =
(2m + 3)(2m + 1)

2(m + 1)
2−m

(
2m

m

)
. (11)
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Upper Bound

Theorem (Chen-Xia, Math. Comput. (2009))

Let m ≥ 2 be a positive integer. We have for 0 ≤ i ≤ m,

di (m + 1) ≤ B(m, i)di (m), (12)

where B(m, i) is defined by

B(m, i) =
A(m, i)

2(i + 2)(4m + 2i + 5)(m + 1)(m − i + 1)
(13)

with

A(m, i) =30 + 96m2 + 94m + 37i + 72m2i + 8m2i2 − i3

+ 99mi + 5i2 + 13mi2 + 16m3i + 32m3. (14)
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Ultra Log-Concavity

A positive sequence {ak}0≤k≤n is ultra log-concave if
{

ak
/(

n
k

)}
is

log-concave. This condition can be restated as

(n − k)ka2
k − (n − k + 1)(k + 1)ak−1ak+1 ≥ 0.

Newton’s inequality: if the polynomial
∑n

k≥0 akxk with positive
coefficients has only real zeros, then the sequence a0, a1, . . . , an is ultra
log-concave.
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Reverse Ultra Log-Concavity

A positive sequence {ak}0≤k≤n is said to be reverse ultra log-concave if it
satisfies the reverse relation of ultra log-concavity, that is,

k(n − k)a2
k − (n − k + 1)(k + 1)ak−1ak+1 ≤ 0.

Example

For n ≥ 2, the Bessel polynomial

yn(x) =
n∑

k=0

(n + k)!

2kk!(n − k)!
xk

is log-concave and reverse ultra log-concave.
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Reverse Ultra Log-Concavity

Theorem (Chen-Gu, Proc. Amer. Math. Soc. (2009))

For all m ≥ 2, 1 ≤ i ≤ m − 1, we have di (m+1)
di (m) < T (m, i), where

T (m, i) =
4m2 + 7m + 3 + i

√
4m + 4i2 + 1− 2i2

2(m − i + 1)(m + 1)
,

and for m ≥ 1, we have

d0(m + 1)

d0(m)
= T (m, 0),

dm(m + 1)

dm(m)
= T (m,m).

Theorem (Chen-Gu, Proc. Amer. Math. Soc. (2009))

The Boros-Moll sequence {di (m)}0≤i≤m satisfies the reverse ultra
log-concave property.
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A Lower Bound for di (m)2/(di−1(m)di+1(m))

On the other hand, the coefficients di (m) satisfy an inequality stronger
than the log-concavity.

Theorem (Chen-Gu, Proc. Amer. Math. Soc. (2009))

For m ≥ 2 and 1 ≤ i ≤ m − 1, we have

di (m)2

di−1(m)di+1(m)
>

(m − i + 1)(i + 1)(m + i)

(m − i)i(m + i + 1)
.

Corollary (Chen-Gu, Proc. Amer. Math. Soc. (2009))

The sequence {i !di (m)} is log-concave.
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Moll’s Minimum Conjecture

Theorem (Chen-Xia, European J. Combin. (2010))

For 1 ≤ i ≤ m,

i(i + 1)
(
d2
i (m)− di+1(m)di−1(m)

)
attains its minimum at i = m with 2−2mm(m + 1)

(
2m
m

)2
.

This was conjectured by Moll (2005).
Proof is based on the log-concavity of {i !di (m)} and the ratio monotone
property of {di (m)}.
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A Lower Bound for di (m)2/(di−1(m)di+1(m))

Since

(m − i + 1)(i + 1)(m + i)

(m − i)i(m + i + 1)
<

di (m)2

di−1(m)di+1(m)
<

(m − i + 1)(i + 1)

(m − i)i
,

we have

Corollary (Chen-Gu, Proc. Amer. Math. Soc. (2009))

For 1 ≤ i ≤ m − 1, let

ci (m) =
d2
i (m)

di−1(m)di+1(m)
, ui (m) =

(
1 +

1

i

)(
1 +

1

m − i

)
.

Then for any i ≥ 1,

lim
m→∞

ci (m)

ui (m)
= 1.
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Interlacing Log-Concvaity

Note that log-concavity and ratio monotone property are both the
relations of ratio of one row. We call a sequence {ai (m)} is interlacing
log-concave if

r0(m + 1) ≤ r0(m) ≤ r1(m + 1)

≤ r1(m) ≤ ⋅ ⋅ ⋅ ≤ rm−1(m + 1) ≤ rm−1(m) ≤ rm(m + 1),

where
ri (m) = ai (m)/ai+1(m).
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Interlacing Log-Concvaity

We found the Boros-Moll polynomials process the interlacing
log-concavity. For example, for n = 4, 5, we have

P4(a) =
1155

128
+

885

32
a +

1095

32
a2 +

315

16
a3 +

35

8
a4,

P5(a) =
4389

256
+

8589

128
a +

7161

64
a2 +

777

8
a3 +

693

16
a4 +

63

8
a5.

The interlacing log-concavity is illustrated as follows:

4389
256

8589
128

<
1155
128
885
32

<
8589
128

7161
64

<
885
32

1095
32

<
7161

64
777

8

<
1095

32
315
16

<
777

8
693
16

<
315
16
35
8

<
693
16
63
8

.
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Interlacing Log-Concavity

By induction, we obtain the following two lemmas from which we
establish the interlacing log-concavity of the Boros-Mill polynomials

Lemma (Chen-Wang-Xia, preprint)

Let m ≥ 2 be an integer. For 0 ≤ i ≤ m − 2, we have

di (m)

di+1(m)
<

4m + 2i + 3

4m + 2i + 7

di+1(m)

di+2(m)
.

Lemma (Chen-Wang-Xia, 2010, arXiv)

Let m ≥ 2 be a positive integer. For 0 ≤ i ≤ m − 1, we have

di (m)

di+1(m)
>

2i + 4m + 5

2i + 4m + 3

di (m + 1)

di+1(m + 1)
.
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Interlacing Log-Concavity

Theorem (Chen-Wang-Xia, 2010, arXiv)

Suppose the triangular array T (n, k) > 0 satisfies the recurrence

T (n, k) = f (n, k)T (n − 1, k) + g(n, k)T (n − 1, k − 1),

and the polynomial
n∑

k=0

T (n, k)xk has only real zeros for every n. If

(n − k)k

(n − k + 1)(k + 1)
f (n + 1, k + 1) ≤ f (n + 1, k) ≤ f (n + 1, k + 1)

and

g(n + 1, k + 1) ≤ g(n + 1, k) ≤ (n − k + 1)(k + 1)

(n − k)k
g(n + 1, k + 1),

then the triangular array T (n, k) satisfies the interlacing log-concavity.
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Interlacing Log-Concavity

This result applies to the following sequences.

(1) The stirling numbers of the first kind, c(n, k) with the recurrence

c(n, k) = (n − 1)c(n − 1, k) + c(n − 1, k − 1).

(2) The Stirling numbers of the second kind, S(n,k) with the recurrence

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k).

(3) The holiday numbers  (n, k) and �(n, k) of the first kind and the
second kind with the recurrences

 (n, k) = (2n + k − 1) (n − 1, k) +  (n − 1, k − 1)

and
�(n, k) = (2n + k)�(n − 1, k) + �(n − 1, k − 1),

respectively.

(4) The Whitney numbers Wm(n, k) satisfies the recurrence

Wm(n, k) = (1 + mk)Wm(n − 1, k) + Wm(n − 1, k − 1).
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Combinatorics of Boros-Moll polynomials

From the combinatorial point of view, it is always interesting to find
combinatorial reasons for the properties of the Boros-Moll polynomials
such as positivity, unimodality and log-concavity. We have explained the
positivity combinatorially. It is also desirable to find combinatorial proofs
of unimodal and log-concave properties. Furthermore, it would be
interesting to find combinatorial interpretations of the recurrence
relations of di (m).
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Positivity of Boros-Moll polynomials

Chen-Pang-Qu (Ramanujan J. (2010)) gave a Combinatorial proof for
the equivalence of the following two expressions:

Pm(a) =
∑
j,k

(
2m + 1

2j

)(
m − j

k

)(
2k + 2j

k + j

)
(a + 1)j(a− 1)k

23(k+j)
,

Pm(a) = 2−2m
∑
k

2k

(
2m − 2k

m − k

)(
m + k

k

)
(a + 1)k .

Tools: reluctant functions & an extension of Foata’s bijection
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Log-concavity of Boros-Moll polynomials

Chen-Pang-Qu (preprint) found a combinatorial proof of the
log-concavity of {di (m)}0≤i≤m:
First, rewrite

di (m)2 ≥ di−1(m)di+1(m)

as follows:

(m + i + 1)Di+1(m) ⋅ (m − i + 1)Di−1(m) ≤ (m + i)(m − i + 1)D2
i (m)

+ 1
i (m + i)(m − i)D2

i (m) + 1
i (m + i)D2

i (m), (15)

where Di (m) :=
(

2m
m−i
)
m!i !(m − i)!2idi (m).
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Combinatorial Interpretation of Di (m)

By straightforward calculation,

Di (m) =

(
2m

m − i

)
m!i !(m − i)!2idi (m)

=

(
2m

m − i

)m−i∑
ℓ=0

(
m − i

ℓ

)(
1

2

)ℓ(
1

2

)
m−i−ℓ

(1)m+i+ℓ (16)

where (x)n := x(x + 1) ⋅ ⋅ ⋅ (x + n − 1). Note that(x)n equals the
generating function of permutations on [n] with respect to the number of
cycles.
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Combinatorial Interpretation of Di (m)

Suppose (A,B,C ) is a composition of [2m], namely, any two sets of A,
B, C are disjoint and A ∪ B ∪ C = [2m], where A, B and C are allowed
to be empty. A pair of permutations (�AB ;�C ) on A ∪ B and C
respectively is called a 3-colored permutation on [2m]. For example,

(2, 12, 8, 11, 5, 9, 7, 1, 4, 3; (6, 10))

is a 3-colored permutation, where the elements belonging to A are in
boldface, �AB is expressed with one-line representation and �C is
expressed by the canonical cycle representation.
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Combinatorial Interpretation of Di (m)

Assign the weight of a 3-colored permutation (�AB ;�C ) by the following
rules:

∙ The weight of an element in A,B,C is given by 1
2 , 1, 1, respectively;

∙ The weight of a cycle in �AB is given by 1;

∙ The weight of a cycle in �C is given by 1
2 .

Let Di (m) denote the set of all 3-colored permutations (�AB ;�C ) on
[2m] such that the cardinality of B is m + i . Then by (??), Di (m) is the
weight sum of 3-colored permutations in Di (m).
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Log-concavity of Boros-Moll polynomials

By this combinatorial interpretation of Di (m) we can give a
combinatorial proof of the relation

(m + i + 1)Di+1(m) ⋅ (m − i + 1)Di−1(m) < (m + i)(m − i + 1)D2
i (m). (17)

This is achieved by two weight preserving correspondences.

46 / 1



Log-concavity of Boros-Moll polynomials

The same combinatorial approach can be also used to give a bijective
proof of the the relation

1

2
(m + i + 1)Di+1(m) + 2(m − i + 1)Di−1(m) = (2m + 1)Di (m),

which is equivalent to the recurrence relation

i(i + 1)di+1(m) = i(2m + 1)di (m)− (m − i + 1)(m + i)di−1(m) (18)

given by Kauers and Paule, and Moll independently.
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2-Log-Concavity

Define the ℒ-operator on sequences to be L(ak) = a2
k − ak−1ak+1.

A sequence {ak} is i-fold log-concave if Lj(ak) is log-concave for
1 ≤ j ≤ i − 1.
If {ak} is i-fold log-concave for any i , then it is said to be ∞-log-concave.

Conjecture (Moll, Notices Amer. Math. Soc. (2002))

The sequence di (m) is ∞-log-concave.

Conjecture (Brändén, 2009, arXiv)

Let Q(x) =
∑m

i=0
di (m)
i! x i and R(x) =

∑m
i=0

di (m)
(i+2)! x i .

Then both Q(x) and R(x) have only real zeros.

Remark. The real-rootedness of Q(x) (resp. R(x)) leads to the 2-fold
(resp. 3-fold) log-concavity of di (m).
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2-Log-concavity

Kauers and Paule (Proc. Amer. Math. Soc., 2007) considered the
2-log-concavity of Boros-Moll sequences, they said “we have tried to
apply the proof technique of Section 3 to establish 2-log-concavity, i.e.,(

d2
l (m)− dl−1(m)dl+1(m)

)2

−
(
d2
l−1(m)− dl−2(m)dl(m)

) (
d2
l+1(m)− dl+2(m)dl(m)

)
> 0.

The recurrences (9) and (6) can again be used for obtaining an equivalent
statement involving only shifts in m but no shifts in l . This statement is
polynomial in the dl(m + i) of degree 4. As a consequence, the condition
corresponding to (13) is much more complicated. It involves algebraic
functions of degree up to 15, and it would require more than thirty pages
to print it here. Under these circumstances, we have little hope that a
proof of 2-log-concavity could be completed along these lines. ”
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2-Log-Concavity

Theorem (Chen-Xia, preprint (2010))

The sequence di (m) is 2-log-concave.

The key idea is to find a function f (m, k) such that

d2
i−1(m)− di−2(m)di (m)

d2
i (m)− di−1(m)di+1(m)

< f (m, i) <
d2
i (m)− di−1(m)di+1(m)

d2
i+1(m)− di (m)di+2(m)

,

where

f (m, i) =
(i + 1)(i + 2)(m + i + 3)2

(m + 1− i)(m + 2− i)(m + i + 2)2
.
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2-Log-Concavity

Theorem (Brändén, arXiv, 2009)

If the polynomial
a0 + a1x + a2x2 + ⋅ ⋅ ⋅+ anxn

has real and negative zeros, then the sequence {ak}nk=0 is ∞-log-concave.

This was conjectured independently by Stanley, McNamara-Sagan and
Fisk.

Corollary

The binomial coefficients {
(
n
k

)
}k is ∞-log-concave.

This was first conjectured by Boros and Moll.
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2-Log-Convexity of Apéry Numbers

In his proof of the irrationality of �(2) and �(3), Apéry introduced the
following numbers An and Bn as given by

An =
n∑

k=0

(
n

k

)2(
n + k

k

)2

, (19)

Bn =
n∑

k=0

(
n

k

)2(
n + k

k

)
. (20)

The numbers An and Bn are often called the Apéry numbers.
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2-Log-Convexity of Apéry Numbers

It has been shown by Apéry that An and Bn satisfy the following
three-term recurrence relations for n ≥ 2,

An =
34n3 − 51n2 + 27n − 5

n3
An−1 −

(n − 1)3

n3
An−2,

Bn =
11n2 − 11n + 3

n2
Bn−1 +

(n − 1)2

n2
Bn−2,

where A0 = 1, A1 = 5, B0 = 1, B1 = 3; .
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2-Log-Convexity of Apéry Numbers

Cohen and Rhin obtained the following recurrence relation of Un in
connection with the rational approximation of �(4),

Un+1 = R(n)Un + G (n)Un−1, n ≥ 1,

where U0 = 1, U1 = 12 and

R(n) =
3(2n + 1)(3n2 + 3n + 1)(15n2 + 15n + 4)

(n + 1)5
,

G (n) =
3n3(3n − 1)(3n + 1)

(n + 1)5
.

.
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2-Log-Convexity of Apéry Numbers

Let

a3(n) =2b(n + 2)b2(n + 1) + 2b(n + 1)c(n + 2)− b3(n + 1)

− b(n + 1)b(n + 2)b(n + 3)− b(n + 3)c(n + 2)− c(n + 3)b(n + 1),

a2(n) =4b(n + 1)b(n + 2)c(n + 1) + 2c(n + 1)c(n + 2) + b(n + 1)2b(n + 2)b(n + 3)

+ b(n + 1)b(n + 3)c(n + 2) + b(n + 1)2c(n + 3)− 3c(n + 1)b2(n + 1)

− b(n + 3)b(n + 2)c(n + 1)− c(n + 3)c(n + 1)− b2(n + 2)b2(n + 1)

− 2b(n + 2)b(n + 1)c(n + 2)− c2(n + 2),

a1(n) =− c(n + 1)
(

2b(n + 2)c(n + 2)− 2b(n + 2)c(n + 1)− 2b(n + 3)b(n + 2)b(n + 1)

− b(n + 3)c(n + 2)− 2c(n + 3)b(n + 1) + 3c(n + 1)b(n + 1) + 2b2(n + 2)b(n + 1)
)
,

a0(n) =− c2(n + 1)
(
c(n + 1)− b(n + 2)b(n + 3)− c(n + 3) + b2(n + 2)

)
and

Δ(n) = 4a2
2(n)− 12a1(n)a3(n).
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2-Log-Convexity of Apéry Numbers

Theorem (Chen-Xia, Proc. Amer. Math. Soc., to appear)

Suppose {Sn}∞n=0 is a positive log-convex sequence that satisfies the
recurrence relation

S(n) = b(n)S(n − 1) + c(n)S(n − 2) (21)

for n ≥ 2. Assume that a3(n) < 0 and Δ(n) > 0 for all n ≥ N0, where N0

is a positive integer. If there exist fn and gn such that for all n ≥ N0,

(C1) fn ≤ Sn

Sn−1
< gn;

(C2) fn ≥
−2a2(n)−

√
Δ(n)

6a3(n) ;

(C3) a3(n)g 3
n + a2(n)g 2

n + a1(n)gn + a0(n) > 0,

then {Sn}∞n=N0
is strictly 2-log-convex.
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2-Log-Convexity of Apéry Numbers

This presents a unified approach for the 2-log-convexity of the Apéry
numbers, the Cohen-Rhin numbers, the Motzkin numbers, the Fine
numbers, the Franel numbers of order 3 and 4 and the large Schröder
numbers.
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Polynomials with nondecreasing and nonnegative
coefficients

Let P(x) = a0 + a1x + ⋅ ⋅ ⋅+ amxm, where 0 ≤ a0 ≤ a1 ≤ ⋅ ⋅ ⋅ ≤ am.

Theorem (Boros-Moll, Electron. J. Combin. (2001))

P(x + 1) is unimodal.

Theorem (Alvarez-Amadis-Boros-Karp-Moll-Rosales, Electron. J.
Combin. (2001))

P(x + n) is also unimodal for any positive integer n.

Theorem (Wang-Yeh, European J. Combin. (2005))

P(x + c) is unimodal for any positive number c.
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Polynomials with nondecreasing and nonnegative
coefficients

Theorem (Llamas-Mart́inez-Bernal, 2010)

P(x + c) is strictly log-concave for any c ≥ 1.

Theorem (Chen-Yang-Zhou, 2010, arXiv)

P(x + 1) is ratio monotone.

Remark. The above results apply to the Boros-Moll polynomials Pm(x).

Pm(x) = 2−2m
∑
k

2k

(
2m − 2k

m − k

)(
m + k

k

)
(x + 1)k .
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Outline
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q-Narayana Numbers

The q-Narayana numbers, as a natural q-analogue of the Narayana
numbers N(n, k), arise in the study of q-Catalan numbers. The
q-Narayana number Nq(n, k) is given by

Nq(n, k) =
1

[n]

[n

k

] [ n

k − 1

]
qk2−k ,

where we have adopted the common notation

[k] := (1− qk)/(1− q), [k]! = [1][2] ⋅ ⋅ ⋅ [k],

[
n

j

]
:=

[n]!

[j ]![n − j ]!

for the q-analogues of the integer k , the q-factorial, and the q-binomial
coefficient, respectively.
Remark. q-Narayana Numbers have a symmetric function representation.
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Partition

Given a nonnegative integer n, a partition � of n is a weakly decreasing
nonnegative integer sequence (�1, �2, . . . , �k) ∈ ℕk such that∑k

i=1 �i = n.
The number of nonzero components �i is called the length of �, denoted
ℓ(�). let Par(n) denote the set of all partitions of n.
Given two partitions � and �, we say � ⊆ �, if �i ≥ �i holds for each i .
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Young Diagram

The Young diagram of � is an array of squares in the plane justified from
the top and left corner with ℓ(�) rows and �i squares in row i .
When � ⊆ �, a skew partition �/� is the diagram obtained from the
diagram of � by removing the diagram of � at the top-left corner.

Fig 1: The diagram (4, 3, 1)/(2, 1)
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Semistandard Young Tableau

A semistandard Young tableau (SSYT) of shape �/� is an array
T = (Tij) of positive integers of shape �/� that is weakly increasing in
every row and strictly increasing in every column.
The type of T is defined as the composition � = (�1, �2, . . .), where �i

is the number of i ’s in T .

3

2

Fig 2: SSYT of shape (4, 3, 1)/(2, 1)

4

1
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Schur Function

If T has type type(T ) = �, then we write

xT = x�1
1 x�2

2 ⋅ ⋅ ⋅ .

The skew Schur function s�/�(x) of shape �/� is defined as the
generating function

s�/�(x) =
∑
T

xT ,

summed over all semistandard Young tableaux T of shape �/�. We set
s∅(x) = 1.
For a symmetric function f (x), define

psn(f ) = f (1, q, . . . , qn−1),
ps1

n(f ) = psn(f )∣q=1 = f (1n).
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Hook-content Formula

A square (i , j) in � is the square in row i from the top and column j from
the left. The hook length h(i , j), is given by �i + �′j − i − j + 1. The
content c(i , j) is given by j − i .

Theorem (Stanley, Studies in Applied Math. (1971))

For any partition � and n ≥ 1, we have

psn(s�) = q
∑

k≥1(k−1)�k
∏

(i,j)∈�

[n + c(i , j)]

[h(i , j)]

ps1
n(s�) =

∏
(i,j)∈�

n + c(i , j)

h(i , j)
.
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Brändén’s formula for q-Narayana Numbers

Brändén studied several Narayana statistics and bi-statistics on Dyck
paths, and noticed that the q-Narayana number Nq(n, k) has a Schur
function expression by a specialization of the variables.

Theorem (Brändén, Discrete Math. (2004))

For all n, k ∈ ℕ, we have

Nq(n, k) = s(2k−1)(q, q2, . . . , qn−1). (22)

Thus
N(n, k) = Nq(n, k)∣q=1 = s(2k )(1n−1) = ps1

n−1s(2k ).
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q-Log-Concavity of Nq(n, k) for fixed n

Theorem (Bergeron-McNamara, 2004, arXiv)

For k ≥ 1 and a ≥ b, the symmetric function s(ka)s(kb) − s(ka+1)s(kb−1) is
Schur positive.

The case of a = b is due to Kirillov (1984), and a different proof was
given by Kleber (2001).

Theorem (Chen-Wang-Yang, J. Algebraic Combin. (2010))

Given an integer n, the sequence (Nq(n, k))k≥1 of polynomials in q is
strongly q-log-concave.
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q-Log-Concavity of Nq(n, k) for fixed n

Proof. For any k ≥ l ≥ 2,

Nq(n, k)Nq(n, l)− Nq(n, k + 1)Nq(n, l − 1) = s(2k−1)s(2l−1) − s(2k )s(2l−2),

where the Schur functions are evaluated at the variable set
{q, q2, . . . , qn−1}.
By Bergeron-McNamara’s theorem, the difference
s(2k−1)s(2l−1) − s(2k )s(2l−2) is Schur positive for k ≥ l .
We see that the difference Nq(n, k)Nq(n, l)− Nq(n, k + 1)Nq(n, l − 1) as
a polynomial in q has nonnegative coefficients.
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Transformation formulas

Employing the Hook-content formula, we can deduce the following
relations used in the proof of the q-log-concavity of the q-Narayana
numbers Nq(n, k) for given k . For any r ≥ 1, let

Xr = {q, q2, . . . , qr−1}, X−1
r = {q−1, q−2, . . . , q−(r−1)}.

Lemma

For any m ≥ n ≥ 1 and k ≥ 1, we have

qn−1s(2k−1,1)(Xn−1)s(2k )(Xm)− qms(2k−1,1)(Xm)s(2k )(Xn−1)

= qk−1
(
s(2k−1,1)(Xn−1)s(2k )(Xm)− s(2k−1,1)(Xm)s(2k )(Xn−1)

)
q2(n−1)s(2k−1)(Xn−1)s(2k )(Xm)− q2ms(2k−1)(Xm)s(2k )(Xn−1)

= q2k(m+n−1)
(
s(2k−1)(X−1

n−1)s(2k )(X−1
m )− s(2k−1)(X−1

m )s(2k )(X−1
n−1)

)
.
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q-Log-Concavity of Nq(n, k) for fixed k

Theorem (Chen-Wang-Yang, J. Algebraic Combin. (2010))

Given an integer k, the sequence (Nq(n, k))n≥k is strongly q-log-concave.

Proof. For any m ≥ n ≥ k ,

Nq(m, k)Nq(n, k)− Nq(m + 1, k)Nq(n − 1, k).

⇓

s(2k−1)(Xm)s(2k−1)(Xn)− s(2k−1)(Xm+1)s(2k−1)(Xn−1)

⇓

s(2k−1)(Xm)
(

s(2k−1)(Xn−1) + qn−1s(2k−2,1)(Xn−1) + q2(n−1)s(2k−2)(Xn−1)
)

−
(
s(2k−1)(Xm) + qms(2k−2,1)(Xm) + q2ms(2k−2)(Xm)

)
s(2k−1)(Xn−1)
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q-Log-Concavity of Nq(n, k) for fixed k

⇓

(
qn−1s(2k−2,1)(Xn−1)s(2k−1)(Xm)− qms(2k−2,1)(Xm)s(2k−1)(Xn−1)

)
+
(

q2(n−1)s(2k−2)(Xn−1)s(2k−1)(Xm)− q2ms(2k−2)(Xm)s(2k−1)(Xn−1)
)
.

⇓ (Transformation formulas)

qk−2
(
s(2k−2,1)(Xn−1)s(2k−1)(Xm)− s(2k−2,1)(Xm)s(2k−1)(Xn−1)

)
+ q2(k−1)(m+n−1)

(
s(2k−2)(X−1

n−1)s(2k−1)(X−1
m )− s(2k−2)(X−1

m )s(2k−1)(X−1
n−1)

)
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q-Log-Concavity of Nq(n, k) for fixed k

Let Z = Xm − Xn−1, that is, Z = {qn−1, . . . , qm−1}. Set
Z−1 = {q1−n, . . . , q1−m}. Then using

s�(Xm) =
∑
�

s�(Xn−1)s�/�(Z ),

we have

qk−2s(2k−2,1)(Xn−1)s(2k−1)(Z ) + q2(k−1)(m+n−1)s(2k−2)(X−1
n−1)s(2k−1)(Z−1)

+ qk−2
∑

J⊆(2k−2,1)

sJ(Z )
(
s(2k−2,1)s(2k−1)/J − s(2k−2,1)/Js(2k−1)

)
(Xn−1)

+ q2(k−1)(m+n−1)s(2k−2)(X−1
n−1)s(2k−2,1)(Z−1)s(1)(X−1

n−1)

+ q2(k−1)(m+n−1)
∑

I⊆(2k−2)

sI (Z−1)
(
s(2k−2)s(2k−1)/I − s(2k−2)/I s(2k−1)

)
(X−1

n−1).
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q-Log-Concavity of Nq(n, k) for fixed k

Given two partitions � = (�1, �2, . . .) and � = (�1, �2, . . .), let

� ∨ � = (max(�1, �1),max(�2, �2), . . .),

� ∧ � = (min(�1, �1),min(�2, �2), . . .).

For two skew partitions �/� and �/�, we define

(�/�) ∨ (�/�) = (� ∨ �)/(� ∨ �),

(�/�) ∧ (�/�) = (� ∧ �)/(� ∧ �).

Theorem (Lam-Postnikov-Pylyavaskyy, Amer. J. Math. (2007))

For any two skew partitions �/� and �/�, the difference

s(�/�)∨(�/�)s(�/�)∧(�/�) − s�/�s�/�

is Schur positive.
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q-Log-Concavity of Nq(n, k) for fixed k

Corollary

Let k be a positive integer. If I , J are partitions with I ⊆ (2k−1) and
J ⊆ (2k−1, 1), then both

s(2k−1)s(2k )/I − s(2k−1)/I s(2k ) (23)

and
s(2k−1,1)s(2k )/J − s(2k−1,1)/Js(2k ) (24)

are Schur positive.

Proof. For (??), take � = (2k−1), � = I , � = (2k) and � = ∅. For (??),
take � = (2k−1, 1), � = J, � = (2k) and � = ∅.
Remark. The q-Log-Concavity of Nq(n, k) for fixed k follows from the
above corollary.
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Connection with a Conjecture of McNamara and Sagan

Define the operator ℒ which maps a polynomial sequence {fi (q)}i≥0 to a
polynomial sequence given by

ℒ(fi (q)) := fi (q)2 − fi−1(q)fi+1(q).

A sequence {fi (q)} is k-fold q-log-concave if Lj(fi ) is q-log-concave for
1 ≤ j ≤ k − 1.
If {fi (q)} is k-fold log-concave for any k , then it is said to be infinitely
q-log-concave.

Conjecture (McNamara and Sagan, Adv. in Appl. Math. (2010))

For fixed k, the Gaussian polynomials
[
n
k

]
n≥k is infinitely q-log-concave.

Remark. For fixed n, they have shown that
[
n
k

]
k

is not 2-fold
q-log-concave.

76 / 1



Connection with a Conjecture of McNamara and Sagan

For fixed k, subscript the ℒ-operator by n.

Ln

([
n

k

])
=

qn−k

[n]

[
n

k − 1

][
n

k

]
,

which are, up to a power of q, the q-Narayana numbers.

L2
n

([
n

k

])
=

q3n−3k [2]

[n]2[n − 1]

[
n

k

]2[
n

k − 1

][
n

k − 2

]
.

McNamara and Sagan (2010) conjectured that these polynomials are
q-nonnegative.
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Connection with a Conjecture of McNamara and Sagan

McNamara and Sagan (2010):
“It is not clear that these polynomials are q-nnonegative, although they
must be if Conjecture 5.3 is true. Furthermore, when q = 1, the triangle
made as n and k vary is not in Sloane’s Encyclopedia [24] (although it
has now been submitted). We expect that these integers and polynomials
have interesting, yet to be discovered, properties.”

Corollary (Chen-Wang-Yang, J. Algebraic Combin. (2010))

For fixed k, the Gaussian polynomials
[
n
k

]
n≥k is 2-fold q-log-concave.
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Outline
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q-log-convexity of Narayana polynonmials

Narayana polynomial of type A and B are defined respectively as follows:

NAn(q) =
n∑

k=0

N(n, k)qk ,

and

NBn(q) =
n∑

k=0

(
n

k

)2

qk .

Conjecture (Liu-Wang, Adv. in Appl. Math. (2007))

The polynomials NAn(q) form a q-log-convex sequence, so do NBn(q).
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q-log-convexity of Narayana polynonmials

Theorem (Chen-Wang-Yang, J. Algebraic Combin. (2010))

The Narayana polynomials NAn(q) of type A are strongly q-log-convex.

Theorem (Chen-Wang-Yang, J. Algebraic Combin. (2010))

The Narayana polynomials NBn(q) of type B are q-log-convex.

Idea: q-log-convexity ⇒ Schur positivity
Method: regard coefficients as specialization of symmetric functions.
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Narayana polynonmials of type A

N(n, k) = Nq(n, k)∣q=1 = s(2k−1)(1n−1) = ps1
n−1

(
s(2k−1)

)
.

[qr ]NAm+1(q)NAn−1(q) =
r−2∑
k=0

ps1
m

(
s(2k )

)
ps1

n−2

(
s(2r−2−k )

)
.

[qr ]NAm(q)NAn(q) =
r−2∑
k=0

ps1
m−1

(
s(2k )

)
ps1

n−1

(
s(2r−2−k )

)
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Narayana polynonmials of type A

Given a, b,m ∈ ℕ and 0 ≤ i ≤ m, let

D1(m, i , a, b) = s(2i−b,1b−a)s(2m−i−1),

D2(m, i , a, b) = s(2i−b−1,1b+2−a)s(2m−i−1),

D3(m, i , a, b) = s(2i−b−1,1b+1−a)s(2m−i−1,1),

D(m, i , a, b) = D1(m, i , a, b) + D2(m, i , a, b)− D3(m, i , a, b).

The coefficient [qr ] (NAm+1(q)NAn−1(q)− NAm(q)NAn(q)) is equal to

ps1
n−2

⎛⎝ ∑
0≤a≤b≤d−1

ps1
d(s(2a,1b+1−a))

r−2∑
k=0

D(r − 2, k, a, b)

⎞⎠ .
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Schur Positivity

Theorem (Chen-Wang-Yang, J. Algebraic Combin. (2010))

For any b ≥ a ≥ 0 and m ≥ 0, the symmetric function
∑m

i=0 D(m, i , a, b)
is Schur positive.

Proof is based on the case of a = b = 0.
Given a set S of positive integers, let ParS(n) denote the set of partitions
of n whose parts belong to S .

Theorem (Chen-Wang-Yang, J. Algebraic Combin. (2010))

For any m ≥ 0, we have

m∑
i=0

D(m, i , 0, 0) =
∑

�∈Par{2,4}(2m−2)

s�. (25)
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Schur Positivity

Taking m = 3, 4, 5 and using the Maple package, we observe that∑3
k=0

(
s(2k−1)s(23−k ) + s(2k−2,12)s(23−k ) − s(2k−1,1)s(23−k−1,1)

)
= s(4) + s(2,2).∑4

k=0

(
s(2k−1)s(24−k ) + s(2k−2,12)s(24−k ) − s(2k−1,1)s(24−k−1,1)

)
= s(4,2) + s(2,2,2).∑5

k=0

(
s(2k−1)s(25−k ) + s(2k−2,12)s(25−k ) − s(2k−1,1)s(25−k−1,1)

)
= s(4,4) + s(4,2,2) + s(2,2,2,2).

The proof of the above theorem mainly relies on the recurrence relations
of summands D(m, i , 0, 0).

Experiment ⇒ Observation ⇒ Proof
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An Operator Δ�

For a symmetric function f , suppose that f has the expansion
f =

∑
� a�s�, and then the action of Δ� on f is given by

Δ�(f ) =
∑
�

a�s�∪�.

Example

f = s(4,3,2) + 3s(2,2,1) + 2s(5)

Δ(3,1)f = s(4,3,3,2,1) + 3s(3,2,2,1,1) + 2s(5,3,1).
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Some Identities of Symmetric Functions

For a = b = 0, denote D(m, i , 0, 0) by Dm,i .

Theorem (Chen-Yang, J. Algebraic Combin. (2010))

Let m = 2k + 1 for some k ∈ ℕ.

(i) We have

Dm,k = s(3k )s(1k ),

Dm,k+1 = s(4k ) − s(3k )s(1k ) −Δ(2)(s(3k )s1(k−2) ).

(ii) For any 0 ≤ i ≤ k − 1, we have

Dm,i = Δ(2)(Dm−1,i ),

Dm,m−i = Δ(2)(Dm−1,m−1−i ).
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Some Identities of Symmetric Functions

Theorem

Let m = 2k for some k ∈ ℕ.

(i) We have

Dm,k−1 = s(3k )s(1k−2) + Δ(2)(s(3k−1)s(1k−1)),

Dm,k = −s(3k )s(1k−2).

(ii) For any 0 ≤ i ≤ k − 2, we have

Dm,i = Δ(2)(Dm−1,i ),

Dm,m−i = Δ(2)(Dm−1,m−1−i ),

Dm,m−k+1 = Δ(2)(Dm−1,m−k).
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Dm,k for m = 7

m = 7
D7,0 s(26)

D7,1 s(4,24) + s(32,23) + s(3,24,1)

D7,2 s(32,22,12) + s(4,32,2) + s(42,22) + s(33,2,1) + s(4,3,22,1)

D7,3 s(4,32,12) + s(33,13) + s(42,3,1) + s(43)

D7,4 −s(4,32,2) − s(4,32,12) − s(33,2,1) − s(33,13) − s(42,3,1)

D7,5 −s(32,23) − s(32,22,12) − s(4,3,22,1)

D7,6 −s(3,24,1)

D7,7 0
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Dm,k for m = 8

m = 8
D8,0 s(27)

D8,1 s(4,25) + s(32,24) + s(3,25,1)

D8,2 s(32,23,12) + s(4,32,22) + s(42,23) + s(33,22,1) + s(4,3,23,1)

D8,3 s(4,32,2,12) + s(33,2,13) + s(42,3,2,1) + s(43,2)

+s(34,12) + s(42,32) + s(4,33,1)

D8,4 −s(34,12) − s(42,32) − s(4,33,1)

D8,5 −s(42,3,2,1) − s(33,22,1) − s(33,2,13) − s(4,32,2,12) − s(4,32,22)

D8,6 −s(32,24) − s(32,23,12) − s(4,3,23,1)

D8,7 −s(3,25,1)

D8,8 0
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Littlewood-Richardson Rule

Basic Tools for proving identities of symmetric functions: the
Littlewood-Richardson Rule
Littlewood-Richardson coefficients c��� :

s�s� =
∑
�

c���s�.

Theorem

The Littlewood-Richardson coefficient c��� is equal to the number of
Littlewood-Richardson tableaux of shape �/� and type �.
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Littlewood-Richardson Rule

A lattice permutation of length n is a sequence w1w2 ⋅ ⋅ ⋅wn such that for
any i and j in the subsequence w1w2 ⋅ ⋅ ⋅wj the number of i ’s is greater
than or equal to the number of i + 1’s.

The reverse reading word T rev is a sequence of entries of T obtained by
first reading each row from right to left and then concatenating the rows
from top to bottom.

T is called a Littlewood-Richardson tableau,if the reverse reading word
T rev is a lattice permutation.
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Littlewood-Richardson tableaux

Take � = (4, 4, 2, 1), � = (2, 1), � = (4, 3, 1). There are two
Littlewood-Richardson tableaux of shape �/� and type � (c��� = 2) as
shown below.

∗ ∗ 1 1
∗ 1 2 2
1 3
2

∗ ∗ 1 1
∗ 1 2 2
1 2
3

Fig 3: Skew Littlewood-Richardson tableaux
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Narayana polynomials of type B

When � = (1k) for k ≥ 1, the Schur function s�(x) becomes the k-th
elementary symmetric function ek(x), i.e.,

s(1k )(x) = ek(x) =
∑

1≤i1<⋅⋅⋅<ik

xi1 ⋅ ⋅ ⋅ xik . (26)

NBn(q) =
n∑

k=0

(
n

k

)2

qk .

[qk ](NBn(q)) = ps1
n(e2

k ).

ps1
n(ek) = ps1

n−1(ek + ek−1).
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Narayana polynomials of type B

Reiner introduced the type B analogue of noncrossing partitions.

Theorem (Reiner, Discrete Math. (1997))

The lattice of non-crossing partitions of type B is a ranked self-dual
lattice with cardinality

(
2n
n

)
and rank generating function

NBn(q) =
n∑

k=0

(
n

k

)2

qk .
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Narayana polynomials of type B

The coefficient of qr in NBn−1(q)NBn+1(q)− (NBn(q))2 is given by

r∑
k=0

ps1
n−1(ek)

2
ps1

n+1(er−k)
2 − ps1

n(ek)
2
ps1

n(er−k)
2
.

⇓ apply ps1
n(ek) = ps1

n−1(ek + ek−1) twice.

ps1
n−1

(
r∑

k=0

ek
2(er−k + 2er−k−1 + er−k−2)2 − (ek + ek−1)2(er−k + er−k−1)2

)
.

⇓

2 ps1
n−1

(
r∑

k=0

e2
k−1e2

r−k + ek−2eke2
r−k − 2ek−1eker−k−1er−k

)
.
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Narayana polynomials of type B

Theorem (Chen-Tang-Wang-Yang, Adv. in Appl. Math. (2010))

For any r ≥ 1, we have

r∑
k=0

(ek−1ek−1er−ker−k + ek−2eker−ker−k − 2ek−1eker−k−1er−k) =
∑
�

s�,

where � sums over all partitions of 2r − 2 of the form (4i4 , 32i3 , 22i2 , 12i1 )
with i1, i2, i3, i4 being nonnegative integers.

Remark. Proof mainly relies on the Jacobi-Trudi identity and the Pieri
rule.
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The Jacobi-Trudi Identity

Theorem

Let � be a partition with the largest part ≤ n and �′ its conjugate. Then

s�(x) = det(e�i
′−i+j(x))ni,j=1,

where e0 = 1 and ek = 0 for k < 0.∑r
k=0(ek−1ek−1er−ker−k + ek−2eker−ker−k − 2ek−1eker−k−1er−k) is

equal to

r∑
k=0

k−1≥r−k

ek−1er−ks(2r−k ,12k−r−1) −
r∑

k=0
k−1<r−k−1

ek−1er−ks(2k ,1r−2k−1)

+
r∑

k=0
k−2≥r−k

eker−ks(2r−k ,12k−r−2) −
r∑

k=0
k−2<r−k−1

eker−ks(2k−1,1r−2k ).
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The Pieri Rule

A skew partition �/� is called a horizontal (or vertical) strip if there are
no two squares in the same column (resp. in the same row).

Theorem

We have s�s(n) =
∑
� s�summed over all partitions � such that �/� is a

horizontal strip of size n, and s�s(1n) =
∑
� s� summed over all partitions

� such that �/� is a vertical strip of size n.
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Polynomials with triangular recurrence relation

Consider

Pn(q) =
n∑

k=0

T (n, k)qk , n ≥ 0,

where the coefficients T (n, k) are nonnegative real numbers and satisfy
the following recurrence relation

T (n, k) = (a1n + a2k + a3)T (n − 1, k)

+ (b1n + b2k + b3)T (n − 1, k − 1), for n ≥ k ≥ 1.(27)
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Polynomials with triangular recurrence relation

We further need the boundary conditions

T (n,−1) = T (n, n + 1) = 0, for n ≥ 1,

a1 ≥ 0, a1 + a2 ≥ 0, a1 + a2 + a3 > 0,

and
b1 ≥ 0, b1 + b2 ≥ 0, b1 + b2 + b3 > 0.

For the triangular array {T (n, k)}n≥k≥0, we always assume that
T (0, 0) > 0. Thus we have T (n, k) > 0 for 0 ≤ k ≤ n.
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Log-concavity of T (n, k)

Lemma (Kurtz, J. Combin. Theory Ser. A (1972))

Suppose that the positive array {T (n, k)}n≥k≥0 satisfies the recurrence
relation (??). Then, for given n, the sequence {T (n, k)}0≤k≤n is
log-concave, namely, for 0 ≤ k ≤ n,

T (n, k)2 ≥ T (n, k − 1)T (n, k + 1).
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A Sufficient Condition of q-Log-convexity

Theorem (Liu-Wang, Adv. in Appl. Math. (2007))

Suppose that the array {T (n, k)}n≥k≥0 of positive numbers satisfies the
recurrence relation (??) and the additional condition

(a2b1 − a1b2)n + a2b2k + (a2b3 − a3b2) ≥ 0, for 0 < k ≤ n.

Then the polynomials Pn(q) form a q-log-convex sequence.

Remark. This theorem applies to the Bell polynomials and the Eulerian
polynomials. Proof is based on Kurtz’s result.
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A key lemma

Lemma (Chen-Wang-Yang, Canad. Math. Bull., to appear)

Suppose that the array {T (n, k)}n≥k≥0 of positive numbers satisfies (??)
with a2, b2 ≥ 0. Then, for any l ′ ≥ l ≥ 0 and m′ ≥ m ≥ 0, we have

T (m, l)T (m′, l ′)− T (m, l ′)T (m′, l) ≥ 0.

In terms of polynomials, the lemma reads

P ′nPm−1 − PnP ′m−1 ≥q 0.
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Another Sufficient Condition of q-log-convexity

Note that

Pm−1Pn+1 − PmPn = (a1 + b1q)(n −m + 1)Pm−1Pn

+ q(a2 + b2q)(P ′nPm−1 − PnP ′m−1),

Theorem (Chen-Wang-Yang, Canad. Math. Bull., to appear)

Suppose that the array {T (n, k)}n≥k≥0 of positive numbers satisfies (??)
with a2, b2 ≥ 0. Then the polynomial sequence {Pn(q)}n≥0 is strongly
q-log-convex.

Remark. This result applies to the Bell polynomials, the Bessel
polynomials, the Ramanujan polynomials and the Dowling polynomials.
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Another Sufficient Condition of q-log-convexity

The Ramanujan polynomials Rn(x) are defined by the following
recurrence relation:

R1(x) = 1, Rn+1(x) = n(1 + x)Rn(x) + x2R ′n(x), (28)

where R ′n(x) is the derivative of Rn(x) with respect to x . These
polynomials are related to a refinement of Cayley’s theorem due to Shor.
Let r(n, k) be the number of rooted labeled trees on n vertices with k
improper edges. Shor proved that Rn(x) is the generating function of
r(n, k).
Let r ′(n, k) = r(n + 1, k). Then the triangle {r ′(n, k)}n≥k≥0 satisfies the
following recurrence relation

r ′(n, k) = nr ′(n − 1, k) + (n + k − 1)r ′(n − 1, k − 1), (29)

which leads to the q-log-convexity of Rn(x).
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Longest Increasing Subsequences

Let
Pn(q) =

∑
k

Pn,kqk ,

where Pn,k is the number of permutations � on [n] = {1, 2, . . . , n} such
that the length of the longest increasing subsequences of � equals k.

Theorem (Baik-Deift-Johansson, J. Amer. Math. Soc. (1999))

The limiting distribution of the coefficients of Pn(q) is the Tracy-Widom
distribution.

The numbers Pn,k can be computed by Gessel’s theorem. Let Sn be the
symmetric group on [n], and let is(�) be the length of the longest
increasing subsequences of �.
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Longest Increasing Subsequences

Define

uk(n) = ♯{w ∈ Sn : is(w) ≤ k}, (30)

Uk(q) =
∑
n≥0

uk(n)
q2n

n!2
, k ≥ 1, (31)

Ii (2q) =
∑
n≥0

q2n+i

n!(n + i)!
, i ∈ ℤ. (32)

Theorem (Gessel, J. Combin. Theory, Ser. A (1990))

Uk(q) = det(Ii−j(2q))ki,j=1.
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Longest Increasing Subsequences

Note that Pn,k = uk(n)− uk−1(n) for n ≥ 1.

P1(q) = q,

P2(q) = q + q2,

P3(q) = q + 4q2 + q3,

P4(q) = q + 13q2 + 9q3 + q4,

P5(q) = q + 41q2 + 61q3 + 16q4 + q5,

P6(q) = q + 131q2 + 381q3 + 181q4 + 25q5 + q6,

P7(q) = q + 428q2 + 2332q3 + 1821q4 + 421q5 + 36q6 + q7.
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Longest Increasing Subsequences

Conjecture

Pn(q) is log-concave for n ≥ 1.

Conjecture

Pn(q) is ∞-log-concave for n ≥ 1.

Conjecture

The polynomial sequence {Pn(q)} is strongly q-log-convex.

Conjecture

The polynomial sequence {Pn(q)} is infinitely q-log-convex.
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Longest Increasing Subsequences

Let f �/� denote the number of standard Young tableaux of shape �/�.
The exponential specialization is a homomorphism ex : Λ→ ℚ[t], defined
by ex(pn) = t�1n, where pn is the n-th power sum. Let
ex1(f ) = ex(f )t=1, provided this number is defined. It is known that

ex1(s�/�) =
f �/�

∣�/�∣!
, Pn,k

RSK
=

∑
�⊢n,�1=k

(
f �
)2
.

Conjecture

Let
fn,k =

∑
�⊢n,�1=k

s2
�.

Then f 2
n,k − fn,k+1fn,k−1 is s-positive for 1 ≤ k ≤ n.

Remark. This conjecture implies the log-concavity of Pn,k .
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Matchings with Given Crossing Number

Let
M2n(q) =

∑
k

M2n,kqk ,

where M2n,k is the number of matchings on [2n] with crossing number k.
Let

Vk(q) =
∑
n≥0

vk(n)
qn

n!
,

where vk(n) denotes the number of matchings on [2n] whose crossing
number is less than or equal to k .

Theorem (Grabiner-Magyar, J. Algebraic Combin. (1993); Goulden,
Discrete Math. (1992))

Vk(q) = det(Ii−j(2q)− Ii+j(2q))ki,j=1.
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Matchings with Given Crossing Number

Note that M2n,k = vk(n)− vk−1(n).

M2(q) = q

M4(q) = 2q + q2

M6(q) = 5q + 9q2 + q3

M8(q) = 14q + 70q2 + 20q3 + q4

M10(q) = 42q + 552q2 + 315q3 + 35q4 + q5

M12(q) = 132q + 4587q2 + 4730q3 + 891q4 + 54q5 + q6

M14(q) = 429q + 40469q2 + 71500q3 + 20657q4 + 2002q5 + 77q6 + q7
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Matchings with Given Crossing Number

Conjecture

M2n(q) is log-concave for n ≥ 1.

Conjecture

M2n(q) is ∞-log-concave for n ≥ 1.

Conjecture

The polynomial sequence {M2n(q)} is strongly q-log-convex.

Conjecture

The polynomial sequence {M2n(q)} is infinitely q-log-concavity.
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Integer Partition

Let pn be the number of partitions of n. The first numbers of pn are
stated as follow:

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176,

231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436,

3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310,
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Integer Partition

We propose the following conjectures.

Conjecture

The sequence {pn}n≥26 is log-concave. In other words, for any n ≥ 26,

pn−1

pn
<

pn

pn+1
.

The truth can be verified for n ≤ 8000.

118 / 1



Integer Partition

Conjecture

For any m ≥ 2 and any n ≥ m + 1, we have

pn−m

pn
<

pn

pn+m
. (33)

In particular, the case m = 2 states that both the sequences {p2n}n≥1

and {p2n−1}n≥1 are log-concave.
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Integer Partition

Conjecture

For any constants a > b and any n ≥ 1,

p(a−b)n

pan
<

pan

p(a+b)n
.

Conjecture

For any n ≥ 1,
pn−1

pn

(
1 +

1

n

)
>

pn

pn+1
.

Conjecture

For all k, there exists a constant n0(k) such that P(n) is k-log-concave
for n > n0(k).

120 / 1



An Asymptotical Result

Theorem (Canfield, 1995)

pn =
ec
√
n

4
√

3n
(1 +

c1√
n

+
c2

n
+

c3

n3/2
+ O(n−2)),

where

c =

√
2

3
�.

In other words, there exists d and n0 such that when n > n0,

ec
√
n

4
√

3n
(1+

c1√
n

+
c2

n
+

c3

n3/2
−dn−2) < pn <

ec
√
n

4
√

3n
(1+

c1√
n

+
c2

n
+

c3

n3/2
+dn−2),

Remark. This implies the log-concavity of pn for sufficiently large n.
However, we can not give an exact value n0 such that when n > n0 the
log-concavity holds.
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q-Catalan Number

The Catalan numbers:

Cn =
1

n + 1

(
2n

n

)
.

The usual q-analog of the Catalan numbers is given by

Cn(q) :=
1

[n + 1]

[
2n

n

]
.

Let
mn(i) = [qi ]Cn(q).
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q-Catalan Number

We use the moment generating function technique to obtain the
following result.

Theorem (Chen-Wang-Wang, Proc. Amer. Math. Soc. (2008))

The limiting distribution of the coefficients of the q-Catalan numbers is
normal.

By a similar argument, we obtain two general theorems.

Corollary (Chen-Wang-Wang, Proc. Amer. Math. Soc. (2008))

The distribution of the coefficients in cn(q) = [2]
[2n]

[
2n
n−1

]
is asymptotically

normal.

Corollary (Chen-Wang-Wang, Proc. Amer. Math. Soc. (2008))

The coefficients of the generalized q-Catalan numbers
Cn,m(q) = 1

[(m−1)n+1]

[
mn
n

]
are normally distributed when n→∞.
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q-Catalan Number

The coefficients of q-Catalan number is not unimodal, since it is obvious
that the coefficient of q in Cn(q) is zero, see Stanley (1989). For
example,

C4(q) = 1 + q2 + q3 + 2q4 + q5 + 2q6 + q7 + 2q8 + q9 + q10 + q12.

Conjecture (Chen-Wang-Wang, Proc. Amer. Math. Soc. (2008))

The sequence {mn(1), . . . ,mn(n(n − 1)− 1)} is unimodal when n is
sufficiently large.

Conjecture (Chen-Wang-Wang, Proc. Amer. Math. Soc. (2008))

There exists an integer t such that when n is sufficiently large, the
sequence {mn(t), . . . ,mn(n(n − 1)− t)} is log-concave.
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Faulhaber polynomials

Setting u = n2 + n, Faulhaber coefficient A
(m)
k be defined by

n∑
i=1

i2m−1 =
1

2m

m∑
k=0

A
(m)
k um−k .

Theorem (Knuth, Math. Comput. (1993))

A
(m)
0 = 1,

k∑
j=0

(
m − j

2k + 1− 2j

)
A

(m)
j = 0, k ≥ 0.

Theorem (Knuth, Math. Comput. (1993))

Faulhaber coefficients satisfies the following recurrence relation

(2m−2k)(2m−2k−1)A
(m)
k +(m−k+1)(m−k)A

(m)
k−1 = 2m(2m−1)A

(m−1)
k .
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Faulhaber polynomials

Conjecture

The sequence {∣A(m)
k ∣}0≤k≤m−2 is log-concave.

Example

Setting N = n(n + 1)/2, we have

1 + 2 + ⋅ ⋅ ⋅+ n = N

13 + 23 + ⋅ ⋅ ⋅+ n3 = N2

15 + 25 + ⋅ ⋅ ⋅+ n5 = (4N3 − N2)/3

17 + 27 + ⋅ ⋅ ⋅+ n7 = (12N4 − 8N3 + 2N2)/6

19 + 29 + ⋅ ⋅ ⋅+ n9 = (16N5 − 20N4 + 12N3 − 3N2)/5

111 + 211 + ⋅ ⋅ ⋅+ n11 = (32N6 − 64N5 + 68N4 − 40N3 + 10N2)/6
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The End

Thank you!!!

127 / 1


